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Chapter

On Parametrizations of State
Feedbacks and Static Output
Feedbacks and Their Applications

Yossi Peretz

Abstract

In this chapter, we provide an explicit free parametrization of all the stabilizing
static state feedbacks for continuous-time Linear-Time-Invariant (LTI) systems,
which are given in their state-space representation. The parametrization of the set
of all the stabilizing static output feedbacks is next derived by imposing a linear
constraint on the stabilizing static state feedbacks of a related system. The parame-
trizations are utilized for optimal control problems and for pole-placement and
exact pole-assignment problems.

Keywords: control systems, continuous-time systems, state-space representation,
feedback stabilization, static state feedback, static output feedback, Lyapunov
equation, parametrization, optimization, optimal control, H,-control, H,-control,
linear-quadratic regulators, pole assignment, pole placement, robust control

1. Introduction

The solution of the problem of stabilizing static output feedback (SOF) has a
great practical importance, for several reasons: they are simple, cheap, reliable, and
their implementation is simple and direct. Since in practical applications, full-state
measurements are not always available, the application of stabilizing state feedback
(SF) is not always possible. Obviously, in practical applications, the entries of the
needed SOFs are bounded with bounds known in advance, but unfortunately, the
problem of SOFs with interval constrained entries is NP-hard (see [1, 2]). Exact
pole assignment and simultaneous stabilization via SOF or stabilization via struc-
tured SOFs are also NP-hard problems (see [2, 3] resp.). These problems become
even harder when optimal SOFs are sought, when the optimality notions can be the
sparsity (see [4]) of the controller (e.g., for reliability purposes of networked
control systems (NCSs)), the cost or energy consumption of the controller (which
are related to various norm-bounds on the controller), the H.,-norm, the H,-norm
or the linear-quadratic regulator (LQR) functional of the closed loop. The practical
meaning of the NP-hardness of the aforementioned problems is that the problems
cannot be formulated as convex problems (e.g., through LMIs or SDPs) and cannot
have any efficient algorithms (under the widespread belief that P # NP). Thus, one
has to compromise the exactness (which might affect the feasibility of the solution)
or the optimality of the solution. Therefore, one has to utilize the specific structure
of the given problem, in order to describe effectively the set of all feasible solutions,
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by reducing the number of variables and constraints to the minimum, for the
purpose of increasing the efficiency and accuracy of the available algorithms. This is
the aim of the proposed method.

Several formulations and related algorithms were introduced in the literature for
the constrained SOF and other control hard problems. The iterated linear matrix
inequalities (ILMI), bilinear matrix inequalities (BMI), and semi-definite program-
ming (SDP) approaches for the constrained SOF problem, for the simultaneous
stabilizing SOF problem, and for the robust control via SOF (with related algo-
rithms) were studied in: [5-11]. The problem of pole placement via SOF and the
problem of robust pole placement via Static Feedback were studied in: [12, 13]. In
[14, 15], the method of alternating projections was utilized to solve the problems of
rank minimization and pole placement via SOFs, respectively. The probabilistic and
randomized methods for the constrained SOF problem and robust stabilization via
SOFs (among other hard problems) were discussed in [16-19]. In [20], the problem
of minimal-gain SOF was solved efficiently by the randomized method. A non-
smooth analysis approach for H., synthesis and for the SOF problem is given in
[21, 22], respectively. A MATLAB® library for multiobjective robust control prob-
lems based on the non-smooth analysis approach was introduced in [23]. All these
references (and many more references not brought here) show the significance of
the constrained SOF problem to control applications.

Many problems can be reduced to the SOF constrained problem, including the
reduction of the minimal-degree dynamic-feedback problem and robust or
decentralized stability via static-feedback, reduced-order H., filter problem, global
minimization of LQR functional via SOF, and the design problem of optimal PID
controllers (see [2, 10, 24-27] respectively). It is worth mentioning [28], where the
alternating direction method of multipliers was utilized to alternate between opti-
mizing the sparsity of the state feedback matrix and optimizing the closed-loop
H>-norm, where the sparsity measure was introduced as a penalty term, without
any pre-assumed knowledge about the sparsity structure of the controller. The
method of augmented Lagrangian for optimal structured static-feedbacks was
considered in [29], where it is assumed that the structure is known in advance
(otherwise, one should solve a combinatorial problem). The computation overhead
of all the aforementioned methods can be reduced significantly, if good parametri-
zation of all the SOFs of the given system could be found, where a parametrization
can be called “good” if it takes into account the structure of the given specific
system and if it well separates between free and dependent parameters, thus
resulting in a minimal set of nonlinear nonconvex inequalities/equations needed to
be solved.

In [30], a parametrization of all the SFs and SOFs of Linear-Time-Invariant
(LTI) continuous-time systems is achieved by using a characterization of all the
(marginally) stable matrices as dissipative Hamiltonian matrices, leading to a highly
performance sequential semi-definite programming algorithm for the minimal-gain
SOF problem. The proposed method there can be applied also to LTI discrete-time
systems by adding semi-definite conditions for placing the closed-loop eigenvalues
in the unit disk. A new parametrization for SOF control of linear parameter-varying
(LPV) discrete-time systems, with guaranteed ¢,-gain performance, is provided in
[31]. The parametrization there is given in terms of an infinite set of LMIs that
becomes finite, if some structure on the parameter-dependent matrices is assumed
(e.g., an affine dependency). The H,-norm guaranteed-performance SOF control
for hidden Markov jump linear systems (HMJLS) is studied in [32], where the SOFs
are parameterized via convex optimization with LMI constraints, under the
assumptions of full-rank sensor matrices and an efficient and accurate Markov
chain state estimator. In [33], an iterative LMI algorithm is proposed for the SOF
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problem for LTI continuous-time negative-imaginary (NI) systems with given H.,
norm-bound on the closed loop, based on decoupling the dependencies between the
SOF and the Lyapunov certificate matrix.

When solving an optimization problem, it is important to have a convenient
parametrization for the set of feasible solutions. Otherwise, one needs to use the
probability method (i.e., the “generate and check” method), which is seriously
doomed to the “curse of dimensionality” (see [16]). In [13], a closed form of all the
stabilizing state feedbacks is proved (up to a set of measure 0), for the purpose of
exact pole assignment, when the location errors are optimized by lowering the
condition number of the similarity matrix, and the controller performance is opti-
mized by minimizing its Frobenius norm. The parametrization in [13] is based on
the assumptions that the input-to-state matrix B has a full rank and at least one real
state feedback leading to diagonalizable closed-loop matrix exists, where a neces-
sary condition for the existence of such feedback is that the multiplicity of any
assigned eigenvalue is less than or equal to rank(B). In this context, it is worth
mentioning [34] in which a parametrization of all the exact pole-assignment state
feedbacks is given, under the assumption that the set of needed closed-loop poles
should contain sufficient number of real eigenvalues (which make no problem if the
problem of pole placement is of concern, where it is generally assumed that the
region is symmetric with respect to the real axis and contains a real-axis segment
with its neighborhood). The results of [34] and of the current chapter are based on a
controllability recursive structure that was discovered in [35].

In this chapter, using the aforementioned controllability recursive structure, we
introduce a parametrization of the set of all stabilizing SOFs for continuous-time
LTI systems with no other assumptions on the given system (for discrete-time LTI
systems, the parametrization is much more involved and will be treated in a future
work). As opposed to the notable works [36-38], where for the parametrization one
still needs to solve some LMIs in order to get the Lyapunov matrix, here we give an
explicit recursive formula for the Lyapunov matrix and for the feedback in the case
of SF, and a constrained form for the Lyapunov matrix and for the feedback in the
case of SOF.

The rest of the chapter goes as follows:

In Section 2, we set notions and give some basic useful lemmas, and in Section 3,
we introduce the parametrization of the set of all stabilizing static-state feedbacks
for LTI continuous-time systems. In Section 4, we introduce the constrained
parametrization of the set of all stabilizing SOFs for LTI continuous-time systems.
The effectiveness of the method is shown on a real-life system. Section 5 is based on
[34] and is devoted to the problem of exact pole assignment by SF, for LTI
continuous-time or discrete-time systems. The effectiveness of the method is shown
on a real-life system. Finally, in Section 6, we conclude with some remarks and
intentions for a future work.

2. Preliminaries

By C we denote the complex field and by C_ the open left half-plane. For z € C
we denote by 2R(2) its real part, while by J(z) we denote its imaginary part. For a
square matrix Z, we denote by ¢(Z) the spectrum of Z. For a RP*Y matrix Z, we
denote by ZT its transpose, and by z;; or by Z, ;, its (i,/)‘th element or block element.
A square matrix Z in the continuous-time context (in the discrete-time context) is
said to be (asymptotically) stable, if any eigenvalue 1 € 6(Z) satisfies R(4) <0, i.e.,
A€ C_ (satisfies |1| <1, i.e. .€D_ where D_ is the open unit disk).
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Consider a continuous-time system in the form:

%x(t) = Ax(t) + Bu(t) @

y(t) = Cx(t)

where A e R, Be R"*™,CeR"™", and x, u, y are the state, the input, and the
measurement, respectively. Assuming that the state x is fully accessible and fully
available for feedback, we define u = —K%x to be the state feedback (SF). When
the state is not fully accessible or not fully available for feedback but the measure-
ment y is available for feedback, we define # = —Ky to be the static output feedback
(SOF). The problems that we consider here are the following:

* (SF-PAR): How can one parameterize the set of all K (0) e R™*" such that the

closed-loop A — BK'? is stable, and what is the best parametrization (in terms
of minimal number of parameters and minimal set of constraints)?

* (SOF-PAR): How can one parameterize the set of all K € R™*" such that the
closed-loop A — BKC is stable, and what is the best parametrization?

The parameterizations will be used for achieving other goals and performance
keys for the system, other than stability, which is the feasibility defining basic key.

A square matrix Z is said to be non-negative (denoted as Z > 0) if ZT = Z and
vTZv > 0 for any vector v. A non-negative matrix Z is said to be strictly non-negative
(denoted as Z > 0) if v7Zv > 0 for any vector v # 0. For two square matrices Z, W
we would write Z>W (Z> W) if Z — W > 0 (respectively, if Z — W > 0). For a
matrix Z € R?*, we denote by Z" the Moore-Penrose pseudo-inverse (see [39, 40]
for definition and properties). By Lz, Rz we denote the orthogonal projections I, —
Z*Z and I, — ZZ" respectively, where I; denotes the identity matrix of size s x s.
Note that Z*Z and ZZ" (as well as L and Ry) are symmetric and orthogonally
diagonalizable with eigenvalues from {0, 1}. By diag and bdiag we denote diagonal
and block-diagonal matrices, respectively.

A system triplet (A, B, C) is SOF stabilizable (or just stabilizable) if and only if
there exist K and P> 0 such that

EP + PET = —R (2)

for some given R> 0 (R = I can always be chosen), where E = A — BKC. For the
“if” direction, note that (2) implies the negativity of the real part of any eigenvalue
of E, implying that the closed-loop E is stable. For the “only-if” direction, under
the assumption that E = A — BKC is stable for some given K, one can show that
P:= [ exp (Et)R exp (E"t)dt is well defined, satisfies P" = P and P> 0, and is the
unique solution for (2).

Note that the set of all SOFs is given by K = B*XC™" + LgS + TR where S, T are
any m x r matrices and X is any # x n matrix such that E = A — BB*XC" C is stable.
Thus, one can optimize K by utilizing the freeness in S, T without changing the
closed-loop performance achieved by X. This characterization of the feasibility
space shows its effectiveness in proving theorems, as will be seen along the chapter
(see also [20, 35]). We also conclude that (A4, B, C) is stabilizable if and only if
(A,BB*,C"C) is stabilizable.

In the sequel, we make use of the following lemma (see [39]):
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Lemma 2.1 The matrix equation AX = B has solutions if and only if AATB=B
(equivalently, R4B = 0). When the condition is satisfied, the set of all solutions is
given by

X =A"B+LsZ, (3)

where Z is arbitrary matrix. Moreover, we have: | X||7 = ||A+BH§~ + |ILaZ ||z,
implying that the minimal Frobenius-norm solution is X = A*B.
Similarly, the equation YA = B has solutions if and only if BA*A = B (equiva-
lently, BL4 = 0). When the condition is satisfied, the set of all solutions is given by
Y = BA" + WRy, (4)

where W is arbitrary matrix. Moreover, we have: ||Y] = HBA+||12: + ||[WRa| 2,
implying that the minimal Frobenius-norm solution is Y = BA™.

3. Parametrization of all the static state feedbacks
We start with the following lemma known as the projection lemma (see [41],
Theorem 3.1):
Lemma 3.1 The pair (4, BB") is stabilizable if and only if there exists P> 0 such
that
Rp(I+AP+PA")Rg = 0. 5
When (5) is satisfied then, X is a stabilizing SF if and only if X is a solution for

BB*XP + PXTBB" =1+ AP + PAT. (6)

Moreover, one specific solution for (6) is given by
1
Xo = (I+ AP+ PAT) (I — iBB*)P—l. @)

Similarly, (AT, C+C) is stabilizable if and only if there exists Q > 0 such that
Lc(I+ATQ +QA)Lc = 0. (8)

When (8) is satisfied then, Y7 is a stabilizing SF (i.e., AT — C"CY7 or,
equivalently, A — YC'C is stable) if and only if Y is a solution for:

ctcyTQ +Qyctc=I1+ATQ + QA. 9)

One specific solution for (9) is given by
Yo=Q (1-%0*6) (I+ATQ +QA). (10)

Remark 3.1 The explicit formulas (7) and (10) are our little contribution to the
projection lemma, Lemma 3.1. Unfortunately, we do not have such an explicit
formulas for LTI discrete-time systems.
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In order to describe the set of all solutions for (6) and (9), we need the following
lemma that can be proved easily:
Lemma 3.2 Let P> 0, Q > 0. Then, the set of all solutions for:

ZP + PZT = 0, (11)

is given by Z = WP~ ! where WT = —W.
Similarly, the set of all solutions for:

Z'Q+Qz =0, (12)

is given by Z = Q 'V where VI = V.

The following theorem describes the set of all solutions for (6) and (9), using the
controllers (7) and (10):

Theorem 3.1 Let P> 0 satisfy (5) and let X be given by (7). Then, X is a solution
for (6) if and only if:

X =Xy + WP + RgL, (13)

where W satisfies W = —W,RgW = 0 and L is arbitrary.
Similarly, let Q > 0 satisfy (8) and let Y be given by (10). Then, Y is a solution
for (9) if and only if:

Y=Yo+Q V+MLg, (14)

where V satisfies VI = —V,VLc = 0 and M is arbitrary.

Proof:

Assume that X is a solution for (6). Since X is also a solution for (6), it follows
that BBT(X — Xo)P + P(X — Xo)"BB* = 0. Let Z = BB*(X — X;). Then, RpZ = 0
and ZP + PZ" = 0. Lemma 3.2 implies that Z = WP !, where W’ = —W and
therefore RgW = 0. We conclude that X — Xo = WP~ ! + RiL for some L (namely,
L=X—-Xy).

Conversely, let X be given by (13) and let Z = WP, Then, BB"(X — X,) =
BB*Z = Z since BB*Rg = 0 and since RgZ = 0. Now, ZP + PZT = 0 implies that

BB (X — Xo)P +P(X — X,)"BB" = 0,

from which we conclude that X satisfies (6), since X satisfies (6). The second
claim is proved similarly. [ |

In the following we describe the set P of all matrices P > 0 satisfying (5). Note that
in Theorem 3.1 the existence of P> 0 satisfying (5) is guaranteed by the assumption
that (A, BB") is stabilizable and as a result of Lemma 3.1. Let P € P and let

( 1
Xo= (I+AP+PA"). <I - iBB*)P—1

W arbitrary such that WT = —W,RzgW =0 (15)

X =Xo + WP ' + RgL where L is arbitrary

( K = B*X + LgF where F is arbitrary.
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Let X'(P) denote the set of all matrices X satisfying (15) for a fixed P € P, and let
IC(P) denote the set of all matrices K satisfying (15) for a fixed P € P. Note that for a
fixed P € P, the set X'(P) is convex (actually affine) and Upe X' (P) contains all the
stabilizing X parameters of the stabilizable pair (A, BB"). Finally, Upc pK(P)
contains all the stabilizing SF’s K of the stabilizable pair (4, B).

For a stabilizable pair (A", C"), let Q be the set of all matrices Q > 0 satisfying
(8), and let

(

Yo=Q " (1 — %cﬁc) (I+A"Q+QA)

V arbitrary such that VI = _V,VLc=0 (16)

Y=Y+ Q 'V +MLcwhere M is arbitrary

| K = YC" 4+ GR¢ where G is arbitrary.

Let Y(Q) denote the set of all matrices Y satisfying (16) for a fixed Q € Q, and
let £(Q) denote the set of all matrices K satisfying (16) for a fixed Q € Q. Then,
Ug e oK(Q) contains all the stabilizing SFs K of the stabilizable pair (A, C").

In the following we assume (without loss of generality, see Remark 4.2) that
(A, BB") is controllable. Under this assumption, we recursively (go downwards
and) define a sequence of sub-systems of the given system (A, BB"). Since BB is
symmetric matrix (with simple eigenvalues from the set {0, 1}), it is diagonalizable
by an orthogonal matrix. Let U denote an orthogonal matrix such that

N I
B=UTBBTU = L’;

8} = bdiag(I},, 0) (17)
(where k = rank(B) = rank(BB*) > 1 since (A, B) is controllable). Let

;11,1 ;11,2
;12,1 ;12,2
A® = A BO = B ng =n, kg = rank (B(O>). Similarly, let UV be an orthogonal
matrix such that UVTBY B+ — bdiag(I,, 0), where B = 212,1. Let

AW = 212,2,741 =ng — ko, k1 = rank (B(l)). Then, (A(l),B(1)> is controllable since

A=UTAU = be partitioned accordingly. Let U®) = U and let

(A(O), B(O)> is controllable (see [35] and see Lemma 5.1 in the following).

Recursively, assume that the pair <A @), B(i)) was defined and is controllable. Let

—

U be an orthogonal matrix such that BY) = UOTBYUBO* ) = pdiag (I}, 0), where
ZB 1,1 Za 1,2 ]

26 2,1 Z@ 2,2
be partitioned accordingly, with sizes k; x k; and (n; — k;) x (n; — k;) of the main

k; >1 (since <A(i),B(i)) is controllable). Let A® = yWTAOyH) = I:

—_

diagonal blocks. Let ATY = AW, 5 BEHY) — AG, | iy =y — ki, ke = rank (B(i)).
Then, (A(”l), B(i+1)> is controllable. We stop the recursion when B¥ B+ = [, for

some i = b (i.e. the base case, in which also k, = n,,).
Now, we go upward and define the Lyapunov matrices and the related SFs of the

sub-systems. For the base case i = b, let P*) > 0 be arbitrary (note that it is a free
parameter!). Let
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( 1 -1

Xy =3 <1nb + A®pB) 4 pb) A(b)T) (P(b)>

W®) arbitrary such that W®T = —w®)
b -1
xb) — XE)) +w® (ph)
| K®) = BP) X ®) [, F?) where F®) is arbitrary,

(18)

and note that Rys) = 0 in the base case. Now, it can be checked that
E®) = A®) _ BlIg®) — AP) _ x®) is stable. We therefore have a parametrization of
Kc®) (P(b )) through arbitrary P > 0.

Let PU*Y denote the set of all P > 0 satisfying:

RB(”l) <Ini+1 +A(i+1)p(i+1) + P(i+1)A(i+1)T>RB(i+1) =0, (19)

and assume that £V (P(”l)) was parameterized through PV > 0 ranging in

the set PtV as is defined by (19). Similarly, let P denote the set of all P¥ >0
satisfying:

Ryo (I + AOPY + POAOT IRy, — 0, (20)

and assume that ¥ (P¥)) was parameterized through P¥) > 0 ranging in the set
P as is defined by (20).

Now, we need to characterize the matrices P%) > 0 belonging to the set 208
Multiplying (20) from the left by U®T and from the right by U we get:

— e~~~

o (1 L A0pd 4 pld A(z‘)T) R —o,

o~ —~

0O O P(i)1,1 pY 1,2

is
0 Iy,

— —~

paT 5 pi,,
partitioned accordingly. The condition (20) is therefore equivalent to:

where @ = { } and P = g®OTpl gy —

— — P —~ 71 —
Ly —p; + (A(i)z,z < A(i)z,1P (i)1,2 (P (i)z,z) >P (i)2,2+
N N\ = — AT (21)
0, ( A0y, + A0, PO (pmm) ) _o,

which is equivalent to:

o~ — _1 —
- (Auﬂ) 4 BP0, (p(i)z,z) ) Py,

(22)
I P(i)z,z ( A 4 B+ pli) 12 (p(i)z,z) ) =0.

o~

Let Pt e P+D and let KUY g D (P(i+1)). Set P\, 5 := Pi*Y) and set

P9, := — KYPI+Y Now, since PY,, := P11 > 0, (22) implies that the system:
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— — -1
A(i-‘rl) + B(i+1)P(i)1,2 <P(i)2)2> ==A(i+1) o B(i+1)I<(i+1)’ (23)

is stable. Now,

—~ [ 1;(7')1 . _ K+ pli+1) ]

PH = (24)
_P(i+1)I<(i+1)T P(i+1)

o~ o~

and we need to define P(i)l,l in order to complete P9 toa strictly non-negative
matrix. Since:

—

p(i)1 ) _I<(i+1)P(i+1)
_P(i+1)I<(i+1)T P(H—l)
I, _K+D)

0 Lpi—k;

-

P(i)l,l _ K'(i+1)P(i+1)I<(i+l)T 0
0 P(i+1)
I, 0

b

_I<(i+1)T In,-—ki

it follows that P%) > 0 if and only if P%;; — K ) ) gEHIT 5 0 or equivalently

if and only if Py = APY, ;) + KEFVPEFDREDT where AP®), 5 is arbitrary strictly
non-negative matrix (a free parameter!).
Conversely, if PY > 0 satisfies (20) then (23) is stable and thus:

—

—~ _1
K — _po, (p(i)z 2) ekt (RED),
for some R e P+ Byt since K1Y e 0+ (R(i+1)) if and only if:

Ini—k,- + <A(i+1) . B(i+1)1<(i+1)>R(i+1) + R(i+1) (A(i+1) . B(i+1)1<(i+1)>T — O, (25)

o~

since the last equation has unique strictly non-negative solution and since P, ,

o~

satisfies this equation, it follows that RUHY — P(i)z,z. Let P+ — P(i)z,z. Then,

— —

KD g il (P(i+1)) and since P®;, = —K+VPE+Y Uit follows that P® has the

form (24). Thus, PY 11 = APY) 11+K D) ) DT where AP(")M > 0 is arbitrary
(a free parameter!) and
e AI;-(;)l 1+ I{(H-l)P(i—‘rl)I{(i-i-l)T _I<(i+1)P(i+1)
pi) — yOTpiyl) — ’ . (26)
_pE) g+1)T p+1)
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o~

Therefore, P is the set of all P > 0 such that P%) = UOTPO U is given by
(26). We thus have a parametrization of all P*) > 0 satisfying (20). Specifically, P(®)
is the set of all P%) > 0 satisfying (5).

Now, let P%) € P and let

(x0) = (1 L ADPpE 4 pl) A(z‘)T).

1 0 Ay —1
. (Ini _ iB(’)B(’)‘L) (p(l))
w® arbitrary such that woOT — _W(i),RB(i) w =0
X = Xg) +w (P("))_1 + RB(i)L(i) where L is arbitrary
| KO = Bi+x® 4 LyoF @) where F¥ is arbitrary.

(27)

Then, it can be checked that E®) = A® — BOg® = A® _ B BO+x () jg stable.
We therefore have a parametrization of £ (P%) through P¥) € PY). We conclude
the discussion above with the following:

Theorem 3.2 Let (A, B) be a controllable pair. Then, in the above notations, for

i=b—1,..,0,P% >0 satisfies (20) if and only if P%) = UDTPO U has the
structure (26) where AP(i)l,l > 0 is arbitrary (free parameter), where

KU g i) (P(i+l)), where P®) > 0 is arbitrary (free parameter) and K (P(b )) is
given by (18). Moreover, K (P(i)) fori =b —1, ..., 0 is given by (27).

Similarly to the discussion above, relating to (A", C*C) and defining sub-
systems forj = 0, ...,c, we have a parametrization of all Q(/) > 0 satisfying (8) for
the related sub-system and specifically, 09 is the set of all Q>0 satisfying (8).
The parametrizations of all the stabilizing SF’s of (4, BB") and (A", C"C) are given
in the following:

Corollary 3.1 Let (A, BB") be a given controllable pair. Then, the set of all
stabilizing SF’s of (A, BB") is given by X = X + WP~ + RgL where

1
Xo = (I+ AP+ PAT) (1 — EBB+>P—1,
where L is arbitrary, W satisfies WT = —W,RgW = 0, and P> 0 satisfies
Rp(I+AP+PA")Ry =0,
ie.PeP.

Similarly, let (AT, C*C) be a given controllable pair. Then, the set of all stabiliz-
ing SFs of (A",C"C) isgivenby Y = Yo + Q 'V + ML where

1
Yo=Q! (1 — §C+C) (I+A"Q +QA),
where M is arbitrary, V satisfies VI = —V,VL¢ = 0, and Q > O satisfies

Lc(I+A"Q + QA)Lc =0,

ie.Qe 0,

10



On Parametrigations of State Feedbacks and Static Output Feedbacks and Their Applications
DOI: http://dx.doi.org/10.5772/intechopen.101176

4. Parametrizations of all the static output feedbacks

In this section, we give two parametrizations for the set of all the stabilizing
SOFs. We start with the following lemma, which was extensively used in [20]:

Lemma 4.1 A system (A, B, C) is stabilizable if and only if (4, B) and (A", C")
are stabilizable and there exist matrices X, Y € R”*" such that A — BB"X and A —
YC'C are stable and BB*X = YCC. When the conditions hold, the set of all
stabilizing SOFs related to the chosen matrices X, Y is given by Kx = B*XC*t +
LgS + TR¢ or by Ky = B"YC" + LgF + HR( respectively, where S, T, F, H are any
m x v matrices. The closed-loop matrix is givenby E = A — BKxC=A — BB"X =
A —-YC"C=A - BKyC.

Remark 4.1 Under the hypotheses of Corollary 3.1, note that X = X, + WP™! +
RgLand Y = Y + Q 'V + ML satisfies BB*X = YC' C if and only if BB"X, +
WP !=Y,C"C+Q 'V, since BB"W = W,BB"Rz = 0,VC'C =V,LcC"C = 0.
Moreover, this condition can be simplified to (meaning that it does not include
matrix inverses):

QBB*(I+AP+PAT) (1 —~ %BB*) +QW =
(28)
= (1 - %cﬁc) (I+A™Q+QA)C*CP+ VP.

We can state now the first parametrization for the set of all the stabilizing SOFs:
Corollary 4.1 Let (4, B, C) be a given system triplet. Assume that (4, B), (A", C")

are controllable. Then, the system has a stabilizing static output feedback if and only
if there exist P, Q > 0 and W, V such that

(Rp(I+ AP+ PAT)Rz = 0 (i.e.PeP)
Lo(I+ATQ + QA)Lc = 0 (ie.Qe Q)

WT = —W,RzW =0
V= _V,VLc=0

1
QBB (I+ AP+ PAT) (1 — 5BB+) +QwW =

1
_ (1 = Ec+c:) (I+ATQ +QA)C'CP + VP.

In this case, A — BKC is stable if and only if

K =Kx =B*XC" + LgS + TR¢
X =Xo+ WP 14+ RzL

1
Xo = (I+ AP+ PAT) (1 — EBB+)P—1,

where S, T, L are arbitrary.
Similarly, A — BKC is stable if and only if

11
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K =Ky =B"YC" + LgF + HR.
Y=Yo+Q V+ML¢

Yo=Q1 (1 — %(ﬁc) (I+A"Q +QA),

where F, H, M are arbitrary.
We conclude this section with a second SOF parametrization:

Corollary 4.2 Let (A, B) and (AT CT) be controllable pairs Then A —BKCis
stable if and only if there exists K© el ( ) for some P € P such that
K9Lc = 0. In this case, the set of all K*s such that A — BKC is stable, is given by
K = K'9C" 4 GR¢ where K 0 e ( 9), and G is arbitrary

Proof If there exists K% e IC ( ) such that K©9Lc = 0 for some P(? € P(©
then K(© = K(®C"C. Since K© € K% (P19)) it follows that A — BK') is stable.
Thus, for K = K©C" we get that A — BKC is stable.

Conversely, if A — BKC is stable for some K then, for K (0) = KC we have
K9Lc = 0 and since A — BK'9 is stable, Theorem 3.2 implies that there exists

9 € P9 such that K9 e K© ( ) [}

Remark 4.2 Note that when (A, BB") is stabilizable, there exists an orthogonal
matrix V such that

A11 0

Az 1 Ay

VvITAV = ,VIBBTV =

0
~ ~+ |,
O B2’2B2’2

where ;11,1 is stable and <;12,2, /Bz,zgz 2) is controllable (see [35], Lemma 3.1,

p. 536). Thus, we may assume without loss of generality that the given pair is
controllable. If (A, B, C) is a system triplet such that (4,BB") and (A", C"C) are

stabilizable then, there exists an orthogonal matrix V such that (;12,2, Ez,zﬁz 2) and
(EZT 25 6; 262 2) are controllable, where C=VTC'CVis partitioned accordingly (see
[35], Theorem 4.1 and Remark 4.1, p. 539). Thus, the assumption in Corollary 4.2 that
the given pairs are controllable does not make any loss of generality of the results.

The effectiveness of the method is shown in the following example, but first, for
the convenience of the reader, we summarize the whole method in Algorithm 1
(with its continuation in Algorithm 2). Let f(K) denote a target function of the SOF
K, to be minimized (e.g., ||K||z, the LQR functional, the H.,-norm or the H,-norm
of the closed loop, the pole-placement errors of the closed loop, or any other key
performance that depends on K).

Regarding the LQR problem, let the LQR functional be defined by:

(oo}

J (0, 1) = L ()7 Qe(e) + ult)"Ru(e) ), (29)

where Q >0 and R > 0 are given. We need to find «(¢) that minimizes the
functional value for any initial disturbance x( from the equilibrium point 0.
Assuming that u(z) is realized by a stabilizing SOF, let u(¢) = —Ky(t) = —KCx(t).
Then, by substitution of the last into (29), we get:

J(x0,K) = J:x(t)T(Q + CTK"RKC)x(t)dt. (30)

12



On Parametrizgations of State Feedbacks and Static Output Feedbacks and Their Applications
DOI: http://dx.doi.org/10.5772/intechopen.101176

Now, since Q + CTKTRKC > 0 and since E:= A — BKC is stable, the Lyapunov

equation:

E"P+PE = —(Q+ C"K"RKC), (31)

has unique solution P qr(K) > 0 given by:

Pror(K) = J exp (E"t)(Q + C"K"RKC) exp (Et)dt =
0

(32)
— —mat((IQE" + E'®I) ' )vec(Q + C"K"RKC).
By substitution of (31) into (30), we get:
)
](JCO, I() = .’)CZ;PLQR(I<).X'O = HPLQR(I<>7xO H2 (33)

Algorithm 1. An Algorithm For Optimal SOF’s.

Require: An algorithm for optimizing f (K) under LMI and linear constraints, an
algorithm for computing the Moore-Penrose pseudo-inverse and an algorithm for
orthogonal diagonalization.
Input: System triplet (A, B, C) such that (A, B), (AT, C") are controllable.
Output: SOF K such that A — BKC is stable minimizing f (K)— if exists
1.AY —A
2.B9 —B
3.i<—0
4. ko — rank (B(m)
5. while BYBV+ £ [, do
6. compute orthogonal matrix UY such that UYTBYBD*U® = bdiag(I, , 0)
7. AW yaraOyo

8. paﬁition@ = é@l’l é(i)l’z

A(i)z)1 A(i)z,2

—

9. A(i+1) — A(i)z,z

10. B(i+1) — A(i)z,l
11. 1+—i+1

12, k; < rank(BY)
13. end while

14.h — 1

15. let P®) be a symbol for P®) >0

16. X% — 1 <1nb + A®PL) | P<b>A<”>T) (P~

17. let W) be a symbol for a matrix satisfying WO = —w®
18. X®) x4 w®) (p))

19. let F®) be a symbol for arbitrary matrix

20. K®) « B0+ x®) 41 FC)

13
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Thus,

1 2
J(x0,K) = HPLQR(K)szH2 <

1 2 2
< |Prar ()| Tixoll3 =

= ||Par(K)|[ 103 =
= Gmax (PLor(K)) %02,

Algorithm 2. An Algorithm For Optimal SOF’s, Continued.

1.
2.

3.

10.

11.

12.
13.

14.

15.
16.
17.
18.
19.

fori =b — 1downto 0 do
let AP(i)l,l be a symbol for AP(i)1,1 >0

I;(?) . AP(i)l,l + I((iJrl)P(iJrl)I{(iJrl)T _I<(i+1)P(i+1)
_P(i+1)I<(i+1)T P(i+1)
-1 SN
. ( A p(i)1’1> ( Ap(z')m) K+
<p(i)> . y y
I<(i+1)T (AP(Z)l 1) (P(i+1))—1 4 I<(i+1)T (AP(z)l 1) I{(i+1)
pi U(i)I;@ y®T
o\ -1

(P9) " — ) (p(i)) Jor

X9 (I 1 ABp6) 4 pl) A(i)T) (I, —1BOBO+) (p(i))_l

let W9 bea symbol for a matrix satisfying wOT — _wW® gpnd Ry wi =0

let L% be a symbol for arbitrary matrix

let FY be a symbol for arbitrary matrix

X0 — x0 4w (p(i))_l + Ry L)

K® — BO*x® 41, FO
end for
optimize f (K) under the matrix equation K©Lc = 0

— —

and the constraints AP(O)M >0, .., AP(b_l)m >0,P% >0
with respect to F(O), ,F(b) to W(O), ., w®

(b1

and to AP(O)M, ooy AP )1,1,P(b) as variables
if a solution was found then

return K
else

return “no solution was found”

end if

where 6,,,x (PLQR (K )) is the largest eigenvalue of P;qgr(K). Therefore,

J(x0,K)

> < max (PLar(K)). (34)
[lxoll3

Now, if x( is known then we can minimize J(x¢, K) by minimizing ngLQR (K)xo.

Otherwise, and if we design for the worst-case, we need to minimize 6,4 (PLQR (K ))

14
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In the following examples, we have executed the algorithm on Processor: Intel
(R) Core(TM) i5-2400 CPU @ 3.10GHz 3.10 GHz, RAM: 8.00 GB, Operating
System: Windows 10, System Type: 64-bit Operating System, x64-based processor,
Platform: MATLAB®, Version: R2018b, Function: fmincon.

Example 4.1 A system of Boeing B-747 aircraft (the “AC5” system in [42] and
see also [43]) is given by the general model (given here with slight changes):

d
Ex(t) = Ax(t) + Buw(t) + Bu(t)

Z(t) = Cix (t) + D1,1W(t) + Dl,zu (t)
y(t) = Cx(t) + Dz’lu)(t),

where x is the state, w is the noise, u is the control input, 2 is the regulated
output, and y is the measurement, where:

0.980100000000000  0.000300000000000 —0.098000000000000 0.003800000000000
—0.386800000000000 0.907100000000000 0.047100000000000 —0.000800000000000
0.159100000000000 —0.001500000000000 0.969100000000000 0.000300000000000

—0.019800000000000 0.095800000000000 0.002100000000000 1.000000000000000
—0.000100000000000 0.005800000000000

0.029600000000000 0.015300000000000 |:1 0 0 O]

>

0.001200000000000 —0.090800000000000

0.001500000000000 0.000800000000000
By =B,C1 = C,D11 = 04,D31 = 02x4,D1 = 042.

000 1|

with

0.978871342065923 + 0.128159143146289i
o(A) = 0.899614120838404
0.998943195029751

Note that (A, B) and (AT, CT) here are controllable. Let # = u, — Ky, where u, is
a reference input. Then, # = u, — KCx — KD, yw and substitution the last into the
system yields the closed-loop system:

4L
dt
Z(t) = (C1 — D1,2[<C)x(t) -+ (Dl,l — D1,2[<D2)1)w(t) -+ Dl’zur(t),

(t) = (A — BKC)x(t) + (By — BKDa.1)w(t) + Bu,(t)

where the behavior of z is of our interest. Note that we actually have:

%x(t) — (A — BKC)x(t) + Bw(z) + Bu, (t)

z(t) = Cx(t) = y(t).

For the stabilization via SOF with minimal Frobenius-norm, we need to mini-
mize f(K) = ||K||. For the LQR problem we need to minimize f (K) = x} Prqr(K)xo
when x is known and to minimize f (K) = 6yax (PLQR (K )) when x( is unknown,
where P1gr(K) is given by (32). For the H,, and the H; problems, we need to
minimize f(K) = || Ty 2 (5)||_ and f(K) = || T2 (5)|y,> resp. where:

15
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Tw,z(s) = (Dl,l - D1’21<D2,1) + (Cl - D1,2[<C) (SI —A+ BI(C)il(Bl - BI(Dz,l) =
— C(sI — A + BKC) 'B.
These problems needed to be solved under the constraint that A — BKC stable,

ie., that K = K9C* + GRc, where K(© e K0 (P(O)) for some P9 € P such that

KO9Le = 0.
Applying the algorithm we had:

—0.063882699439918 0  —0.997957414277919 0
O _ 0.012195875662698  0.998643130545343 —0.000780700106257 —0.050621625208610
] 0.997882828566422 —0.012222870716218  —0.063877924951025  0.000269421014890
0.000348971870720  0.050621134381318 —0.000022338894237 0.998717867304654
A0 _ { 0.983650838535766 —0.003772277911855}13(1) B { 0.098883972659475 —0.001544978964136}
0.000091490905229  0.994959072276129 0.000939225045070 0.100248978115558

The “while-loop” stops because BYBY* = I,. We have

o —0.386571795892900 33.468356299440529 5.629731696802776 1.694878880538571
B 0)+ _
0.696955535886478  0.442712098375399 —10.893875111014371 0.025378383262705
o |: 10.111382188357680 0‘155830743345230‘|
B+ —

—0.094732770050116  9.973704058215121
Lpo) = 02, Rp0) = 02, Ly = 0y,

0.995919000712269  0.000779105459367 0.063747448813564  0.000022293265130
0.000779105459367 0.002563158431417 0.000036230973158 —0.050556704127861

RB(0> = ,RB(I) = 02
0.063747448813564  0.000036230973158 0.004080461883732  0.000270502543607

0.000022293265130 —0.050556704127861 0.000270502543607 0.997437378972582
0.997959500356135  0.000389552729683  0.031873724406782  0.000011146632565

0.000389552729683 0.501281579215708  0.000018115486579 —0.025278352063931
0.031873724406782  0.000018115486579 0.502040230941866  0.000135251271804

0.000011146632565 —0.025278352063931 0.000135251271804  0.998718689486291

1 1
I, —=BYBW+ —_p,.
2 ) 7 2

Now, we parameterize all the matrices K (0 such that A© — BOK©O) js stable.

Let PV = {il ﬁz] , where p,,dq=p,p; — p3>0. Let wy be arbitrary and let
2 Ps3
W = { 0 wl}Let
—w1 0
S _ g+ G (I +ADPY 4 pOADT) W(l)),
Then

KD _ g (p(1)>1.
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Let AP(O)l,l _ |:p4 Ps
Ps Ps

o —

AP(O)M + KOpOWT  _(1)p(1)

} , where p,,d,=p,p, —p% > 0. Then,

PO — o) yOT —

_pOg@®T P

[ APO),, 4 SOROT g

-y ylor,
_sWT P
and
N N
(AP(O)1,1) (AP(O)Ll) KD

(p(0)>_1 _

1 — -
KWT (AP(O)1 1) (P(l)) T ROT (AP(O)l 1) KW

Let
SO = B0 (1, + AP0 4 POAOT) (14 _1p0 B<o>+)_

Then
K — g0 (p(O))l_

Note that W(OT = —W(O),RBm) w =9 implies that W = 0,. We have com-
pleted the parametrization of all the SFs of the system, where the parameters WY,

PY>0, and AP(O)M > 0 are free.
Regarding the optimization stage, we had the following results: starting from the

point (feasible for SF but not feasible for SOF):

[p1 P P3 Ps Ps Pe wi]=
—[750 0 750 750 0 750 O],

in CPU — Time = 0.59375[sec | the fmincon function (with the interior-point
option and the default optimization parameters) has converged to the optimal point

[Pl Py P3 Ps Ps Ps wl}:
=107 -[0.009103654227197 0.000105735816664 0.006486122495094 1.912355216342858 0.057053301125719 1.792930229298237 —0.000647092932030],

resulting with the following optimal Frobenius-norm SF and SOF

—0.157533999747776  —0.000000000000000 —0.000000000000000  1.273776653891793

K9 =10%.
0.332650954180600 —0.000000000000000 —0.000000000000000 0.000655866128882

—0.157533999747776  1.273776653891793

K =10%- ,
0.332650954180600 0.000655866128882
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with ||K||; = 1.325888763265586 - 10°. The resulting closed-loop eigenvalues are:

—0.000004083911866 + 1.423412274467895i }

G(A(O) - B<°>I<C<°>> - {
—0.000005220069661 + 1.681989978268793i
For a comparison, in this (small) example we had seven scalar indeterminate,
four scalar equations and four scalar inequalities while by the BMI method

T
(A(O) — B(O)KC(O)>P + P(A(O) — B(O)KC(O)> <0,P> 0 we would have 14 scalar

indeterminate and eight scalar inequalities. This shows the potential of the method
in reducing the number of variables and inequalities/equations, thus enabling to
deal efficiently with larger problems. Moreover, the method removes the
decoupling of P and K, in the sense that now K depends on P and the dependence of
P on K has removed, thus making the problem more relaxed.

Figures 1 and 2 show the impulse response and the step response of the closed-
loop system, in terms of the regulated output z =y, where w = 0 and u, is the delta
Dirac function or the unit-step function, respectively. While the amplitudes seem to
be reasonable, the settling time of order 10° seems unreasonable. This happens
because lowering the SOF-norm results in pushing the closed-loop eigenvalues
toward the imaginary axes, as can be seen from the dense oscillations. We therefore
must set a barrier on the abscissa of the closed-loop eigenvalues as a constraint.
Note however that as a starting point for other optimization keys where we need
any stabilizing SOF that we can get, the above SOF might be sufficient.

Impulse Response

%102 From: In(1) From: In(2)

To: Out(1)
[

Amplitude

To: Qut(2)

0 5 10 0 5 10
Time (seconds) % 10°

Figure 1.
Impulse response of the closed loop with the minimal-norm SOF.
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Step Response

%107 From: In(1) From: In(2)

To: QOut(1)

0»:
X 10 °

Amplitude

0 5 10 0 5 10
Time (seconds) % 10°

Figure 2.
Step response of the closed loop with the minimal-norm SOF.

Regarding the LQR functional with Q = I, R = I, starting from:

(1 P2 Ps Pa Ps Pe wi]=
=[300 0 300 300 0 300 15],

in CPU — Time = 0.90625[sec | the fmincon function has converged to the
optimal point

[1’1 Py P3 Ps Ps Ps wd:
:102-[0.010603084813420 —0.002595549083521  0.009614240830002 1.009076872432389 —0.832493933321482 1.812148701422345 0.001750170924431],

resulting with the following optimal SF and SOF

—1.466094499085196 0.000000000000002 —0.000000000000000 2.731682559443639

K9 =10%.
0.703352598722306 0.000000000000000  0.000000000000001 —0.149101634953946
, [~1466094499085196  2.731682559443639
K =10%- ,
0.703352598722306  —0.149101634953946

with ||K||; = 3.182523976577676 - 10> and LQR wort-case functional-value
Omax (PLQR (K )) = 1.981249586261248 - 10°. The resulting closed-loop eigenvalues are:

(40 — BOKCY) - { ~1.723892066022943 + 1.3468498711267351 }

—0.450106460827155 + 1.711908728695912i
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The entries of 2 = y under w = 0 and %, = 0, when the closed-loop system is
derived by the initial conditionxo =[1 1 1 1]" are depicted in Figure 3. The
results might not be satisfactory regarding the amplitudes or the settling time;
however, as a starting point for other optimization keys where we need any stabi-
lizing SOF that we can get, the above SOF might be sufficient.

For the problem of pole placement via SOF, assume that the target is to place the
closed-loop eigenvalue as close as possible to —10 i, — 1 £ 0.1i. Then, starting
from:

(p1 P, P3 Pa Ps Pe wi]=
10110 1 0]

in CPU — Time = 1.828125[sec | the fmincon function has converged to the opti-
mal point

[P P2 P3 Pa Ps Ps wi]=
:103»[0.017543717092354 —0.025265281638022  0.040984285298812 1.855250747170489 —3.397079720955738 6.251476924192442 0.013791203700439 ],

resulting with the following optimal SF and SOF

—1.014246236498231 0.000000000000000 0.000000000000000 0.708417204523523

K© =105.
—0.177349433397692 0.000000000000000 0.000000000000000 0.124922842398310

—1.014246236498231 0.708417204523523

K =10°- )
—0.177349433397692  0.124922842398310

Response to Initial Conditions

1 T T

To: Out(1)

Amplitude

To. OU“E)

0 5 10 15
Time (seconds)

Figure 3.
Response of initial condition of the closed loop with the LQR SOF.
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with ||K||z = 1.256029021159584 - 10°. The resulting closed-loop eigenvalues are:

6<A(0) _ B(O)KC(O)> _ { —9.682859336407926 + 0.940019732471932i }

—0.157090195949127 + 1.083963060760387:

Figures 4 and 5 depict the impulse response and the step response of the closed
loop with the pole-placement SOF. The amplitudes look reasonable but the settling
time might be unsatisfactory.

Regarding the H.,-norm of the closed loop, starting from:

Py P3 Ps Ps Pg Wi]=

[P1
=1 0110 1 0],

in CPU — Time = 0.703125[sec | the fmincon function has converged to the
optimal point

[pr Py Ps Py Ps Ps wi] =
= [0.888221316790683 0.005450463395221 0.509688006534611 0.351367770700493 0.108479534948988 2.135683618863295 —0.023286321711901],

resulting with the following optimal SF and SOF

€@ — 10° —0.434126348764817 —0.000000000000000  0.000000000000000 6.230425140286776
B 6.139781209081431  0.000000000000000 —0.000000000000000  0.417994561595739
10" —0.434126348764817  6.230425140286776
- 6.139781209081431  0.417994561595739 |’
Impulse Response
From: In(1) From: In(2)
0.03 : : : :
0.02 t
=
5
O 001¢f
s
s
(oI P, W SO n— PR NI, SRS
@
O
2  -001
a 0.04
=
<
& 002
]
£)
o
= 0 f’t‘n&:yﬁm..uwm _\\//‘\/\_J,m—ﬁ-.q_;_ﬁmnw .....
-0.02
0 10 20 30 0 10 20 30
Time (seconds)
Figure 4.

Impulse vesponse of the closed loop with the pole-placement SOF.
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Step Response
From: In(2)

%1072 From: In(1)
10 f ' ‘

=

5 5%

@)

o

|_
@
=)
s |
=
a
=
<

10 |

)

5

O s

p

-

0.
-5
0 10 20 30 40 0 10 20 30 40
Time (seconds)

Figure 5.

Step response of the closed loop with the pole-placement SOF.

with ||K||; = 8.768026908280017 - 10* and || T,y (s)|;;. = 1.631954397074613 -
107°. The resulting closed-loop eigenvalues are:

—356.9401845964764
6<A(0) . B(O)I<C( )) _ —90.9530886951882

—1.0236129938218

—0.5685837870690

The simulation results of the closed-loop system are given in Figure 6, where w
is normally distributed random disturbance, where each entry is N/ (O, 106)
distributed. The maximum absolute values of the entries of z = y are

[0.034719714201842  0.0145887567240501",
and the maximum absolute values of the entries of x are

[0.034719714201842 0.279876853192629 0.549124101316666 0.014588756724050]T.

The results here are good.
Regarding the H,-norm of the closed loop, starting from:

[Py P2 P3s Pa Ps P wi] =
=1 0110 1 0],
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Linear Simulation Results
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Figure 6.

Response of the closed loop with the optimal H..-norm SOF to a 10° variance zero-mean normally distributed
random disturbance.

in CPU — Time = 8.390625| sec | the fmincon function has converged to the
optimal point

[Pl P, P3s Py Ps Ps wl]:
=[0.891178477642138 0.006639774876451 0.508684007482598 0.000038288661546 0.000053652014908 0.000140441315775 —0.021795268637180],

resulting with the following optimal SF and SOF

N , [ 1.835262537587536  0.000000000003900 0.000000000012416 1.804218059606446
K© =10°.
1.194244874676116 —0.000000000002080 0.000000000007286  0.578593785387393
1.835262537587536  1.804218059606446
K=10%- { ,
1.194244874676116  0.578593785387393
with [|K|| = 2.895579903518702 - 10° and | T2 (5)]] H, = 2.289352128445973 -

10~°. The resulting closed-loop eigenvalues are:

—8.825067937292802
—1.087222799352728
—0.000000561491544
—0.000000982645227

G(A(O) - B<°>Kc(°>) —10° .

The simulation results of the closed-loop system is given in Figure 6, where w
is normally distributed random disturbance, where each entry is N/ (0, 106)
distributed. The maximum absolute values of the entries of z = y are
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Linear Simulation Results

Amplitude

1 2 3 4 5 6 7 8 9 10
Time (seconds)

Figure 7.
Response of the closed loop with the optimal H,-norm SOF to a 10
random disturbance.

¢ variance zero-mean normally distributed

107° - [0.793706028985933  0.829879751812045]",

and the maximum absolute values of the entries of x are
1075.0.7937060289859 16.3502413073901 12.3720896708621 0.82987975181201".

The results here are excellent.

We conclude that the best performance of the closed-loop system is achieved with
the optimal H,-norm SOF; however, since the Frobenius-norm of the SOF controller is
high, the cost of construction and of operation of the SOF controller might be high, and
there are no “free meals.” Note also that by minimizing the SOF Frobenius-norm, the
eigenvalues of the closed loop tend to get closer to the imaginary axes (to the region of
lower degree of stability), while by minimizing the H,-norm, the eigenvalues of the
closed loop tend to escape from the imaginary axes (to the region of higher degree of
stability). These are conflicting demands, and therefore, one should use some combi-
nation of the related key functions or to use some multiobjective optimization algorithm
in order to get the best SOF in some or all of the needed key performance measures
(Figure 7).

The following counterintuitive example shows that the SOF problem can be
unsolvable (or hard to solve) even for small systems. In the example we show how
nonexistence of SOF can be detected by the method:

Example 4.2 Let

A<°>:[ ],B“)): H,c(o):n 1].

01 1
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Applying the algorithm we have

go_ 1|t av_tpgo__1
V2|1 1 2

The “while-loop” stops because BYBV* = 1. Let PV = p. where p, > 0. Then,

KO — g+ (1 (1 L AP | pO) A(l)T)) (p(1)>_1 _ _M,
2 P

—

Let AP(O)M = p,, where p, > 0. Then

—

AP(O)M + KOpOWT (1) p1)

pO) — y© yOT —
_pOgOHT p@
1 pp+1 pop; +1+2p,
21 [ ppy +1+ 2, popy + 1+ 4p, + 4p?

We therefore have:

KO = BO (1, + AOPO) 4 pO.AOT) (Iz _1po B<o>+> (p(0)>1 _
2

T

b

1 [4popitAps o+ 6pl - Ap] + pipl + 2p,p; + 4popi + 1
4p,p3

~2p,p1 = 2py — 2p1 —Pop1 2oy — L+ 4popy
as the free parametrization of all the state feedbacks for which A(®) — BOK( is
stable—for any choice of p;,p, > 0. Now L0 =13 [ 1 _1] and the equations

2

K (O)Lcm) = 0 are equivalent to the single equation:

1
4p,p3

1 +p,(20, +3p7) + (203 +4p7 +3p, +1)) = 0.

Assuming p,,p, > 0, the last equation implies that

(29, +3p2) = \/ (20, +32)° — 4p2 (23 + 4p2 + 3p, +1)
2}

p, =

bl

leading to a contradiction with p, being real positive number.

5. A parametrization for exact pole assignment via SFs

This section is based on the results reported in [34], where the proofs of the
following lemma and theorem can be found. The aim of this section is to introduce a
parametrization of all the SF’s for the exact pole-assignment problem, when the set
of eigenvalues can be given as free parameters (under some reasonable assump-
tions). This is done as part of the research of the problem of parametrization of all
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the SOFs for pole assignment. Note that the problem of exact pole assignment by
SOFs is NP-hard (see [3]), meaning that an efficient algorithm for the problem
probably does not exist, and therefore an effective description of the set of all
solutions might not exist too. Also note that with SOFs, the feasible set Q might
exclude some open set from being a feasible set for the closed-loop spectrum (see
[12]). These make the full aim very hard (if not impossible) to achieve. We there-
fore focus here on the problem of exact pole assignment via SFs.

Let the control system be given by:

{ S(x(t)) = Ax(t) + Bu(t) (35)

y(t) = Cx(r)

where A e RV, BER”™,C€R™, £(x(t)) = £x(t) in the continuous-time
context and X(x(¢)) = x(t + 1) in the discrete-time context. We assume without loss
of generality that (A, B) is controllable. The problem of exact pole assignment by SF
is defined as follows:

* (SF-EPA) Givenaset QCC_, |Q| =z (in the discrete-time context QCD_),
symmetric with respect to the x-axis, find a state feedback F € R”*" such that
the closed-loop state-to-state matrix E = A — BF has Q as its complete set of
eigenvalues, with their given multiplicities.

In [13], a closed form of all the exact pole-placement SFs is proved (up to a set of
measure 0), based on Moore’s method. In order to minimize the inaccuracy of the
eigenvalues final placement and in order to minimize the Frobenius-norm of the
feedback, a convex combination of the condition number of the similarity matrix
and of the feedback norm was minimized. The parametrization proposed in [13] is
based on the assumptions that there exists at least one real state feedback that leads
to a diagonalizable state-to-state closed-loop matrix and that B is full rank. A
necessary condition for such SF to exist is that the final multiplicity of any eigen-
value is less than or equal to rank(B). Here, we do not assume that B is full rank and
we only assume that Q contains sufficient number of real eigenvalues. A survey of
most of the methods for robust pole assignment via SFs or by SOFs and the
formulation of these methods as optimization problems with optimality necessary
conditions is given in [44]. In [45] a performance comparison of most of the
algorithmic methods for robust pole placement is given. A formulation of the
general problem of robust exact pole assignment via SFs as an SDP problem and
LMI-based linearization is introduced in [46], where the robustness is with respect
to the condition number of the similarity matrix, which is made in order to hope-
tully minimize the inaccuracy of the eigenvalues final placement. Unfortunately,
one probably cannot gain a parametric closed form of the SFs from such formula-
tions. Moreover, the following proposed method is exact and therefore enables the
use of the parametrization free parameters for other (and maybe more important)
optimization purposes. Note that since the proposed method is exact, the
closed-loop eigenvalues thyself can be inserted to the problem as parameters.

A completely different notion of robustness with respect to pole placement is
considered in the following works:

Robust pole placement in LMI regions and H., design with pole placement in
LMI regions are considered in [47, 48], respectively. An algorithm based on alter-
nating projections is introduced in [15], which aims to solve efficiently the problem
of pole placement via SOFs. A randomized algorithm for pole placement via SOFs
with minimal norm, in nonconvex or unconnected regions, is considered in [20].
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o T Pe
a1, 0 Qs A h N
Let Q = ~ .., v , ' s s , be the intended
c1 times Cm times 1 times re times

closed-loop eigenvalues, where the as denote the paired complex-conjugate eigen-
values (with nonzero imaginary part), the s denote the real eigenvalues, and

201, s 20571, ..., 77 denote their respective multiplicities, where 23" j¢; +
Z"ﬂj:lrj = n. In the following we would say that the size of the set (actually, the

multiset) Q is # (counting multiplicities) and we would write |©| = n. Note that
(A, B) is controllable if and only if (A, BB") is controllable, and also note that BB is
a real symmetric matrix with simple eigenvalues in the set {0,1} and thus is
orthogonally diagonalizable matrix. Let U denote an orthogonal matrix such that:

B=UTBB'U =

0
O] = bdiag (I, 0), (36)

where k = rank(B) = rank(BB") > 1 since (A, B) is controllable, and let
A Ay

~ ~

Azn Azp
lemma taken from [34] connecting between the controllability of the given system
and the controllability of its sub-system:

Lemma 5.1 In the notations above, (A, BB") is controllable if and only if

(;12,2,;12,1;1;’ 1) is controllable.

A=UTAU = be partitioned accordingly. We cite here the following

Again, we use the recursive controllable structure. Let U® = Uandlet A® =
A,BY =B, ng =n,ky = rank (B(O)). Similarly, let UV be an orthogonal matrix such
that UNTBUBD+UM = bdiag(Iy,, 0), where BY = Ay ;. Let AV = Ay, mq =
no — ko, k1 = rank (B(l)). Now, Lemma 5.1 implies that (A(l),B(1)> is controllable

since (A(O),B(O)> is controllable. Recursively, assume that the pair <A(i),B(i)> is

controllable. Let U be an orthogonal matrix such that B¥) = U®@TBOBO+() =
bdiag (I, 0), where k; >1 (since <A @), B(i)> is controllable). Let

—_—

— A(i)l,l A(i)L2

AW = yOT40Oy = be partitioned accordingly, with sizes

—_

A(i)z’1 A(i)z,z
ki x k; and (n; — k;) x (n; — k;) of the main block-diagonal blocks. Let A —

—

A(i)z,z, B(i+1) = A(i)z’l, Niy1 =N; — ki, k; = rank (B(l)) . Then, Lemma 5.1 1rnp11es that
(A(i+1), B(i+1)> is controllable. The recursion stops when B B+ = I, for some

i = b (which we call the base case). Note that in the worst case, the recursion stops
when the rank &, = 1.
Theorem 5.1 In the above notations, assume that Zi‘:ﬂ’j >a, where a is the

number of parity alternations in the sequence (n¢, 71, ...,7n,). Let Qo = Q. Then,
there exist a sequence Qg 2 € 2 -+ 2 Q,, of symmetric sets with size |Q;| = #;
(counting multiplicities) and there exist a real state feedback F; = F;(Git1, Fit1)

such that 6(A @ _ B(i)Fi> = Q;. Moreover, an explicit (recursive) formula for
Fi(Git1, Fitq) is given by:
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(F; = BOtw®

wi — U(i)w(i) UoT

—() =)
/W(i) Wy, Wy,
N (37)
0 0

=) () ~(i)

W1,1 = A1,1 + Fi+1A2,1 — Gin

=)  ~() ~(i)
(Wi, =4, +Finidy; — GipaFiga,

where 0<ﬁ§)2 — ﬁg}lFHl) = a(AUH) — B(i“)FiH) = Q.1 and G;4 is arbitrary
real matrix such that 6(G;;1) = Q;\ Q1.

Example 5.1 Consider the problem of exact pole assignment via SF for the same
system from Example 4.1. We therefore assume here that the full state is available
for feedback control. Now, using the calculations from Example 4.1, we have:
(no,n1) = (4,2) implying that the number of parity alternations isa = 0. We
therefore can assign by the method any symmetric set of eigenvalues to the closed
loop. Let Qg = {a, a, ﬁ,ﬁ} be the eigenvalues to be assigned, and let Q; = {ﬂ,ﬁ}.
Now,

F; = BOF (A(l) - Gz),

where
G, — {%(ﬁ) 3(B) }
=3(p) R(P)
and
Fo = BO+W O,
where

w0, =49, +FA9,;, -G,

—_— —

w0, =409, +FA0,, - GF;

R(a)  I(a)
G =

—3(a) R(a)

We have completed the pole-assignment SF parametrization. As an application,
assume that « = —10 + 4, = —1 + 0.1i. Then,

—2.312944765727539 0.063274421635669 —0.033598570868307 7.136847864481691

Fo=10%- ,
0 2.382051359668675 —0.002249112006026  0.011460219946760 0.432788287638212
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resulting with the closed-loop eigenvalues:

<A(O) BOF ) { —10.000000000000000 £1.000000000000004: }
6 —_ g .
0 —1.000000000000003 £ 0.099999999999998:

In our calculations, we used MATLAB®  which has a general precession of 5 — 7
significant digits in computing eigenvalues. Thus, we have almost no loss of digits
by the method. For a comparison, see the last case in Example 4.1 and note that
while exact pole assignment can be achieved by SF, in general, it cannot be achieved
by SOF because the last is a NP-hard problem (see the introduction of this section).
Even regional pole placement is hard to achieve by SOF because of the
nonconvexity of the SOF feasibility domain.

Remark 5.1 Note that the indices (ko, k1, ..., k;,) as well as the indices
(no,n1, ..., ny), can be calculated from (A, B) in advance. After calculating these
indices and the number a of parity alternations in the sequence (n¢, 71, ...,75), the
designer can define Q as to satisfy the assumption of Theorem 5.1, i.e., being
symmetric with at least a real eigenvalues, in a parametric way, and get a parame-
trization of all the real SF leading to Q as the set of closed-loop eigenvalues. Next,
the designer can play with the specific values of these and of other free parameters,
in order to gain the needed closed-loop performance requirements. This is in con-
trast with other methods where the parametrization is calculated ad-hoc for a
specific set of eigenvalues, where any change in the set of eigenvalues necessitates
new execution of the method.

Remark 5.2 Note that F;;1 can be replaced by F; ;1 + (I — B(i)+B(i))Hi+1 where
H;.1 is any real matrix, without changing the closed-loop eigenvalues (if one seek
feedbacks with minimal Frobenius-norm, then he should take H;,; = 0, otherwise
he should leave H; 4 as another free parameter). Thus, the freeness in
(Hp, ...,H1,Hy) and in (Gp1, Gp, ..., G1) makes the freeness in F (e.g. in order to
globally optimize the H..-norm of the closed loop, the H-norm or the LQR func-
tional of the closed loop or any other performance key thereof). Note also that the
sequences (F, ...,F1,Fg) and (Gp,1, Gp, ..., G1) can be calculated for Q as in
Theorem 5.1, where the eigenvalues in Q are given as free parameters. In that case,
it can be easily proved by induction that the state feedbacks (F}, ..., F1,Fo) depend
polynomially on the eigenvalues parameters and on the other free parameters men-
tioned above (for complex eigenvalue a they depend polynomially on R(a), J(a)).

Finally, it is wort mentioning that the complementary theorem of Theorem 5.1
was also proved in [34], meaning that under the assumptions of Theorem 5.1, any
SF that solves the problem has the form given in the theorem (up to a factor of the
form given in Remark 5.2).

6. Concluding remarks

In this chapter, we have introduced an explicit free parametrization of all the
stabilizing SF’s of a controllable pair (A, B). This enables global optimization over
the set of all the stabilizing SF’s of such pair, because the parametrization is free. For
a system triplet (A, B, C), we have shown how to get the parametrization of all the
SOFs of the system by parameterizing all the SFs of (A, B) and all the SFs of
(AT, CT) and then imposing the compatibility constraint (28). We have also shown
a parametrization of all the SOFs of the system triplet (4, B, C) by imposing the
linear constraint K (O)Lcm) = 0 on the SF K9 of the pair (A, B), where K ) was
defined recursively and parameterizes the set of all SFs of (A, B). This leads to a set
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of polynomial equations (after multiplying by the l.c.m. of the denominators of the

rational entries of K'”') and inequalities that can be brought to polynomial equa-
tions. The resulting polynomial set of equations can be solved (parametrically) by
using the Grobner basis method (see e.g., [49-52]). By applying the Grobner basis
method, one would get an indication to the existence of solutions and in case that
solutions do exist, it would tell what are the free parameters and how other param-
eters depend on the free parameters. It seems that the proposed method makes the
Grobner basis computations overhead (or other methods thereof) reduced signifi-
cantly, thus enabling SOF global optimization for larger systems.

In view of Theorem 5.1 (with its complementary theorem proved in [34]), we have
introduced a sound and complete parametrization of all the state feedbacks F which

make the matrix E = UT (A4 — BF)U k-complementary (n — k)-invariant with respect
to Q; (see [34] for the definition and properties), where U is orthogonal such that
UTBB'U = bdiag (I, 0), k = rank(B), where Q is symmetric and has at least 2 (being
the parity alternations in the sequence (n, ..., 7)) real eigenvalues, where Q; C Q is
symmetric with maximum real eigenvalues with size |Q;| = # — k. Assuming Q as
above, we have generalized the results of [13] in the sense that we do not assume the
existence of real state feedback F that brings the closed-loop E = A — BF to diagonaliz-
able matrix, which actually means that the geometric and algebraic multiplicity coin-
cides for any eigenvalue of the closed loop, and we do not assume the restriction on the
multiplicity of each eigenvalue to be less than or equal to rank(B). However, in cases
where the number of real eigenvalues in Q is less than a, one should use the parametri-
zations given in [13], in [45] or in the references there. Note that in communication
systems, where complex SFs and SOFs are sought, the introduced method is complete
(with no restrictions) since the number of parity alternations and the restriction on Q to
contain as much real eigenvalues, were needed only to guarantee that F; fori = b, ..., 0
is real in each stage, which is needless in communication systems.

In view of Example 5.1, one can see that the accuracy of the final location of the
closed-loop eigenvalues given by the proposed method depends only on the accu-

racy of computing B¥* and U% fori = 0, ..., b and in the algorithm that we have to
compute the closed-loop eigenvalues (see [53], for example) in order to validate
their final location, and it has nothing to do with the specific values of the specific

eigenvalues given in Q. Therefore, by the proposed method, once that B®+ and U®
fori =0, ...,b were computed as accurate as possible, the location of the closed-
loop eigenvalues will be accurate accordingly. Thus, by the proposed method the
designer can save time since he can do it parametrically only once, and afterward he
only needs to play with the specific values of the eigenvalues until he gets a satis-
factory closed-loop performance, where he can be sure that the accuracy of the final
placement will be the same for all of his trials independently on the specific values
of the chosen eigenvalues. Also, the given parametrization of Fy is polynomially
dependent on the free parameters and thus is very convenient for applying
automatic differentiation and optimization methods.

To conclude, we have introduced parametrizations of SFs and SOFs that are
based on the recursive controllable structure that was discovered in [35]. The results
has powerful implications for real-life systems, and we expect for more results in
this direction. Unfortunately, for uncertain systems, the method cannot work
directly because of the dependencies of (4, B, C) in uncertain parameters, for which
we cannot compute U fori = 0, ...,b. However, if a nominal system (A,B, é) is
known accurately then, the method can be applied to that system and the free
parameters of the parametrization can be used to “catch” the uncertainty of the
whole system, together with the closed-loop performance requirements. The
research of this method will be left for a future work.
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