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Chapter

On Parametrizations of State
Feedbacks and Static Output
Feedbacks and Their Applications
Yossi Peretz

Abstract

In this chapter, we provide an explicit free parametrization of all the stabilizing
static state feedbacks for continuous-time Linear-Time-Invariant (LTI) systems,
which are given in their state-space representation. The parametrization of the set
of all the stabilizing static output feedbacks is next derived by imposing a linear
constraint on the stabilizing static state feedbacks of a related system. The parame-
trizations are utilized for optimal control problems and for pole-placement and
exact pole-assignment problems.

Keywords: control systems, continuous-time systems, state-space representation,
feedback stabilization, static state feedback, static output feedback, Lyapunov
equation, parametrization, optimization, optimal control, H∞-control, H2-control,
linear-quadratic regulators, pole assignment, pole placement, robust control

1. Introduction

The solution of the problem of stabilizing static output feedback (SOF) has a
great practical importance, for several reasons: they are simple, cheap, reliable, and
their implementation is simple and direct. Since in practical applications, full-state
measurements are not always available, the application of stabilizing state feedback
(SF) is not always possible. Obviously, in practical applications, the entries of the
needed SOFs are bounded with bounds known in advance, but unfortunately, the
problem of SOFs with interval constrained entries is NP-hard (see [1, 2]). Exact
pole assignment and simultaneous stabilization via SOF or stabilization via struc-
tured SOFs are also NP-hard problems (see [2, 3] resp.). These problems become
even harder when optimal SOFs are sought, when the optimality notions can be the
sparsity (see [4]) of the controller (e.g., for reliability purposes of networked
control systems (NCSs)), the cost or energy consumption of the controller (which
are related to various norm-bounds on the controller), the H

∞
-norm, the H2-norm

or the linear-quadratic regulator (LQR) functional of the closed loop. The practical
meaning of the NP-hardness of the aforementioned problems is that the problems
cannot be formulated as convex problems (e.g., through LMIs or SDPs) and cannot
have any efficient algorithms (under the widespread belief that P 6¼ NP). Thus, one
has to compromise the exactness (which might affect the feasibility of the solution)
or the optimality of the solution. Therefore, one has to utilize the specific structure
of the given problem, in order to describe effectively the set of all feasible solutions,
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by reducing the number of variables and constraints to the minimum, for the
purpose of increasing the efficiency and accuracy of the available algorithms. This is
the aim of the proposed method.

Several formulations and related algorithms were introduced in the literature for
the constrained SOF and other control hard problems. The iterated linear matrix
inequalities (ILMI), bilinear matrix inequalities (BMI), and semi-definite program-
ming (SDP) approaches for the constrained SOF problem, for the simultaneous
stabilizing SOF problem, and for the robust control via SOF (with related algo-
rithms) were studied in: [5–11]. The problem of pole placement via SOF and the
problem of robust pole placement via Static Feedback were studied in: [12, 13]. In
[14, 15], the method of alternating projections was utilized to solve the problems of
rank minimization and pole placement via SOFs, respectively. The probabilistic and
randomized methods for the constrained SOF problem and robust stabilization via
SOFs (among other hard problems) were discussed in [16–19]. In [20], the problem
of minimal-gain SOF was solved efficiently by the randomized method. A non-
smooth analysis approach for H

∞
synthesis and for the SOF problem is given in

[21, 22], respectively. A MATLAB® library for multiobjective robust control prob-
lems based on the non-smooth analysis approach was introduced in [23]. All these
references (and many more references not brought here) show the significance of
the constrained SOF problem to control applications.

Many problems can be reduced to the SOF constrained problem, including the
reduction of the minimal-degree dynamic-feedback problem and robust or
decentralized stability via static-feedback, reduced-order H

∞
filter problem, global

minimization of LQR functional via SOF, and the design problem of optimal PID
controllers (see [2, 10, 24–27] respectively). It is worth mentioning [28], where the
alternating direction method of multipliers was utilized to alternate between opti-
mizing the sparsity of the state feedback matrix and optimizing the closed-loop
H2-norm, where the sparsity measure was introduced as a penalty term, without
any pre-assumed knowledge about the sparsity structure of the controller. The
method of augmented Lagrangian for optimal structured static-feedbacks was
considered in [29], where it is assumed that the structure is known in advance
(otherwise, one should solve a combinatorial problem). The computation overhead
of all the aforementioned methods can be reduced significantly, if good parametri-
zation of all the SOFs of the given system could be found, where a parametrization
can be called “good” if it takes into account the structure of the given specific
system and if it well separates between free and dependent parameters, thus
resulting in a minimal set of nonlinear nonconvex inequalities/equations needed to
be solved.

In [30], a parametrization of all the SFs and SOFs of Linear-Time-Invariant
(LTI) continuous-time systems is achieved by using a characterization of all the
(marginally) stable matrices as dissipative Hamiltonian matrices, leading to a highly
performance sequential semi-definite programming algorithm for the minimal-gain
SOF problem. The proposed method there can be applied also to LTI discrete-time
systems by adding semi-definite conditions for placing the closed-loop eigenvalues
in the unit disk. A new parametrization for SOF control of linear parameter-varying
(LPV) discrete-time systems, with guaranteed ℓ2-gain performance, is provided in
[31]. The parametrization there is given in terms of an infinite set of LMIs that
becomes finite, if some structure on the parameter-dependent matrices is assumed
(e.g., an affine dependency). The H2-norm guaranteed-performance SOF control
for hidden Markov jump linear systems (HMJLS) is studied in [32], where the SOFs
are parameterized via convex optimization with LMI constraints, under the
assumptions of full-rank sensor matrices and an efficient and accurate Markov
chain state estimator. In [33], an iterative LMI algorithm is proposed for the SOF
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problem for LTI continuous-time negative-imaginary (NI) systems with given H
∞

norm-bound on the closed loop, based on decoupling the dependencies between the
SOF and the Lyapunov certificate matrix.

When solving an optimization problem, it is important to have a convenient
parametrization for the set of feasible solutions. Otherwise, one needs to use the
probability method (i.e., the “generate and check” method), which is seriously
doomed to the “curse of dimensionality” (see [16]). In [13], a closed form of all the
stabilizing state feedbacks is proved (up to a set of measure 0), for the purpose of
exact pole assignment, when the location errors are optimized by lowering the
condition number of the similarity matrix, and the controller performance is opti-
mized by minimizing its Frobenius norm. The parametrization in [13] is based on
the assumptions that the input-to-state matrix B has a full rank and at least one real
state feedback leading to diagonalizable closed-loop matrix exists, where a neces-
sary condition for the existence of such feedback is that the multiplicity of any
assigned eigenvalue is less than or equal to rank Bð Þ. In this context, it is worth
mentioning [34] in which a parametrization of all the exact pole-assignment state
feedbacks is given, under the assumption that the set of needed closed-loop poles
should contain sufficient number of real eigenvalues (which make no problem if the
problem of pole placement is of concern, where it is generally assumed that the
region is symmetric with respect to the real axis and contains a real-axis segment
with its neighborhood). The results of [34] and of the current chapter are based on a
controllability recursive structure that was discovered in [35].

In this chapter, using the aforementioned controllability recursive structure, we
introduce a parametrization of the set of all stabilizing SOFs for continuous-time
LTI systems with no other assumptions on the given system (for discrete-time LTI
systems, the parametrization is much more involved and will be treated in a future
work). As opposed to the notable works [36–38], where for the parametrization one
still needs to solve some LMIs in order to get the Lyapunov matrix, here we give an
explicit recursive formula for the Lyapunov matrix and for the feedback in the case
of SF, and a constrained form for the Lyapunov matrix and for the feedback in the
case of SOF.

The rest of the chapter goes as follows:
In Section 2, we set notions and give some basic useful lemmas, and in Section 3,

we introduce the parametrization of the set of all stabilizing static-state feedbacks
for LTI continuous-time systems. In Section 4, we introduce the constrained
parametrization of the set of all stabilizing SOFs for LTI continuous-time systems.
The effectiveness of the method is shown on a real-life system. Section 5 is based on
[34] and is devoted to the problem of exact pole assignment by SF, for LTI
continuous-time or discrete-time systems. The effectiveness of the method is shown
on a real-life system. Finally, in Section 6, we conclude with some remarks and
intentions for a future work.

2. Preliminaries

By  we denote the complex field and by � the open left half-plane. For z∈

we denote by R zð Þ its real part, while by I zð Þ we denote its imaginary part. For a
square matrix Z, we denote by σ Zð Þ the spectrum of Z. For a p�q matrix Z, we

denote by ZT its transpose, and by zi,j or by Zi,j, its i, jð Þ‘th element or block element.
A square matrix Z in the continuous-time context (in the discrete-time context) is
said to be (asymptotically) stable, if any eigenvalue λ∈ σ Zð Þ satisfies R λð Þ<0, i.e.,
λ∈� (satisfies λj j< 1, i.e. λ∈� where � is the open unit disk).
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Consider a continuous-time system in the form:

d

dt
x tð Þ ¼ Ax tð Þ þ Bu tð Þ

y tð Þ ¼ Cx tð Þ

8
><
>:

(1)

where A∈
n�n,B∈

n�m,C∈
r�n, and x, u, y are the state, the input, and the

measurement, respectively. Assuming that the state x is fully accessible and fully

available for feedback, we define u ¼ �K 0ð Þx to be the state feedback (SF). When
the state is not fully accessible or not fully available for feedback but the measure-
ment y is available for feedback, we define u ¼ �Ky to be the static output feedback
(SOF). The problems that we consider here are the following:

• (SF-PAR): How can one parameterize the set of all K 0ð Þ
∈

m�n such that the

closed-loop A� BK 0ð Þ is stable, and what is the best parametrization (in terms
of minimal number of parameters and minimal set of constraints)?

• (SOF-PAR): How can one parameterize the set of all K ∈
m�r such that the

closed-loop A� BKC is stable, and what is the best parametrization?

The parameterizations will be used for achieving other goals and performance
keys for the system, other than stability, which is the feasibility defining basic key.

A square matrix Z is said to be non-negative (denoted as Z ≥0) if ZT ¼ Z and
vTZv≥0 for any vector v. A non-negative matrix Z is said to be strictly non-negative
(denoted as Z >0) if vTZv>0 for any vector v 6¼ 0. For two square matrices Z,W ,

we would write Z ≥W (Z >W) if Z �W ≥0 (respectively, if Z �W >0). For a
matrix Z ∈

p�q, we denote by Zþ the Moore-Penrose pseudo-inverse (see [39, 40]
for definition and properties). By LZ,RZ we denote the orthogonal projections Iq �
ZþZ and Ip � ZZþ, respectively, where Is denotes the identity matrix of size s� s.

Note that ZþZ and ZZþ (as well as LZ and RZ) are symmetric and orthogonally
diagonalizable with eigenvalues from 0, 1f g. By diag and bdiag we denote diagonal
and block-diagonal matrices, respectively.

A system triplet A,B,Cð Þ is SOF stabilizable (or just stabilizable) if and only if
there exist K and P>0 such that

EPþ PET ¼ �R (2)

for some given R>0 (R ¼ I can always be chosen), where E ¼ A� BKC. For the
“if” direction, note that (2) implies the negativity of the real part of any eigenvalue
of E, implying that the closed-loop E is stable. For the “only-if” direction, under
the assumption that E ¼ A� BKC is stable for some given K, one can show that

P≔
Ð
∞

0 exp Etð ÞR exp ETt
� �

dt is well defined, satisfies PT ¼ P and P>0, and is the

unique solution for (2).
Note that the set of all SOFs is given by K ¼ BþXCþ þ LBSþ TRC where S,T are

any m� rmatrices and X is any n� nmatrix such that E ¼ A� BBþXCþC is stable.
Thus, one can optimize K by utilizing the freeness in S,T without changing the
closed-loop performance achieved by X. This characterization of the feasibility
space shows its effectiveness in proving theorems, as will be seen along the chapter
(see also [20, 35]). We also conclude that A,B,Cð Þ is stabilizable if and only if
A,BBþ,CþCð Þ is stabilizable.

In the sequel, we make use of the following lemma (see [39]):

4

Control Systems in Engineering and Optimization Techniques



Lemma 2.1 The matrix equation AX ¼ B has solutions if and only if AAþB ¼ B
(equivalently, RAB ¼ 0). When the condition is satisfied, the set of all solutions is
given by

X ¼ AþBþ LAZ, (3)

where Z is arbitrary matrix. Moreover, we have: Xk k2F ¼ AþBk k2F þ LAZk k2F,
implying that the minimal Frobenius-norm solution is X ¼ AþB.

Similarly, the equation YA ¼ B has solutions if and only if BAþA ¼ B (equiva-
lently, BLA ¼ 0). When the condition is satisfied, the set of all solutions is given by

Y ¼ BAþ þWRA, (4)

where W is arbitrary matrix. Moreover, we have: Yk k2F ¼ BAþk k2F þ WRAk k2F,
implying that the minimal Frobenius-norm solution is Y ¼ BAþ.

3. Parametrization of all the static state feedbacks

We start with the following lemma known as the projection lemma (see [41],
Theorem 3.1):

Lemma 3.1 The pair A,BBþð Þ is stabilizable if and only if there exists P>0 such
that

RB I þ APþ PAT
� �

RB ¼ 0: (5)

When (5) is satisfied then, X is a stabilizing SF if and only if X is a solution for

BBþXPþ PXTBBþ ¼ I þ APþ PAT
: (6)

Moreover, one specific solution for (6) is given by

X0 ¼ I þ APþ PAT
� �

I � 1

2
BBþ

� �
P�1: (7)

Similarly, AT,CþC
� �

is stabilizable if and only if there exists Q >0 such that

LC I þ ATQ þQA
� �

LC ¼ 0: (8)

When (8) is satisfied then, YT is a stabilizing SF (i.e., AT � CþCYT or,
equivalently, A� YCþC is stable) if and only if Y is a solution for:

CþCYTQ þQYCþC ¼ I þ ATQ þ QA: (9)

One specific solution for (9) is given by

Y0 ¼ Q�1 I � 1

2
CþC

� �
I þ ATQ þQA
� �

: (10)

Remark 3.1 The explicit formulas (7) and (10) are our little contribution to the
projection lemma, Lemma 3.1. Unfortunately, we do not have such an explicit
formulas for LTI discrete-time systems.
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In order to describe the set of all solutions for (6) and (9), we need the following
lemma that can be proved easily:

Lemma 3.2 Let P>0,Q >0. Then, the set of all solutions for:

ZPþ PZT ¼ 0, (11)

is given by Z ¼WP�1 where WT ¼ �W.
Similarly, the set of all solutions for:

ZTQ þ QZ ¼ 0, (12)

is given by Z ¼ Q�1V where VT ¼ �V.
The following theorem describes the set of all solutions for (6) and (9), using the

controllers (7) and (10):
Theorem 3.1 Let P>0 satisfy (5) and let X0 be given by (7). Then, X is a solution

for (6) if and only if:

X ¼ X0 þWP�1 þ RBL, (13)

where W satisfies WT ¼ �W,RBW ¼ 0 and L is arbitrary.
Similarly, let Q >0 satisfy (8) and let Y0 be given by (10). Then, Y is a solution

for (9) if and only if:

Y ¼ Y0 þ Q�1V þMLC, (14)

where V satisfies VT ¼ �V,VLC ¼ 0 and M is arbitrary.
Proof:
Assume that X is a solution for (6). Since X0 is also a solution for (6), it follows

that BBþ X � X0ð ÞPþ P X � X0ð ÞTBBþ ¼ 0. Let Z ¼ BBþ X � X0ð Þ. Then, RBZ ¼ 0

and ZPþ PZT ¼ 0. Lemma 3.2 implies that Z ¼WP�1, where WT ¼ �W and

therefore RBW ¼ 0. We conclude that X � X0 ¼WP�1 þ RBL for some L (namely,
L ¼ X � X0).

Conversely, let X be given by (13) and let Z ¼WP�1. Then, BBþ X � X0ð Þ ¼
BBþZ ¼ Z since BBþRB ¼ 0 and since RBZ ¼ 0. Now, ZPþ PZT ¼ 0 implies that

BBþ X � X0ð ÞPþ P X � X0ð ÞTBBþ ¼ 0,

from which we conclude that X satisfies (6), since X0 satisfies (6). The second
claim is proved similarly. ■

In the following we describe the set P of all matrices P>0 satisfying (5). Note that
in Theorem 3.1 the existence of P>0 satisfying (5) is guaranteed by the assumption
that A,BBþð Þ is stabilizable and as a result of Lemma 3.1. Let P∈P and let

X0 ¼ I þ APþ PAT
� �

� I � 1

2
BBþ

� �
P�1

W arbitrary such that WT ¼ �W,RBW ¼ 0

X ¼ X0 þWP�1 þ RBL where L is arbitrary

K ¼ BþX þ LBF where F is arbitrary:

8
>>>>>>>>>><
>>>>>>>>>>:

(15)
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Let X Pð Þ denote the set of all matrices X satisfying (15) for a fixed P∈P, and let
K Pð Þ denote the set of all matrices K satisfying (15) for a fixed P∈P. Note that for a
fixed P∈P, the set X Pð Þ is convex (actually affine) and ∪P∈PX Pð Þ contains all the
stabilizing X parameters of the stabilizable pair A,BBþð Þ. Finally, ∪P∈PK Pð Þ
contains all the stabilizing SF’s K of the stabilizable pair A,Bð Þ.

For a stabilizable pair AT,CT
� �

, let Q be the set of all matrices Q >0 satisfying

(8), and let

Y0 ¼ Q�1 � I � 1

2
CþC

� �
I þ ATQ þ QA
� �

V arbitrary such that VT ¼ �V,VLC ¼ 0

Y ¼ Y0 þ Q�1V þMLC where M is arbitrary

K ¼ YCþ þGRC where G is arbitrary:

8
>>>>>>>>><
>>>>>>>>>:

(16)

Let Y Qð Þ denote the set of all matrices Y satisfying (16) for a fixed Q ∈Q, and
let K Qð Þ denote the set of all matrices K satisfying (16) for a fixed Q ∈Q. Then,

∪Q ∈QK Qð Þ contains all the stabilizing SFs K of the stabilizable pair AT,CT
� �

.
In the following we assume (without loss of generality, see Remark 4.2) that

A,BBþð Þ is controllable. Under this assumption, we recursively (go downwards
and) define a sequence of sub-systems of the given system A,BBþð Þ. Since BBþ is
symmetric matrix (with simple eigenvalues from the set 0, 1f g), it is diagonalizable
by an orthogonal matrix. Let U denote an orthogonal matrix such that

bB ¼ UTBBþU ¼ Ik 0

0 0

� �
¼ bdiag Ik, 0ð Þ (17)

(where k ¼ rank Bð Þ ¼ rank BBþð Þ≥ 1 since A,Bð Þ is controllable). Let

bA ¼ UTAU ¼
bA1,1

bA1,2

bA2,1
bA2,2

" #
be partitioned accordingly. Let U 0ð Þ ¼ U and let

A 0ð Þ ¼ A,B 0ð Þ ¼ B, n0 ¼ n, k0 ¼ rank B 0ð Þ� �
. Similarly, let U 1ð Þ be an orthogonal

matrix such that U 1ð ÞTB 1ð ÞB 1ð ÞþU 1ð Þ ¼ bdiag Ik1 , 0ð Þ, where B 1ð Þ ¼ bA2,1. Let

A 1ð Þ ¼ bA2,2, n1 ¼ n0 � k0, k1 ¼ rank B 1ð Þ� �
. Then, A 1ð Þ,B 1ð Þ

� 	
is controllable since

A 0ð Þ,B 0ð Þ
� 	

is controllable (see [35] and see Lemma 5.1 in the following).

Recursively, assume that the pair A ið Þ,B ið Þ
� 	

was defined and is controllable. Let

U ið Þ be an orthogonal matrix such that cB ið Þ ¼ U ið ÞTB ið ÞB ið ÞþU ið Þ ¼ bdiag Iki , 0ð Þ, where

ki ≥ 1 (since A ið Þ,B ið Þ
� 	

is controllable). LetdA ið Þ ¼ U ið ÞTA ið ÞU ið Þ ¼
d
A ið Þ

1,1
d
A ið Þ

1,2

d
A ið Þ

2,1
d
A ið Þ

2,2

2
4

3
5

be partitioned accordingly, with sizes ki � ki and ni � kið Þ � ni � kið Þ of the main

diagonal blocks. Let A iþ1ð Þ ¼dA ið Þ
2,2,B

iþ1ð Þ ¼dA ið Þ
2,1, niþ1 ¼ ni � ki, ki ¼ rank B ið Þ� �

.

Then, A iþ1ð Þ,B iþ1ð Þ
� 	

is controllable. We stop the recursion when B ið ÞB ið Þþ ¼ Iki for

some i ¼ b (i.e. the base case, in which also kb ¼ nb).
Now, we go upward and define the Lyapunov matrices and the related SFs of the

sub-systems. For the base case i ¼ b, let P bð Þ
>0 be arbitrary (note that it is a free

parameter!). Let
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X
bð Þ
0 ¼

1

2
Inb þ A bð ÞP bð Þ þ P bð ÞA bð ÞT
� 	

P bð Þ
� 	�1

W bð Þ arbitrary such that W bð ÞT ¼ �W bð Þ

X bð Þ ¼ X
bð Þ
0 þW bð Þ P bð Þ� ��1

K bð Þ ¼ B bð ÞþX bð Þ þ LB bð ÞF bð Þ where F bð Þ is arbitrary,

8
>>>>>><
>>>>>>:

(18)

and note that RB bð Þ ¼ 0 in the base case. Now, it can be checked that

E bð Þ ¼ A bð Þ � B bð ÞK bð Þ ¼ A bð Þ � X bð Þ is stable. We therefore have a parametrization of

K bð Þ P bð Þ� �
through arbitrary P bð Þ

>0.

Let P iþ1ð Þ denote the set of all P iþ1ð Þ
>0 satisfying:

RB iþ1ð Þ Iniþ1 þ A iþ1ð ÞP iþ1ð Þ þ P iþ1ð ÞA iþ1ð ÞT
� 	

RB iþ1ð Þ ¼ 0, (19)

and assume that K iþ1ð Þ P iþ1ð Þ� �
was parameterized through P iþ1ð Þ

>0 ranging in

the set P iþ1ð Þ, as is defined by (19). Similarly, let P ið Þ denote the set of all P ið Þ
>0

satisfying:

RB ið Þ Ini þ A ið ÞP ið Þ þ P ið ÞA ið ÞT
� 	

RB ið Þ ¼ 0, (20)

and assume that K ið Þ P ið Þ� �
was parameterized through P ið Þ

>0 ranging in the set

P ið Þ, as is defined by (20).

Now, we need to characterize the matrices P ið Þ
>0 belonging to the set P ið Þ.

Multiplying (20) from the left by U ið ÞT and from the right by U ið Þ we get:

dRB ið Þ Ini þ
d
A ið ÞcP ið Þ þ cP ið ÞdA ið ÞT

� �
dRB ið Þ ¼ 0,

where dRB ið Þ ¼
0 0

0 Ini�ki

� �
and cP ið Þ ¼ U ið ÞTP ið ÞU ið Þ ¼

cP ið Þ
1,1

cP ið Þ
1,2

dP ið ÞT
1,2

cP ið Þ
2,2

2
4

3
5 is

partitioned accordingly. The condition (20) is therefore equivalent to:

Ini�ki þ
d
A ið Þ

2,2 þdA ið Þ
2,1
cP ið Þ

1,2
cP ið Þ

2,2

� ��1 !
cP ið Þ

2,2þ

þcP ið Þ
2,2

d
A ið Þ

2,2 þdA ið Þ
2,1
cP ið Þ

1,2
cP ið Þ

2,2

� ��1 !T

¼ 0,

(21)

which is equivalent to:

Ini�ki þ A iþ1ð Þ þ B iþ1ð ÞcP ið Þ
1,2

cP ið Þ
2,2

� ��1 !
cP ið Þ

2,2þ

þcP ið Þ
2,2 A iþ1ð Þ þ B iþ1ð ÞcP ið Þ

1,2
cP ið Þ

2,2

� ��1 !T

¼ 0:

(22)

Let P iþ1ð Þ
∈P iþ1ð Þ and let K iþ1ð Þ

∈K iþ1ð Þ P iþ1ð Þ� �
. Set cP ið Þ

2,2 ≔P iþ1ð Þ and set

cP ið Þ
1,2 ≔ � K iþ1ð ÞP iþ1ð Þ. Now, since cP ið Þ

2,2 ≔P iþ1ð Þ
>0, (22) implies that the system:
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A iþ1ð Þ þ B iþ1ð ÞcP ið Þ
1,2

cP ið Þ
2,2

� ��1
≔A iþ1ð Þ � B iþ1ð ÞK iþ1ð Þ, (23)

is stable. Now,

cP ið Þ ¼
cP ið Þ

1,1 �K iþ1ð ÞP iþ1ð Þ

�P iþ1ð ÞK iþ1ð ÞT P iþ1ð Þ

" #
(24)

and we need to define cP ið Þ
1,1 in order to complete cP ið Þ to a strictly non-negative

matrix. Since:

cP ið Þ
1,1 �K iþ1ð ÞP iþ1ð Þ

�P iþ1ð ÞK iþ1ð ÞT P iþ1ð Þ

2
4

3
5 ¼

¼
Iki �K iþ1ð Þ

0 Ini�ki

2
4

3
5�

�
cP ið Þ

1,1 � K iþ1ð ÞP iþ1ð ÞK iþ1ð ÞT 0

0 P iþ1ð Þ

2
4

3
5�

�
Iki 0

�K iþ1ð ÞT Ini�ki

2
4

3
5,

it follows that cP ið Þ
>0 if and only if cP ið Þ

1,1 � K iþ1ð ÞP iþ1ð ÞK iþ1ð ÞT
>0 or equivalently

if and only if cP ið Þ
1,1 ¼ Δ

cP ið Þ
1,1 þ K iþ1ð ÞP iþ1ð ÞK iþ1ð ÞT, where ΔcP ið Þ

1,1 is arbitrary strictly
non-negative matrix (a free parameter!).

Conversely, if P ið Þ
>0 satisfies (20) then (23) is stable and thus:

K iþ1ð Þ ¼ �cP ið Þ
1,2

cP ið Þ
2,2

� ��1
∈K iþ1ð Þ R iþ1ð Þ

� 	
,

for some R iþ1ð Þ
∈P iþ1ð Þ. But since K iþ1ð Þ

∈K iþ1ð Þ R iþ1ð Þ� �
if and only if:

Ini�ki þ A iþ1ð Þ � B iþ1ð ÞK iþ1ð Þ
� 	

R iþ1ð Þ þ R iþ1ð Þ A iþ1ð Þ � B iþ1ð ÞK iþ1ð Þ
� 	T

¼ 0, (25)

since the last equation has unique strictly non-negative solution and since cP ið Þ
2,2

satisfies this equation, it follows that R iþ1ð Þ ¼ cP ið Þ
2,2. Let P

iþ1ð Þ ¼ cP ið Þ
2,2. Then,

K iþ1ð Þ
∈K iþ1ð Þ P iþ1ð Þ� �

and since cP ið Þ
1,2 ¼ �K iþ1ð ÞP iþ1ð Þ, it follows that cP ið Þ has the

form (24). Thus, cP ið Þ
1,1 ¼ Δ

cP ið Þ
1,1 þ K iþ1ð ÞP iþ1ð ÞK iþ1ð ÞT where ΔcP ið Þ

1,1 >0 is arbitrary
(a free parameter!) and

cP ið Þ ¼ U ið ÞTP ið ÞU ið Þ ¼
Δ
cP ið Þ

1,1 þ K iþ1ð ÞP iþ1ð ÞK iþ1ð ÞT �K iþ1ð ÞP iþ1ð Þ

�P iþ1ð ÞK iþ1ð ÞT P iþ1ð Þ

2
64

3
75: (26)
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Therefore, P ið Þ is the set of all P ið Þ
>0 such that cP ið Þ ¼ U ið ÞTP ið ÞU ið Þ is given by

(26). We thus have a parametrization of all P ið Þ
>0 satisfying (20). Specifically, P 0ð Þ

is the set of all P 0ð Þ
>0 satisfying (5).

Now, let P ið Þ
∈P ið Þ and let

X
ið Þ
0 ¼ Ini þ A ið ÞP ið Þ þ P ið ÞA ið ÞT

� 	
�

� Ini �
1

2
B ið ÞB ið Þþ

� �
P ið Þ� ��1

W ið Þ arbitrary such that W ið ÞT ¼ �W ið Þ,RB ið ÞW ið Þ ¼ 0

X ið Þ ¼ X
ið Þ
0 þW ið Þ P ið Þ� ��1 þ RB ið ÞL ið Þ where L ið Þ is arbitrary

K ið Þ ¼ B ið ÞþX ið Þ þ LB ið ÞF ið Þ where F ið Þ is arbitrary:

8
>>>>>>>>>><
>>>>>>>>>>:

(27)

Then, it can be checked that E ið Þ ¼ A ið Þ � B ið ÞK ið Þ ¼ A ið Þ � B ið ÞB ið ÞþX ið Þ is stable.

We therefore have a parametrization of K ið Þ P ið Þ� �
through P ið Þ

∈P ið Þ. We conclude
the discussion above with the following:

Theorem 3.2 Let A,Bð Þ be a controllable pair. Then, in the above notations, for

i ¼ b� 1, … , 0, P ið Þ
>0 satisfies (20) if and only if cP ið Þ ¼ U ið ÞTP ið ÞU ið Þ has the

structure (26) where ΔcP ið Þ
1,1 >0 is arbitrary (free parameter), where

K iþ1ð Þ
∈K iþ1ð Þ P iþ1ð Þ� �

, where P bð Þ
>0 is arbitrary (free parameter) and K bð Þ P bð Þ� �

is

given by (18). Moreover, K ið Þ P ið Þ� �
for i ¼ b� 1, … , 0 is given by (27).

Similarly to the discussion above, relating to AT,CþC
� �

and defining sub-

systems for j ¼ 0, … , c, we have a parametrization of all Q jð Þ
>0 satisfying (8) for

the related sub-system and specifically, Q 0ð Þ is the set of all Q 0ð Þ
>0 satisfying (8).

The parametrizations of all the stabilizing SF’s of A,BBþð Þ and AT,CþC
� �

are given

in the following:
Corollary 3.1 Let A,BBþð Þ be a given controllable pair. Then, the set of all

stabilizing SF’s of A,BBþð Þ is given by X ¼ X0 þWP�1 þ RBL where

X0 ¼ I þ APþ PAT
� �

I � 1

2
BBþ

� �
P�1,

where L is arbitrary, W satisfies WT ¼ �W,RBW ¼ 0, and P>0 satisfies

RB I þ APþ PAT
� �

RB ¼ 0,

i.e. P∈P 0ð Þ.

Similarly, let AT,CþC
� �

be a given controllable pair. Then, the set of all stabiliz-

ing SF’s of AT,CþC
� �

is given by Y ¼ Y0 þ Q�1V þMLC where

Y0 ¼ Q�1 I � 1

2
CþC

� �
I þ ATQ þ QA
� �

,

where M is arbitrary, V satisfies VT ¼ �V,VLC ¼ 0, and Q >0 satisfies

LC I þ ATQ þ QA
� �

LC ¼ 0,

i.e. Q ∈Q 0ð Þ.

10
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4. Parametrizations of all the static output feedbacks

In this section, we give two parametrizations for the set of all the stabilizing
SOFs. We start with the following lemma, which was extensively used in [20]:

Lemma 4.1 A system A,B,Cð Þ is stabilizable if and only if A,Bð Þ and AT,CT
� �

are stabilizable and there exist matrices X,Y ∈
n�n such that A� BBþX and A�

YCþC are stable and BBþX ¼ YCþC. When the conditions hold, the set of all
stabilizing SOFs related to the chosen matrices X,Y is given by KX ¼ BþXCþ þ
LBSþ TRC or by KY ¼ BþYCþ þ LBF þHRC respectively, where S,T,F,H are any
m� r matrices. The closed-loop matrix is given by E ¼ A� BKXC ¼ A� BBþX ¼
A� YCþC ¼ A� BKYC.

Remark 4.1 Under the hypotheses of Corollary 3.1, note that X ¼ X0 þWP�1 þ
RBL and Y ¼ Y0 þQ�1V þMLC satisfies BBþX ¼ YCþC if and only if BBþX0 þ
WP�1 ¼ Y0C

þCþQ�1V, since BBþW ¼W,BBþRB ¼ 0,VCþC ¼ V,LCC
þC ¼ 0.

Moreover, this condition can be simplified to (meaning that it does not include
matrix inverses):

QBBþ I þ APþ PAT
� �

I � 1

2
BBþ

� �
þQW ¼

¼ I � 1

2
CþC

� �
I þ ATQ þ QA
� �

CþCPþ VP:

(28)

We can state now the first parametrization for the set of all the stabilizing SOFs:

Corollary 4.1 Let A,B,Cð Þ be a given system triplet. Assume that A,Bð Þ, AT,CT
� �

are controllable. Then, the system has a stabilizing static output feedback if and only
if there exist P,Q >0 and W,V such that

RB I þ APþ PAT
� �

RB ¼ 0 i:e:P∈P 0ð Þ� �

LC I þ ATQ þ QA
� �

LC ¼ 0 i:e:Q ∈Q 0ð Þ
� 	

WT ¼ �W,RBW ¼ 0

VT ¼ �V,VLC ¼ 0

QBBþ I þ APþ PAT
� �

I � 1

2
BBþ

� �
þQW ¼

¼ I � 1

2
CþC

� �
I þ ATQ þQA
� �

CþCPþ VP:

8
>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

In this case, A� BKC is stable if and only if

K ¼ KX ¼ BþXCþ þ LBSþ TRC

X ¼ X0 þWP�1 þ RBL

X0 ¼ I þ APþ PAT
� �

I � 1

2
BBþ

� �
P�1,

8
>>>><
>>>>:

where S,T,L are arbitrary.
Similarly, A� BKC is stable if and only if

11
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K ¼ KY ¼ BþYCþ þ LBF þHRC

Y ¼ Y0 þ Q�1V þMLC

Y0 ¼ Q�1 I � 1

2
CþC

� �
I þ ATQ þ QA
� �

,

8
>>><
>>>:

where F,H,M are arbitrary.
We conclude this section with a second SOF parametrization:

Corollary 4.2 Let A,Bð Þ and AT,CT
� �

be controllable pairs. Then, A� BKC is

stable if and only if there exists K 0ð Þ
∈K 0ð Þ P 0ð Þ� �

for some P 0ð Þ
∈P 0ð Þ, such that

K 0ð ÞLC ¼ 0 . In this case, the set of all K‘s such that A� BKC is stable, is given by

K ¼ K 0ð ÞCþ þ GRC where K 0ð Þ
∈K 0ð Þ P 0ð Þ� �

, and G is arbitrary.

Proof: If there exists K 0ð Þ
∈K 0ð Þ P 0ð Þ� �

such that K 0ð ÞLC ¼ 0 for some P 0ð Þ
∈P 0ð Þ

then K 0ð Þ ¼ K 0ð ÞCþC. Since K 0ð Þ
∈K 0ð Þ P 0ð Þ� �

it follows that A� BK 0ð Þ is stable.

Thus, for K ¼ K 0ð ÞCþ we get that A� BKC is stable.

Conversely, if A� BKC is stable for some K then, for K 0ð Þ ¼ KC we have

K 0ð ÞLC ¼ 0 and since A� BK 0ð Þ is stable, Theorem 3.2 implies that there exists

P 0ð Þ
∈P 0ð Þ such that K 0ð Þ

∈K 0ð Þ P 0ð Þ� �
. ■.

Remark 4.2 Note that when A,BBþð Þ is stabilizable, there exists an orthogonal
matrix V such that

VTAV ¼
bA1,1 0

bA2,1
bA2,2

" #
,VTBBþV ¼

0 0

0 bB2,2
bBþ2,2

" #
,

where bA1,1 is stable and bA2,2, bB2,2
bBþ2,2

� 	
is controllable (see [35], Lemma 3.1,

p. 536). Thus, we may assume without loss of generality that the given pair is

controllable. If A,B,Cð Þ is a system triplet such that A,BBþð Þ and AT,CþC
� �

are

stabilizable then, there exists an orthogonal matrix V such that bA2,2, bB2,2
bBþ2,2

� 	
and

bAT

2,2,
bCþ2,2bC2,2

� 	
are controllable, where bC ¼ VTCþCV is partitioned accordingly (see

[35], Theorem 4.1 and Remark 4.1, p. 539). Thus, the assumption in Corollary 4.2 that
the given pairs are controllable does not make any loss of generality of the results.

The effectiveness of the method is shown in the following example, but first, for
the convenience of the reader, we summarize the whole method in Algorithm 1
(with its continuation in Algorithm 2). Let f Kð Þ denote a target function of the SOF
K, to be minimized (e.g., Kk kF, the LQR functional, the H

∞
-norm or the H2-norm

of the closed loop, the pole-placement errors of the closed loop, or any other key
performance that depends on K).

Regarding the LQR problem, let the LQR functional be defined by:

J x0, uð Þ ¼
ð
∞

0
x tð ÞTQx tð Þ þ u tð ÞTRu tð Þ
� 	

dt, (29)

where Q >0 and R≥0 are given. We need to find u tð Þ that minimizes the
functional value for any initial disturbance x0 from the equilibrium point 0.
Assuming that u tð Þ is realized by a stabilizing SOF, let u tð Þ ¼ �Ky tð Þ ¼ �KCx tð Þ.
Then, by substitution of the last into (29), we get:

J x0,Kð Þ ¼
ð
∞

0
x tð ÞT Q þ CTKTRKC

� �
x tð Þdt: (30)

12
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Now, since Q þ CTKTRKC>0 and since E≔A� BKC is stable, the Lyapunov
equation:

ETPþ PE ¼ � Q þ CTKTRKC
� �

, (31)

has unique solution PLQR Kð Þ>0 given by:

PLQR Kð Þ ¼
ð
∞

0
exp ETt

� �
Q þ CTKTRKC
� �

exp Etð Þdt ¼

¼ �mat I⊗ET þ ET
⊗ I

� ��1� 	
vec Q þ CTKTRKC
� �

:

(32)

By substitution of (31) into (30), we get:

J x0,Kð Þ ¼ xT0PLQR Kð Þx0 ¼ PLQR Kð Þ12x0









2

2
: (33)

Algorithm 1. An Algorithm For Optimal SOF’s.

Require: An algorithm for optimizing f Kð Þ under LMI and linear constraints, an
algorithm for computing the Moore-Penrose pseudo-inverse and an algorithm for
orthogonal diagonalization.

Input: System triplet A,B,Cð Þ such that A,Bð Þ, AT,CT
� �

are controllable.

Output: SOF K such that A� BKC is stable minimizing f Kð Þ— if exists

1. A 0ð Þ  A

2. B 0ð Þ  B
3. i 0

4. k0  rank B 0ð Þ� �

5. while B ið ÞB ið Þþ 6¼ Iki do

6. compute orthogonal matrix U ið Þ such that U ið ÞTB ið ÞB ið ÞþU ið Þ ¼ bdiag Iki , 0ð Þ
7. d

A ið Þ  U ið ÞTA ið ÞU ið Þ

8. partition
d
A ið Þ ¼

d
A ið Þ

1,1
d
A ið Þ

1,2

d
A ið Þ

2,1
d
A ið Þ

2,2

2
4

3
5

9. A iþ1ð Þ  d
A ið Þ

2,2

10. B iþ1ð Þ  d
A ið Þ

2,1

11. i iþ 1

12. ki  rank B ið Þ� �

13. end while
14. b i

15. let P bð Þ be a symbol for P bð Þ
>0

16. X bð Þ
0  1

2 Inb þ A bð ÞP bð Þ þ P bð ÞA bð ÞT
� 	

P bð Þ� ��1

17. let W bð Þ be a symbol for a matrix satisfying W bð ÞT ¼ �W bð Þ

18. X bð Þ  X
bð Þ
0 þW bð Þ P bð Þ� ��1

19. let F bð Þ be a symbol for arbitrary matrix

20. K bð Þ  B bð ÞþX bð Þ þ LB bð ÞF bð Þ
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Thus,

J x0,Kð Þ ¼ PLQR Kð Þ12x0









2

2
≤

≤ PLQR Kð Þ12









2
x0k k22 ¼

¼ PLQR Kð Þ


 

 x0k k22 ¼

¼ σmax PLQR Kð Þ
� �

x0k k22,

Algorithm 2. An Algorithm For Optimal SOF’s, Continued.

1. for i ¼ b� 1 downto 0 do

2. let ΔcP ið Þ
1,1 be a symbol for ΔcP ið Þ

1,1 >0

3. cP ið Þ  Δ
cP ið Þ

1,1 þ K iþ1ð ÞP iþ1ð ÞK iþ1ð ÞT �K iþ1ð ÞP iþ1ð Þ

�P iþ1ð ÞK iþ1ð ÞT P iþ1ð Þ

" #

4. cP ið Þ
� ��1

 
Δ
cP ið Þ

1,1

� ��1
Δ
cP ið Þ

1,1

� ��1
K iþ1ð Þ

K iþ1ð ÞT
Δ
cP ið Þ

1,1

� ��1
P iþ1ð Þ� ��1 þ K iþ1ð ÞT

Δ
cP ið Þ

1,1

� ��1
K iþ1ð Þ

2
6664

3
7775

5. P ið Þ  U ið ÞcP ið ÞU ið ÞT

6. P ið Þ� ��1  U ið Þ cP ið Þ
� ��1

U ið ÞT

7. X
ið Þ
0  Ini þ A ið ÞP ið Þ þ P ið ÞA ið ÞT

� 	
Ini � 1

2B
ið ÞB ið Þþ� �

P ið Þ� ��1

8. let W ið Þ be a symbol for a matrix satisfying W ið ÞT ¼ �W ið Þ and RB ið ÞW ið Þ ¼ 0

9. let L ið Þ be a symbol for arbitrary matrix

10. let F ið Þ be a symbol for arbitrary matrix

11. X ið Þ  X
ið Þ
0 þW ið Þ P ið Þ� ��1 þ RB ið ÞL ið Þ

12. K ið Þ  B ið ÞþX ið Þ þ LB ið ÞF ið Þ

13. end for

14. optimize f Kð Þ under the matrix equation K 0ð ÞLC ¼ 0

and the constraints ΔdP 0ð Þ
1,1 >0, … ,Δ dP b�1ð Þ

1,1 >0,P bð Þ
>0

with respect to F 0ð Þ, … , F bð Þ to W 0ð Þ, … ,W bð Þ

and to ΔdP 0ð Þ
1,1, … ,Δ dP b�1ð Þ

1,1,P
bð Þ as variables

15. if a solution was found then
16. return K
17. else
18. return ”no solution was found”
19. end if

where σmax PLQR Kð Þ
� �

is the largest eigenvalue of PLQR Kð Þ. Therefore,

J x0,Kð Þ
x0k k22

≤ σmax PLQR Kð Þ
� �

: (34)

Now, if x0 is known then we can minimize J x0,Kð Þ by minimizing xT0PLQR Kð Þx0.
Otherwise, and if we design for the worst-case, we need to minimize σmax PLQR Kð Þ

� �
.
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In the following examples, we have executed the algorithm on Processor: Intel
(R) Core(TM) i5-2400 CPU @ 3.10GHz 3.10 GHz, RAM: 8.00 GB, Operating
System:Windows 10, System Type: 64-bit Operating System, x64-based processor,

Platform: MATLAB®, Version: R2018b, Function: fmincon.
Example 4.1 A system of Boeing B-747 aircraft (the “AC5” system in [42] and

see also [43]) is given by the general model (given here with slight changes):

d

dt
x tð Þ ¼ Ax tð Þ þ B1w tð Þ þ Bu tð Þ

z tð Þ ¼ C1x tð Þ þD1,1w tð Þ þD1,2u tð Þ

y tð Þ ¼ Cx tð Þ þD2,1w tð Þ,

8
>>>><
>>>>:

where x is the state, w is the noise, u is the control input, z is the regulated
output, and y is the measurement, where:

A ¼

0:980100000000000 0:000300000000000 �0:098000000000000 0:003800000000000

�0:386800000000000 0:907100000000000 0:047100000000000 �0:000800000000000

0:159100000000000 �0:001500000000000 0:969100000000000 0:000300000000000

�0:019800000000000 0:095800000000000 0:002100000000000 1:000000000000000

2
666664

3
777775

B ¼

�0:000100000000000 0:005800000000000

0:029600000000000 0:015300000000000

0:001200000000000 �0:090800000000000

0:001500000000000 0:000800000000000

2
666664

3
777775
,C ¼

1 0 0 0

0 0 0 1

" #
,

B1 ¼ B,C1 ¼ C,D1,1 ¼ 04,D2,1 ¼ 02�4,D1,2 ¼ 04�2:

with

σ Að Þ ¼
0:978871342065923 � 0:128159143146289i

0:899614120838404

0:998943195029751

8
><
>:

9
>=
>;

:

Note that A,Bð Þ and AT,CT
� �

here are controllable. Let u ¼ ur � Ky, where ur is

a reference input. Then, u ¼ ur � KCx� KD2,1w and substitution the last into the
system yields the closed-loop system:

d

dt
x tð Þ ¼ A� BKCð Þx tð Þ þ B1 � BKD2,1ð Þw tð Þ þ Bur tð Þ

z tð Þ ¼ C1 �D1,2KCð Þx tð Þ þ D1,1 �D1,2KD2,1ð Þw tð Þ þD1,2ur tð Þ,

8
><
>:

where the behavior of z is of our interest. Note that we actually have:

d

dt
x tð Þ ¼ A� BKCð Þx tð Þ þ Bw tð Þ þ Bur tð Þ

z tð Þ ¼ Cx tð Þ ¼ y tð Þ:

8
><
>:

For the stabilization via SOF with minimal Frobenius-norm, we need to mini-
mize f Kð Þ ¼ Kk kF. For the LQR problem we need to minimize f Kð Þ ¼ xT0PLQR Kð Þx0
when x0 is known and to minimize f Kð Þ ¼ σmax PLQR Kð Þ

� �
when x0 is unknown,

where PLQR Kð Þ is given by (32). For the H
∞
and the H2 problems, we need to

minimize f Kð Þ ¼ Tw,z sð Þk kH∞ and f Kð Þ ¼ Tw,z sð Þk kH2
, resp. where:
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Tw,z sð Þ ¼ D1,1 �D1,2KD2,1ð Þ þ C1 �D1,2KCð Þ sI � Aþ BKCð Þ�1 B1 � BKD2,1ð Þ ¼

¼ C sI � Aþ BKCð Þ�1B:

These problems needed to be solved under the constraint that A� BKC stable,

i.e., that K ¼ K 0ð ÞCþ þ GRC, where K 0ð Þ
∈K 0ð Þ P 0ð Þ� �

for some P 0ð Þ
∈P 0ð Þ, such that

K 0ð ÞLC ¼ 0.
Applying the algorithm we had:

U 0ð Þ ¼

�0:063882699439918 0 �0:997957414277919 0

0:012195875662698 0:998643130545343 �0:000780700106257 �0:050621625208610

0:997882828566422 �0:012222870716218 �0:063877924951025 0:000269421014890

0:000348971870720 0:050621134381318 �0:000022338894237 0:998717867304654

2
66666664

3
77777775

A 1ð Þ ¼
0:983650838535766 �0:003772277911855

0:000091490905229 0:994959072276129

" #
,B 1ð Þ ¼

0:098883972659475 �0:001544978964136

0:000939225045070 0:100248978115558

" #
:

The “while-loop” stops because B 1ð ÞB 1ð Þþ ¼ I2. We have

B 0ð Þþ ¼
�0:386571795892900 33:468356299440529 5:629731696802776 1:694878880538571

0:696955535886478 0:442712098375399 �10:893875111014371 0:025378383262705

2
4

3
5

B 1ð Þþ ¼
10:111382188357680 0:155830743345230

�0:094732770050116 9:973704058215121

2
4

3
5

LB 0ð Þ ¼ 02,RC 0ð Þ ¼ 02,LB 1ð Þ ¼ 02,

RB 0ð Þ ¼

0:995919000712269 0:000779105459367 0:063747448813564 0:000022293265130

0:000779105459367 0:002563158431417 0:000036230973158 �0:050556704127861

0:063747448813564 0:000036230973158 0:004080461883732 0:000270502543607

0:000022293265130 �0:050556704127861 0:000270502543607 0:997437378972582

2
66666664

3
77777775
,RB 1ð Þ ¼ 02

I4 �
1

2
B 0ð ÞB 0ð Þþ ¼

0:997959500356135 0:000389552729683 0:031873724406782 0:000011146632565

0:000389552729683 0:501281579215708 0:000018115486579 �0:025278352063931

0:031873724406782 0:000018115486579 0:502040230941866 0:000135251271804

0:000011146632565 �0:025278352063931 0:000135251271804 0:998718689486291

2
66666664

3
77777775

I2 �
1

2
B 1ð ÞB 1ð Þþ ¼ 1

2
I2:

Now, we parameterize all the matrices K 0ð Þ such that A 0ð Þ � B 0ð ÞK 0ð Þ is stable.

Let P 1ð Þ ¼
p1 p2
p2 p3

� �
, where p1, d1 ≔ p1p3 � p22 >0. Let w1 be arbitrary and let

W 1ð Þ ¼
0 w1

�w1 0

� �
. Let

S 1ð Þ ¼ B 1ð Þþ 1

2
I2 þ A 1ð ÞP 1ð Þ þ P 1ð ÞA 1ð ÞT
� 	

þW 1ð Þ
� �

:

Then

K 1ð Þ ¼ S 1ð Þ P 1ð Þ
� 	�1

:
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Let ΔdP 0ð Þ
1,1 ¼

p4 p5
p5 p6

� �
, where p4, d2 ≔ p4p6 � p25 >0. Then,

P 0ð Þ ¼ U 0ð Þ
Δ
dP 0ð Þ

1,1 þ K 1ð ÞP 1ð ÞK 1ð ÞT �K 1ð ÞP 1ð Þ

�P 1ð ÞK 1ð ÞT P 1ð Þ

2
64

3
75U 0ð ÞT ¼

¼ U 0ð Þ
Δ
dP 0ð Þ

1,1 þ S 1ð ÞK 1ð ÞT �S 1ð Þ

�S 1ð ÞT P 1ð Þ

2
64

3
75U 0ð ÞT,

and

P 0ð Þ
� 	�1

¼ U 0ð Þ

Δ
dP 0ð Þ

1,1

� ��1
Δ
dP 0ð Þ

1,1

� ��1
K 1ð Þ

K 1ð ÞT
Δ
dP 0ð Þ

1,1

� ��1
P 1ð Þ� ��1 þ K 1ð ÞT

Δ
dP 0ð Þ

1,1

� ��1
K 1ð Þ

2
666664

3
777775
U 0ð ÞT

:

Let

S 0ð Þ ¼ B 0ð Þþ I4 þ A 0ð ÞP 0ð Þ þ P 0ð ÞA 0ð ÞT
� 	

I4 �
1

2
B 0ð ÞB 0ð Þþ

� �
:

Then

K 0ð Þ ¼ S 0ð Þ P 0ð Þ
� 	�1

:

Note that W 0ð ÞT ¼ �W 0ð Þ,RB 0ð ÞW 0ð Þ ¼ 0 implies that W 0ð Þ ¼ 04. We have com-

pleted the parametrization of all the SFs of the system, where the parameters W 1ð Þ,

P 1ð Þ
>0, and Δ

dP 0ð Þ
1,1 >0 are free.

Regarding the optimization stage, we had the following results: starting from the
point (feasible for SF but not feasible for SOF):

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 750 0 750 750 0 750 0½ �,

in CPU � Time ¼ 0:59375 sec½ � the fmincon function (with the interior-point
option and the default optimization parameters) has converged to the optimal point

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 107 � 0:009103654227197 0:000105735816664 0:006486122495094 1:912355216342858 0:057053301125719 1:792930229298237 �0:000647092932030½ �,

resulting with the following optimal Frobenius-norm SF and SOF

K 0ð Þ ¼ 103 �
�0:157533999747776 �0:000000000000000 �0:000000000000000 1:273776653891793

0:332650954180600 �0:000000000000000 �0:000000000000000 0:000655866128882

2
4

3
5

K ¼ 103 �
�0:157533999747776 1:273776653891793

0:332650954180600 0:000655866128882

2
4

3
5,
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with Kk kF ¼ 1:325888763265586 � 103. The resulting closed-loop eigenvalues are:

σ A 0ð Þ � B 0ð ÞKC 0ð Þ
� 	

¼
�0:000004083911866� 1:423412274467895i

�0:000005220069661� 1:681989978268793i


 �
:

For a comparison, in this (small) example we had seven scalar indeterminate,
four scalar equations and four scalar inequalities while by the BMI method

A 0ð Þ � B 0ð ÞKC 0ð Þ
� 	

Pþ P A 0ð Þ � B 0ð ÞKC 0ð Þ
� 	T

<0,P>0 we would have 14 scalar

indeterminate and eight scalar inequalities. This shows the potential of the method
in reducing the number of variables and inequalities/equations, thus enabling to
deal efficiently with larger problems. Moreover, the method removes the
decoupling of P and K, in the sense that now K depends on P and the dependence of
P on K has removed, thus making the problem more relaxed.

Figures 1 and 2 show the impulse response and the step response of the closed-
loop system, in terms of the regulated output z ¼ y, where w ¼ 0 and ur is the delta
Dirac function or the unit-step function, respectively. While the amplitudes seem to

be reasonable, the settling time of order 105 seems unreasonable. This happens
because lowering the SOF-norm results in pushing the closed-loop eigenvalues
toward the imaginary axes, as can be seen from the dense oscillations. We therefore
must set a barrier on the abscissa of the closed-loop eigenvalues as a constraint.
Note however that as a starting point for other optimization keys where we need
any stabilizing SOF that we can get, the above SOF might be sufficient.

Figure 1.
Impulse response of the closed loop with the minimal-norm SOF.
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Regarding the LQR functional with Q ¼ I,R ¼ I, starting from:

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 300 0 300 300 0 300 15½ �,

in CPU � Time ¼ 0:90625 sec½ � the fmincon function has converged to the
optimal point

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 102 � 0:010603084813420 �0:002595549083521 0:009614240830002 1:009076872432389 �0:832493933321482 1:812148701422345 0:001750170924431½ �,

resulting with the following optimal SF and SOF

K 0ð Þ ¼ 103 �
�1:466094499085196 0:000000000000002 �0:000000000000000 2:731682559443639

0:703352598722306 0:000000000000000 0:000000000000001 �0:149101634953946

" #

K ¼ 103 �
�1:466094499085196 2:731682559443639

0:703352598722306 �0:149101634953946

" #
,

with Kk kF ¼ 3:182523976577676 � 103 and LQR wort-case functional-value

σmax PLQR Kð Þ
� �

¼ 1:981249586261248 � 106. The resulting closed-loop eigenvalues are:

σ A 0ð Þ � B 0ð ÞKC 0ð Þ
� 	

¼
�1:723892066022943 � 1:346849871126735i

�0:450106460827155 � 1:711908728695912i

( )
:

Figure 2.
Step response of the closed loop with the minimal-norm SOF.
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The entries of z ¼ y under w ¼ 0 and ur ¼ 0, when the closed-loop system is

derived by the initial condition x0 ¼ 1 1 1 1½ �T are depicted in Figure 3. The
results might not be satisfactory regarding the amplitudes or the settling time;
however, as a starting point for other optimization keys where we need any stabi-
lizing SOF that we can get, the above SOF might be sufficient.

For the problem of pole placement via SOF, assume that the target is to place the
closed-loop eigenvalue as close as possible to �10� i, � 1� 0:1i. Then, starting
from:

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 1 0 1 1 0 1 0½ �,

in CPU � Time ¼ 1:828125 sec½ � the fmincon function has converged to the opti-
mal point

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 103 � 0:017543717092354 �0:025265281638022 0:040984285298812 1:855250747170489 �3:397079720955738 6:251476924192442 0:013791203700439½ �,

resulting with the following optimal SF and SOF

K 0ð Þ ¼ 105 �
�1:014246236498231 0:000000000000000 0:000000000000000 0:708417204523523

�0:177349433397692 0:000000000000000 0:000000000000000 0:124922842398310

2
4

3
5

K ¼ 105 �
�1:014246236498231 0:708417204523523

�0:177349433397692 0:124922842398310

2
4

3
5,

Figure 3.
Response of initial condition of the closed loop with the LQR SOF.
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with Kk kF ¼ 1:256029021159584 � 105. The resulting closed-loop eigenvalues are:

σ A 0ð Þ � B 0ð ÞKC 0ð Þ
� 	

¼
�9:682859336407926� 0:940019732471932i

�0:157090195949127 � 1:083963060760387i


 �
:

Figures 4 and 5 depict the impulse response and the step response of the closed
loop with the pole-placement SOF. The amplitudes look reasonable but the settling
time might be unsatisfactory.

Regarding the H
∞
-norm of the closed loop, starting from:

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 1 0 1 1 0 1 0½ �,

in CPU � Time ¼ 0:703125 sec½ � the fmincon function has converged to the
optimal point

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 0:888221316790683 0:005450463395221 0:509688006534611 0:351367770700493 0:108479534948988 2:135683618863295 �0:023286321711901½ �,

resulting with the following optimal SF and SOF

K 0ð Þ ¼ 104 �
�0:434126348764817 �0:000000000000000 0:000000000000000 6:230425140286776

6:139781209081431 0:000000000000000 �0:000000000000000 0:417994561595739

" #

K ¼ 104 �
�0:434126348764817 6:230425140286776

6:139781209081431 0:417994561595739

" #
,

Figure 4.
Impulse response of the closed loop with the pole-placement SOF.
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with Kk kF ¼ 8:768026908280017 � 104 and Tw,z sð Þk kH
∞

¼ 1:631954397074613 �
10�5. The resulting closed-loop eigenvalues are:

σ A 0ð Þ � B 0ð ÞKC 0ð Þ
� 	

¼

�356:9401845964764

�90:9530886951882

�1:0236129938218
�0:5685837870690

8
>>><
>>>:

9
>>>=
>>>;

:

The simulation results of the closed-loop system are given in Figure 6, where w

is normally distributed random disturbance, where each entry is N 0, 106
� �

distributed. The maximum absolute values of the entries of z ¼ y are

0:034719714201842 0:014588756724050½ �T,

and the maximum absolute values of the entries of x are

0:034719714201842 0:279876853192629 0:549124101316666 0:014588756724050½ �T :

The results here are good.
Regarding the H2-norm of the closed loop, starting from:

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 1 0 1 1 0 1 0½ �,

Figure 5.
Step response of the closed loop with the pole-placement SOF.
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in CPU � Time ¼ 8:390625 sec½ � the fmincon function has converged to the
optimal point

p1 p2 p3 p4 p5 p6 w1

� �
¼

¼ 0:891178477642138 0:006639774876451 0:508684007482598 0:000038288661546 0:000053652014908 0:000140441315775 �0:021795268637180½ �,

resulting with the following optimal SF and SOF

K 0ð Þ ¼ 109 �
1:835262537587536 0:000000000003900 0:000000000012416 1:804218059606446

1:194244874676116 �0:000000000002080 0:000000000007286 0:578593785387393

" #

K ¼ 109 �
1:835262537587536 1:804218059606446

1:194244874676116 0:578593785387393

" #
,

with Kk kF ¼ 2:895579903518702 � 109 and Tw,z sð Þk kH2
¼ 2:289352128445973 �

10�6. The resulting closed-loop eigenvalues are:

σ A 0ð Þ � B 0ð ÞKC 0ð Þ
� 	

¼ 106 �

�8:825067937292802

�1:087222799352728
�0:000000561491544

�0:000000982645227

8
>>><
>>>:

9
>>>=
>>>;

:

The simulation results of the closed-loop system is given in Figure 6, where w

is normally distributed random disturbance, where each entry is N 0, 106
� �

distributed. The maximum absolute values of the entries of z ¼ y are

Figure 6.
Response of the closed loop with the optimal H

∞
-norm SOF to a 10

6 variance zero-mean normally distributed
random disturbance.
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10�5 � 0:793706028985933 0:829879751812045½ �T,

and the maximum absolute values of the entries of x are

10�5 � 0:7937060289859 16:3502413073901 12:3720896708621 0:8298797518120½ �T :

The results here are excellent.
We conclude that the best performance of the closed-loop system is achievedwith

the optimalH2-norm SOF; however, since the Frobenius-norm of the SOF controller is
high, the cost of construction and of operation of the SOF controller might be high, and
there are no “free meals.”Note also that byminimizing the SOF Frobenius-norm, the
eigenvalues of the closed loop tend to get closer to the imaginary axes (to the region of
lower degree of stability), while byminimizing theH2-norm, the eigenvalues of the
closed loop tend to escape from the imaginary axes (to the region of higher degree of
stability). These are conflicting demands, and therefore, one should use some combi-
nation of the related key functions or to use somemultiobjective optimization algorithm
in order to get the best SOF in some or all of the needed key performancemeasures
(Figure 7).

The following counterintuitive example shows that the SOF problem can be
unsolvable (or hard to solve) even for small systems. In the example we show how
nonexistence of SOF can be detected by the method:

Example 4.2 Let

A 0ð Þ ¼
1 1

0 1

� �
,B 0ð Þ ¼

1

1

� �
,C 0ð Þ ¼ 1 1½ �:

Figure 7.
Response of the closed loop with the optimal H2-norm SOF to a 10

6 variance zero-mean normally distributed
random disturbance.
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Applying the algorithm we have

U 0ð Þ ¼ 1ffiffiffi
2
p

1 �1
1 1

" #
,A 1ð Þ ¼ 1

2
,B 1ð Þ ¼ � 1

2
:

The “while-loop” stops because B 1ð ÞB 1ð Þþ ¼ 1. Let P 1ð Þ ¼ p1 where p1 >0. Then,

K 1ð Þ ¼ B 1ð Þþ 1

2
1þ A 1ð ÞP 1ð Þ þ P 1ð ÞA 1ð ÞT
� 	� �

P 1ð Þ
� 	�1

¼ � 1þ p1
� �

p1
:

Let ΔdP 0ð Þ
1,1 ¼ p2, where p2 >0. Then

P 0ð Þ ¼ U 0ð Þ Δ
dP 0ð Þ

1,1 þ K 1ð ÞP 1ð ÞK 1ð ÞT �K 1ð ÞP 1ð Þ

�P 1ð ÞK 1ð ÞT P 1ð Þ

2
4

3
5U 0ð ÞT ¼

¼ 1

2p1

p2p1 þ 1 p2p1 þ 1þ 2p1

p2p1 þ 1þ 2p1 p2p1 þ 1þ 4p1 þ 4p21

" #
:

We therefore have:

K 0ð Þ ¼ B 0ð Þþ I2 þ A 0ð ÞP 0ð Þ þ P 0ð ÞA 0ð ÞT
� 	

I2 �
1

2
B 0ð ÞB 0ð Þþ

� �
P 0ð Þ
� 	�1

¼

¼ 1

4p2p
3
1

4p2p
2
1 þ 4p1 þ 6p21 þ 4p31 þ p22p

2
1 þ 2p2p1 þ 4p2p

3
1 þ 1

�2p2p21 � 2p1 � 2p21 � p22p
2
1 � 2p2p1 � 1þ 4p2p

3
1

" #T
,

as the free parametrization of all the state feedbacks for which A 0ð Þ � B 0ð ÞK 0ð Þ is

stable—for any choice of p1, p2 >0. Now LC 0ð Þ ¼ 1
2

1 �1
�1 1

� �
and the equations

K 0ð ÞLC 0ð Þ ¼ 0 are equivalent to the single equation:

1

4p2p
3
1

p22p
2
1 þ p2 2p1 þ 3p21

� �
þ 2p31 þ 4p21 þ 3p1 þ 1
� �� �

¼ 0:

Assuming p1, p2 >0, the last equation implies that

p2 ¼
� 2p1 þ 3p21
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p1 þ 3p21
� �2 � 4p21 2p31 þ 4p21 þ 3p1 þ 1

� �q

2p21
,

leading to a contradiction with p2 being real positive number.

5. A parametrization for exact pole assignment via SFs

This section is based on the results reported in [34], where the proofs of the
following lemma and theorem can be found. The aim of this section is to introduce a
parametrization of all the SF’s for the exact pole-assignment problem, when the set
of eigenvalues can be given as free parameters (under some reasonable assump-
tions). This is done as part of the research of the problem of parametrization of all
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the SOFs for pole assignment. Note that the problem of exact pole assignment by
SOFs is NP-hard (see [3]), meaning that an efficient algorithm for the problem
probably does not exist, and therefore an effective description of the set of all
solutions might not exist too. Also note that with SOFs, the feasible set Ω might
exclude some open set from being a feasible set for the closed-loop spectrum (see
[12]). These make the full aim very hard (if not impossible) to achieve. We there-
fore focus here on the problem of exact pole assignment via SFs.

Let the control system be given by:

Σ x tð Þð Þ ¼ Ax tð Þ þ Bu tð Þ
y tð Þ ¼ Cx tð Þ

(
(35)

where A∈
n�n,B∈

n�m,C∈
r�n, Σ x tð Þð Þ ¼ d

dt x tð Þ in the continuous-time

context and Σ x tð Þð Þ ¼ x tþ 1ð Þ in the discrete-time context. We assume without loss
of generality that A,Bð Þ is controllable. The problem of exact pole assignment by SF
is defined as follows:

• (SF-EPA) Given a set Ω⊆�, Ωj j ¼ n (in the discrete-time context Ω⊆�),
symmetric with respect to the x-axis, find a state feedback F∈

m�n such that
the closed-loop state-to-state matrix E ¼ A� BF has Ω as its complete set of
eigenvalues, with their given multiplicities.

In [13], a closed form of all the exact pole-placement SFs is proved (up to a set of
measure 0), based on Moore’s method. In order to minimize the inaccuracy of the
eigenvalues final placement and in order to minimize the Frobenius-norm of the
feedback, a convex combination of the condition number of the similarity matrix
and of the feedback norm was minimized. The parametrization proposed in [13] is
based on the assumptions that there exists at least one real state feedback that leads
to a diagonalizable state-to-state closed-loop matrix and that B is full rank. A
necessary condition for such SF to exist is that the final multiplicity of any eigen-
value is less than or equal to rank Bð Þ. Here, we do not assume that B is full rank and
we only assume that Ω contains sufficient number of real eigenvalues. A survey of
most of the methods for robust pole assignment via SFs or by SOFs and the
formulation of these methods as optimization problems with optimality necessary
conditions is given in [44]. In [45] a performance comparison of most of the
algorithmic methods for robust pole placement is given. A formulation of the
general problem of robust exact pole assignment via SFs as an SDP problem and
LMI-based linearization is introduced in [46], where the robustness is with respect
to the condition number of the similarity matrix, which is made in order to hope-
fully minimize the inaccuracy of the eigenvalues final placement. Unfortunately,
one probably cannot gain a parametric closed form of the SFs from such formula-
tions. Moreover, the following proposed method is exact and therefore enables the
use of the parametrization free parameters for other (and maybe more important)
optimization purposes. Note that since the proposed method is exact, the
closed-loop eigenvalues thyself can be inserted to the problem as parameters.

A completely different notion of robustness with respect to pole placement is
considered in the following works:

Robust pole placement in LMI regions and H
∞
design with pole placement in

LMI regions are considered in [47, 48], respectively. An algorithm based on alter-
nating projections is introduced in [15], which aims to solve efficiently the problem
of pole placement via SOFs. A randomized algorithm for pole placement via SOFs
with minimal norm, in nonconvex or unconnected regions, is considered in [20].
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Let Ω ¼
α1, α1|fflffl{zfflffl}

c1 times
, … ,

αm, αm|fflfflffl{zfflfflffl}
cm times

,
β1|{z}

r1 times
, … ,

βℓ|{z}

rℓ times

8
<
:

9
=
;, be the intended

closed-loop eigenvalues, where the αs denote the paired complex-conjugate eigen-
values (with nonzero imaginary part), the βs denote the real eigenvalues, and

2c1, … , 2cm, r1, … , rℓ denote their respective multiplicities, where 2
Pm

i¼1ci þP
ℓ

j¼1r j ¼ n. In the following we would say that the size of the set (actually, the

multiset) Ω is n (counting multiplicities) and we would write Ωj j ¼ n. Note that
A,Bð Þ is controllable if and only if A,BBþð Þ is controllable, and also note that BBþ is
a real symmetric matrix with simple eigenvalues in the set 0, 1f g and thus is
orthogonally diagonalizable matrix. Let U denote an orthogonal matrix such that:

bB ¼ UTBBþU ¼
Ik 0

0 0

" #
¼ bdiag Ik, 0ð Þ, (36)

where k ¼ rank Bð Þ ¼ rank BBþð Þ≥ 1 since A,Bð Þ is controllable, and let

bA ¼ UTAU ¼
bA1,1

bA1,2

bA2,1
bA2,2

" #
be partitioned accordingly. We cite here the following

lemma taken from [34] connecting between the controllability of the given system
and the controllability of its sub-system:

Lemma 5.1 In the notations above, A,BBþð Þ is controllable if and only if

bA2,2, bA2,1
bAþ2,1

� 	
is controllable.

Again, we use the recursive controllable structure. Let U 0ð Þ ¼ U and let A 0ð Þ ¼
A,B 0ð Þ ¼ B, n0 ¼ n, k0 ¼ rank B 0ð Þ� �

. Similarly, let U 1ð Þ be an orthogonal matrix such

that U 1ð ÞTB 1ð ÞB 1ð ÞþU 1ð Þ ¼ bdiag Ik1 , 0ð Þ, where B 1ð Þ ¼ bA2,1. Let A
1ð Þ ¼ bA2,2, n1 ¼

n0 � k0, k1 ¼ rank B 1ð Þ� �
. Now, Lemma 5.1 implies that A 1ð Þ,B 1ð Þ

� 	
is controllable

since A 0ð Þ,B 0ð Þ
� 	

is controllable. Recursively, assume that the pair A ið Þ,B ið Þ
� 	

is

controllable. Let U ið Þ be an orthogonal matrix such that cB ið Þ ¼ U ið ÞTB ið ÞB ið ÞþU ið Þ ¼
bdiag Iki , 0ð Þ, where ki ≥ 1 (since A ið Þ,B ið Þ

� 	
is controllable). Let

d
A ið Þ ¼ U ið ÞTA ið ÞU ið Þ ¼

d
A ið Þ

1,1
d
A ið Þ

1,2

d
A ið Þ

2,1
d
A ið Þ

2,2

2
4

3
5 be partitioned accordingly, with sizes

ki � ki and ni � kið Þ � ni � kið Þ of the main block-diagonal blocks. Let A iþ1ð Þ ¼
d
A ið Þ

2,2,B
iþ1ð Þ ¼dA ið Þ

2,1, niþ1 ¼ ni � ki, ki ¼ rank B ið Þ� �
. Then, Lemma 5.1 implies that

A iþ1ð Þ,B iþ1ð Þ
� 	

is controllable. The recursion stops when B ið ÞB ið Þþ ¼ Iki for some

i ¼ b (which we call the base case). Note that in the worst case, the recursion stops
when the rank kb ¼ 1.

Theorem 5.1 In the above notations, assume that
P

ℓ

j¼1r j ≥ a, where a is the

number of parity alternations in the sequence n0, n1, … , nbh i. Let Ω0 ¼ Ω. Then,
there exist a sequence Ω0 ⊇ Ω1 ⊇ ⋯ ⊇ Ωb of symmetric sets with size Ωij j ¼ ni
(counting multiplicities) and there exist a real state feedback Fi ¼ Fi Giþ1,Fiþ1ð Þ
such that σ A ið Þ � B ið ÞFi

� 	
¼ Ωi. Moreover, an explicit (recursive) formula for

Fi Giþ1,Fiþ1ð Þ is given by:
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Fi ¼ B ið ÞþW ið Þ

W ið Þ ¼ U ið ÞcW ið Þ
U

ið ÞT

cW ið Þ ¼
cW ið Þ

1,1
cW ið Þ

1,2

0 0

2
4

3
5

cW ið Þ
1,1 ¼ bA

ið Þ
1,1 þ Fiþ1bA

ið Þ
2,1 � Giþ1

cW ið Þ
1,2 ¼ bA

ið Þ
1,2 þ Fiþ1bA

ið Þ
2,2 � Giþ1Fiþ1,

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(37)

where σ bA ið Þ
2,2 � bA

ið Þ
2,1Fiþ1

� 	
¼ σ A iþ1ð Þ � B iþ1ð ÞFiþ1

� 	
¼ Ωiþ1 and Giþ1 is arbitrary

real matrix such that σ Giþ1ð Þ ¼ ΩinΩiþ1.
Example 5.1 Consider the problem of exact pole assignment via SF for the same

system from Example 4.1. We therefore assume here that the full state is available
for feedback control. Now, using the calculations from Example 4.1, we have:
n0, n1h i ¼ 4, 2h i implying that the number of parity alternations is a ¼ 0. We
therefore can assign by the method any symmetric set of eigenvalues to the closed

loop. Let Ω0 ¼ α, α, β, β
� �

be the eigenvalues to be assigned, and let Ω1 ¼ β, β
� �

.
Now,

F1 ¼ B 1ð Þþ A 1ð Þ � G2

� 	
,

where

G2 ¼
R βð Þ I βð Þ
�I βð Þ R βð Þ

� �
,

and

F0 ¼ B 0ð ÞþW 0ð Þ,

where

W 0ð Þ ¼ U 0ð Þ dW 0ð ÞU 0ð ÞT

dW 0ð Þ ¼
dW 0ð Þ

1,1
dW 0ð Þ

1,2

02 02

2
4

3
5

dW 0ð Þ
1,1 ¼dA 0ð Þ

1,1 þ F1
d
A 0ð Þ

2,1 �G1

dW 0ð Þ
1,2 ¼dA 0ð Þ

1,2 þ F1
d
A 0ð Þ

2,2 �G1F1

G1 ¼
R αð Þ I αð Þ

�I αð Þ R αð Þ

" #
:

We have completed the pole-assignment SF parametrization. As an application,
assume that α ¼ �10þ i, β ¼ �1þ 0:1i. Then,

F0 ¼ 103 � �2:312944765727539 0:063274421635669 �0:033598570868307 7:136847864481691

2:382051359668675 �0:002249112006026 0:011460219946760 0:432788287638212

� �
,
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resulting with the closed-loop eigenvalues:

σ A 0ð Þ � B 0ð ÞF0

� 	
¼ �10:000000000000000 � 1:000000000000004i

�1:000000000000003 � 0:099999999999998i


 �
:

In our calculations, we used MATLAB®
, which has a general precession of 5� 7

significant digits in computing eigenvalues. Thus, we have almost no loss of digits
by the method. For a comparison, see the last case in Example 4.1 and note that
while exact pole assignment can be achieved by SF, in general, it cannot be achieved
by SOF because the last is a NP-hard problem (see the introduction of this section).
Even regional pole placement is hard to achieve by SOF because of the
nonconvexity of the SOF feasibility domain.

Remark 5.1 Note that the indices k0, k1, … , kbh i as well as the indices
n0, n1, … , nbh i, can be calculated from A,Bð Þ in advance. After calculating these
indices and the number a of parity alternations in the sequence n0, n1, … , nbh i, the
designer can define Ω as to satisfy the assumption of Theorem 5.1, i.e., being
symmetric with at least a real eigenvalues, in a parametric way, and get a parame-
trization of all the real SF leading to Ω as the set of closed-loop eigenvalues. Next,
the designer can play with the specific values of these and of other free parameters,
in order to gain the needed closed-loop performance requirements. This is in con-
trast with other methods where the parametrization is calculated ad-hoc for a
specific set of eigenvalues, where any change in the set of eigenvalues necessitates
new execution of the method.

Remark 5.2 Note that Fiþ1 can be replaced by Fiþ1 þ I � B ið ÞþB ið Þ� �
Hiþ1 where

Hiþ1 is any real matrix, without changing the closed-loop eigenvalues (if one seek
feedbacks with minimal Frobenius-norm, then he should take Hiþ1 ¼ 0, otherwise
he should leave Hiþ1 as another free parameter). Thus, the freeness in
Hb, … ,H1,H0h i and in Gbþ1,Gb, … ,G1h imakes the freeness in F0 (e.g. in order to
globally optimize the H

∞
-norm of the closed loop, the H2-norm or the LQR func-

tional of the closed loop or any other performance key thereof). Note also that the
sequences Fb, … ,F1,F0h i and Gbþ1,Gb, … ,G1h i can be calculated for Ω as in
Theorem 5.1, where the eigenvalues in Ω are given as free parameters. In that case,
it can be easily proved by induction that the state feedbacks Fb, … ,F1,F0h i depend
polynomially on the eigenvalues parameters and on the other free parameters men-
tioned above (for complex eigenvalue α they depend polynomially on R αð Þ, I αð Þ).

Finally, it is wort mentioning that the complementary theorem of Theorem 5.1
was also proved in [34], meaning that under the assumptions of Theorem 5.1, any
SF that solves the problem has the form given in the theorem (up to a factor of the
form given in Remark 5.2).

6. Concluding remarks

In this chapter, we have introduced an explicit free parametrization of all the
stabilizing SF’s of a controllable pair A,Bð Þ. This enables global optimization over
the set of all the stabilizing SF’s of such pair, because the parametrization is free. For
a system triplet A,B,Cð Þ, we have shown how to get the parametrization of all the
SOFs of the system by parameterizing all the SFs of A,Bð Þ and all the SFs of

AT,CT
� �

and then imposing the compatibility constraint (28). We have also shown

a parametrization of all the SOFs of the system triplet A,B,Cð Þ by imposing the

linear constraint K 0ð ÞLC 0ð Þ ¼ 0 on the SF K 0ð Þ of the pair A,Bð Þ, where K 0ð Þ was
defined recursively and parameterizes the set of all SFs of A,Bð Þ. This leads to a set
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of polynomial equations (after multiplying by the l.c.m. of the denominators of the

rational entries of K 0ð Þ) and inequalities that can be brought to polynomial equa-
tions. The resulting polynomial set of equations can be solved (parametrically) by
using the Gröbner basis method (see e.g., [49–52]). By applying the Gröbner basis
method, one would get an indication to the existence of solutions and in case that
solutions do exist, it would tell what are the free parameters and how other param-
eters depend on the free parameters. It seems that the proposed method makes the
Gröbner basis computations overhead (or other methods thereof) reduced signifi-
cantly, thus enabling SOF global optimization for larger systems.

In view of Theorem 5.1 (with its complementary theorem proved in [34]), we have
introduced a sound and complete parametrization of all the state feedbacks F which

make thematrix bE ¼ UT A� BFð ÞU k-complementary n� kð Þ-invariant with respect
toΩ1 (see [34] for the definition and properties), whereU is orthogonal such that

UTBBþU ¼ bdiag Ik, 0ð Þ, k ¼ rank Bð Þ, whereΩ is symmetric and has at least a (being
the parity alternations in the sequence n0, … , nbh i) real eigenvalues, whereΩ1 ⊆Ω is
symmetric withmaximum real eigenvalues with size Ω1j j ¼ n� k. AssumingΩ as
above, we have generalized the results of [13] in the sense that we do not assume the
existence of real state feedback F that brings the closed-loop E ¼ A� BF to diagonaliz-
able matrix, which actually means that the geometric and algebraic multiplicity coin-
cides for any eigenvalue of the closed loop, andwe do not assume the restriction on the
multiplicity of each eigenvalue to be less than or equal to rank Bð Þ. However, in cases
where the number of real eigenvalues inΩ is less than a, one should use the parametri-
zations given in [13], in [45] or in the references there. Note that in communication
systems, where complex SFs and SOFs are sought, the introducedmethod is complete
(with no restrictions) since the number of parity alternations and the restriction onΩ to
contain asmuch real eigenvalues, were needed only to guarantee that Fi for i ¼ b, … , 0
is real in each stage, which is needless in communication systems.

In view of Example 5.1, one can see that the accuracy of the final location of the
closed-loop eigenvalues given by the proposed method depends only on the accu-

racy of computing B ið Þþ and U ið Þ for i ¼ 0, … , b and in the algorithm that we have to
compute the closed-loop eigenvalues (see [53], for example) in order to validate
their final location, and it has nothing to do with the specific values of the specific

eigenvalues given in Ω. Therefore, by the proposed method, once that B ið Þþ and U ið Þ

for i ¼ 0, … , b were computed as accurate as possible, the location of the closed-
loop eigenvalues will be accurate accordingly. Thus, by the proposed method the
designer can save time since he can do it parametrically only once, and afterward he
only needs to play with the specific values of the eigenvalues until he gets a satis-
factory closed-loop performance, where he can be sure that the accuracy of the final
placement will be the same for all of his trials independently on the specific values
of the chosen eigenvalues. Also, the given parametrization of F0 is polynomially
dependent on the free parameters and thus is very convenient for applying
automatic differentiation and optimization methods.

To conclude, we have introduced parametrizations of SFs and SOFs that are
based on the recursive controllable structure that was discovered in [35]. The results
has powerful implications for real-life systems, and we expect for more results in
this direction. Unfortunately, for uncertain systems, the method cannot work
directly because of the dependencies of A,B,Cð Þ in uncertain parameters, for which

we cannot compute U ið Þ for i ¼ 0, … , b. However, if a nominal system ~A, ~B, ~C
� �

is
known accurately then, the method can be applied to that system and the free
parameters of the parametrization can be used to “catch” the uncertainty of the
whole system, together with the closed-loop performance requirements. The
research of this method will be left for a future work.

30

Control Systems in Engineering and Optimization Techniques



Author details

Yossi Peretz
Department of Computer Sciences, Lev Academic Center, Jerusalem College of
Technology, Jerusalem, Israel

*Address all correspondence to: yosip@g.jct.ac.il

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

31

On Parametrizations of State Feedbacks and Static Output Feedbacks and Their Applications
DOI: http://dx.doi.org/10.5772/intechopen.101176



References

[1]Nemirovskii A. Several NP-hard
problems arising in robust stability
analysis. Mathematics of Control,
Signals, and Systems. Springer. 1993;6
(2):99-105

[2] Blondel V, Tsitsiklis JN. NP-hardness
of some linear control design problems.
SIAM Journal on Control and
Optimization. 1997;35(6):2118-2127

[3] Fu M. Pole placement via static
output feedback is NP-hard. IEEE
Transactions on Automatic Control.
2004;49(5):855-857

[4] Peretz Y. On applications of the ray-
shooting method for structured and
structured-sparse static-output-
feedbacks. International Journal of
Systems Science. 2017;48(9):1902-1913

[5] Kučera V, Trofino-Neto A.
Stabilization via static output feedback.
IEEE Transactions on Automatic
Control. 1993;38(5):764-765

[6] de Souza CC, Geromel JC, Skelton
RE. Static output feedback controllers:
Stability and convexity. IEEE
Transactions On Automatic Control.
1998;43(1):120-125

[7] Cao YY, Lam J, Sun YX. Static output
feedback stabilization: An ILMI approch.
Automatica. 1998;34(12):1641-1645

[8] Cao YY, Sun YX, Lam J.
Simultaneous stabilization via static
output feedback and state feedback.
IEEE Transactions on Automatic
Control. 1998;44(6):1277-1282

[9]Quoc TD, Gumussoy S, Michiels W,
Diehl M. Combining convex-concave
decompositions and linearization
approaches for solving BMIs,
with application to static output
feedback. IEEE Transactions on
Automatic Control. 2012;57(6):
1377-1390

[10]Mesbahi M. A semi-definite
programming solution of the least order
dynamic output feedback synthesis
problem. Procedings of the 38’th IEEE
Conference on Decision and Control.
1999;(2):1851-1856

[11]Henrion D, Loefberg J, Kočvara M,
Stingl M. Solving Polynomial static
output feedback problems with
PENBMI. In: Proc. Joint IEEE Conf.
Decision Control and Europ. Control
Conf.; 2005; Sevilla, Spain. 2005

[12] Eremenko A, Gabrielov A. Pole
placement by static output feedback for
generic linear systems. SIAM Journal on
Control and Optimization. 2002;41(1):
303-312

[13] Schmid R, Pandey A, Nguyen T.
Robust pole placement with Moore’s
algorithm. IEEE Transactions on
Automatic Control. 2014;59(2):500-505

[14] Fazel M, Hindi H, Boyd S. Rank
minimization and applications in system
theory. In: Proceedings of the American
Control Conference. 2004.
pp. 3273-3278

[15] Yang K, Orsi R. Generalized pole
placement via static output feedback: A
methodology based on projections.
Automatica. 2006;42:2143-2150

[16] Vidyasagar M, Blondel VD.
Probabilistic solutions to some NP-hard
matrix problems. Automatica. 2001;37:
1397-1405

[17] Tempo R, Calafiore G, Dabbene F.
Randomized Algorithms for Analysis
and Control of Uncertain Systems.
London: Springer-Verlag; 2005

[18] Tempo R, Ishii H. Monte Carlo and
Las Vegas randomized algorithms for
systems and control. European Journal
of Control. 2007;13:189-203

32

Control Systems in Engineering and Optimization Techniques



[19] Arzelier D, Gryazina EN, Peaucelle
D, Polyak BT. Mixed LMI/randomized
fcmethods for static output feedback
control. In: Proceedings of the American
Control Conference, IEEE Conference
Publications. 2010. pp. 4683-4688

[20] Peretz Y. A randomized
approximation algorithm for the
minimal-norm static-output-feedback
problem. Automatica. 2016;63:221-234

[21] Apkarian P, Noll D. Nonsmooth H
∞

synthesis. IEEE Transactions on
Automatic Control. 2006;51(1):71-86

[22] Burke JV, Lewis AS, Overton ML.
Stabilization via nonsmooth, nonconvex
optimization. IEEE Transactions On
Automatic Control. 2006;51(11):
1760-1769

[23] Gumussoy S, Henrion D, Millstone
M, Overton ML. Multiobjective robust
control with HIFOO 2.0. In: Proceedings
of the IFAC Symposium on Robust
Control Design; 2009; Haifa, Israel.
2009

[24] Borges RA, Calliero TR, Oliveira
CLF, Peres PLD. Improved conditions
for reduced-order H

∞
filter design as a

static output feedback problem. In:
American Control Conference, San-
Francisco, CA, USA. 2011

[25] Peretz Y. On application of the ray-
shooting method for LQR via static-
output-feedback. MDPI Algorithms
Journal. 2018;11(1):1-13

[26] Zheng F, Wang QG, Lee TH. On the
design of multivariable PID controllers
via LMI approach. Automatica. 2002;38:
517-526

[27] Peretz Y. A randomized algorithm
for optimal PID controllers. MDPI
Algorithms Journal. 2018;11(81):1-15

[28] Lin F, Farad M, JovanovićM. Sparse
feedback synthesis via the alternating
direction method of multipliers. In:

IEEE, Proceedings of the American
Control Conference (ACC), 2012.
pp. 4765-4770

[29] Lin F, Farad M, Jovanović M.
Augmented lagrangian approach to
design of strutured optimal state
feedback gains. IEEE Transactions On
Automatic Control. 2011;56(12):
2923-2929

[30] Gillis N, Sharma P. Minimal-norm
static feedbacks using dissipative
Hamiltonian matrices. Linear Algebra
and its Applications. 2021;623:258-281

[31] Silva RN, Frezzatto L. A new
parametrization for static output
feedback control of LPV discrete-time
systems. Automatica. 2021;128:109566

[32] de Oliveira AM, Costa OLV. On the
H2 static output feedback control for
hidden Markov jump linear systems.
Annals of the Academy of Romanian.
Scientists. Series on Mathematics and its
Applications. 2020;12(1-2)

[33] Ren D, Xiong J, Ho DW. Static
output feedback negative imaginary
controller synthesis with an H

∞
norm

bound. Automatica. 2021;126:109157

[34] Peretz Y. On parametrization of all
the exact pole-assignment state
feedbacks for LTI systems. IEEE
Transactions on Automatic Control.
2017;62(7):3436-3441

[35] Peretz Y. A characterization of all
the static stabilizing controllers for LTI
systems. Linear Algebra and its
Applications. 2012;437(2):525-548

[36] Iwasaki T, Skelton RE. All
controllers for the general H

∞
control

problem: LMI existence conditions and
state space formulas. Automatica. 1994;
30(8):1307-1317

[37] Iwasaki T, Skelton RE.
Parametrization of all stabilizing
controllers via quadratic lyapunov

33

On Parametrizations of State Feedbacks and Static Output Feedbacks and Their Applications
DOI: http://dx.doi.org/10.5772/intechopen.101176



functions. Journal of Optimization
Theory and Applications. 1995;85(2):
291-307

[38] Skelton RE, Iwasaki T, Grigoriadis
KM. A Unified Algebraic Approach To
Linear Control Design. London: Tylor &
Francis Ltd.; 1998

[39] Piziak R, Odell PL. In: Nashed Z,
Taft E, editors. Matrix Theory: From
Generalized Inverses to Jordan Form.
Chapman & Hall/CRC \& Francis
Group, 6000 Broken Sound Parkway
NW, Suit 300, Boca Raton, FL 33487-
2742; 2007. p. 288

[40] Karlheinz S. Abstract Algebra
With Applications. Marcel Dekker, Inc.;
1994

[41]Ohara A, Kitamori T. Geometric
structures of stable state feedback
systems. IEEE Transactions on Automatic
Control. 1993;38(10):1579-1583

[42] Leibfritz F. COMPleib: Constrained
matrix-optimization problem library—
A collection of test examples for
nonlinear semidefinite programs,
control system design and related
problems. In: Dept. Math., Univ. Trier,
Germany, Tech.-Report, (2003).

[43] Tadashi I, Hai-Jiao G, Hiroshi T.
A design of discrete-time integral
controllers with computation delays via
loop transfer recovery. Automatica.
1992;28(3):599-603

[44] Chu EK. Optimization and pole
assignment in control system design.
International Journal of Applied
Mathematics and Computer Science.
2001;11(5):1035-1053

[45] Pandey A, Schmid R, Nguyen T,
Yang Y, Sima V, Tits AL. Performance
survey of robust pole placement
methods. In: IEEE 53rd Conference on
Decision and Control; December 15-17;
Los Angeles, California, USA. 2014.
pp. 3186-3191

[46] Ait Rami M, El Faiz S, Benzaouia A,
Tadeo F. Robust exact pole placement
via an LMI-based algorithm. IEEE
Transactions on Automatic Control.
2009;54(2):394-398

[47] Chilali M, Gahinet P. H
∞
design

with pole placement constraints: An
LMI approach. IEEE Transactions on
Automatic Control. 1996;41(3):358-367

[48] Chilali M, Gahinet P, Apkarian P.
Robust pole placement in LMI regions.
IEEE Transactions on Automatic
Control. 1999;44(12):2257-2270

[49] Buchberger B. Gröbner bases and
system theory. Multidimentional
Systems and Signal Processing. 2001;12:
223-251

[50] Shin HS, Lall S. Optimal
decentralized control of linear systems
via Groebner bases and variable
elimination. In: American Control
Conference. Baltimore, MD, USA:
Marriott Waterfront; 2010.
pp. 5608-5613

[51] Lin Z. Gröbner bases and applications
in control and systems. In: IEEE, 7th
International Conference On Control,
Automation, Robotics And Vision
(ICARCV’02). 2002. pp. 1077-1082

[52] Lin Z, Xu L, Bose NK. A tutorial on
Gröbner bases with applications in
signals and systems. IEEE Transactions
on Circuits and Systems. 2008;55(1):
445-461

[53] Pan VY. Univariate polynomials:
nearly optimal algorithms for numerical
factorization and root-finding. Elsevier
Journal of Symbolic Computation. 2002;
33(5):701-733

34

Control Systems in Engineering and Optimization Techniques


