3,514 research outputs found

    Static Output Feedback: On Essential Feasible Information Patterns

    Full text link
    In this paper, for linear time-invariant plants, where a collection of possible inputs and outputs are known a priori, we address the problem of determining the communication between outputs and inputs, i.e., information patterns, such that desired control objectives of the closed-loop system (for instance, stabilizability) through static output feedback may be ensured. We address this problem in the structural system theoretic context. To this end, given a specified structural pattern (locations of zeros/non-zeros) of the plant matrices, we introduce the concept of essential information patterns, i.e., communication patterns between outputs and inputs that satisfy the following conditions: (i) ensure arbitrary spectrum assignment of the closed-loop system, using static output feedback constrained to the information pattern, for almost all possible plant instances with the specified structural pattern; and (ii) any communication failure precludes the resulting information pattern from attaining the pole placement objective in (i). Subsequently, we study the problem of determining essential information patterns. First, we provide several necessary and sufficient conditions to verify whether a specified information pattern is essential or not. Further, we show that such conditions can be verified by resorting to algorithms with polynomial complexity (in the dimensions of the state, input and output). Although such verification can be performed efficiently, it is shown that the problem of determining essential information patterns is in general NP-hard. The main results of the paper are illustrated through examples

    Static Output Feedback Pole Placement via a Trust Region Approach

    Full text link

    Control Systems in Engineering and Optimization Techniques

    Get PDF
    The portfolio diversification strategy study is useful to help investors to plan for the best investment strategy in maximizing return with the given level of risk or minimizing risk. Further, a new set of generalized sufficient conditions for the existence and uniqueness of the solution and finite-time stability has been achieved by using Generalized Gronwall-Bellman inequality. Moreover, a novel development is proposed to solve classical control theory’s difference diagrams and transfer functions. Advanced TCP strategies and free parametrization for continuous-time LTI systems and quality of operation of control systems are presented

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    Robust PI-D controller design for descriptor systems using regional pole placement and/or H2H_2 performance

    Get PDF
    summary:The paper deals with the problem of obtaining a robust PI-D controller design procedure for linear time invariant descriptor uncertain polytopic systems using the regional pole placement and/or H2H_2 criterion approach in the form of a quadratic cost function with the state, derivative state and plant input (QSR). In the frame of Lyapunov Linear Matrix Inequality (LMI) regional pole placement approach and/or H2H_2 quadratic cost function based on Bellman-Lyapunov equation, the designed novel design procedure guarantees the robust properties of closed-loop system with parameter dependent quadratic stability/quadratic stability. In the obtained design procedure the designer could use controller with different structures such as P, PI, PID, PI-D. For the PI-D's D-part of controller feedback the designer could choose any available output/state derivative variables of descriptor systems. Obtained design procedure is in the form of Bilinear Matrix Inequality (BMI). The effectiveness of the obtained results is demonstrated on two examples

    On Parametrizations of State Feedbacks and Static Output Feedbacks and Their Applications

    Get PDF
    In this chapter, we provide an explicit free parametrization of all the stabilizing static state feedbacks for continuous-time Linear-Time-Invariant (LTI) systems, which are given in their state-space representation. The parametrization of the set of all the stabilizing static output feedbacks is next derived by imposing a linear constraint on the stabilizing static state feedbacks of a related system. The parametrizations are utilized for optimal control problems and for pole-placement and exact pole-assignment problems
    corecore