1,752 research outputs found

    A SURVEY ON OUTDOOR WATER HAZARD DETECTION

    Get PDF
    Many research to detect the water bodies have been done. But, until quite recently, there still has been very little work on detecting bodies of water that could be navigation hazards. Beside that, the robust water hazards detection is a critical requirement for autonomous off-road navigation and the nature environment is another challenge for this research. The famous mechanism to identify water object can be done by the reflection light analysis or light absorption analysis on water suspect object. For it,

    Combining omnidirectional vision with polarization vision for robot navigation

    Get PDF
    La polarisation est le phénomène qui décrit les orientations des oscillations des ondes lumineuses qui sont limitées en direction. La lumière polarisée est largement utilisée dans le règne animal,à partir de la recherche de nourriture, la défense et la communication et la navigation. Le chapitre (1) aborde brièvement certains aspects importants de la polarisation et explique notre problématique de recherche. Nous visons à utiliser un capteur polarimétrique-catadioptrique car il existe de nombreuses applications qui peuvent bénéficier d'une telle combinaison en vision par ordinateur et en robotique, en particulier pour l'estimation d'attitude et les applications de navigation. Le chapitre (2) couvre essentiellement l'état de l'art de l'estimation d'attitude basée sur la vision.Quand la lumière non-polarisée du soleil pénètre dans l'atmosphère, l'air entraine une diffusion de Rayleigh, et la lumière devient partiellement linéairement polarisée. Le chapitre (3) présente les motifs de polarisation de la lumière naturelle et couvre l'état de l'art des méthodes d'acquisition des motifs de polarisation de la lumière naturelle utilisant des capteurs omnidirectionnels (par exemple fisheye et capteurs catadioptriques). Nous expliquons également les caractéristiques de polarisation de la lumière naturelle et donnons une nouvelle dérivation théorique de son angle de polarisation.Notre objectif est d'obtenir une vue omnidirectionnelle à 360 associée aux caractéristiques de polarisation. Pour ce faire, ce travail est basé sur des capteurs catadioptriques qui sont composées de surfaces réfléchissantes et de lentilles. Généralement, la surface réfléchissante est métallique et donc l'état de polarisation de la lumière incidente, qui est le plus souvent partiellement linéairement polarisée, est modifiée pour être polarisée elliptiquement après réflexion. A partir de la mesure de l'état de polarisation de la lumière réfléchie, nous voulons obtenir l'état de polarisation incident. Le chapitre (4) propose une nouvelle méthode pour mesurer les paramètres de polarisation de la lumière en utilisant un capteur catadioptrique. La possibilité de mesurer le vecteur de Stokes du rayon incident est démontré à partir de trois composants du vecteur de Stokes du rayon réfléchi sur les quatre existants.Lorsque les motifs de polarisation incidents sont disponibles, les angles zénithal et azimutal du soleil peuvent être directement estimés à l'aide de ces modèles. Le chapitre (5) traite de l'orientation et de la navigation de robot basées sur la polarisation et différents algorithmes sont proposés pour estimer ces angles dans ce chapitre. A notre connaissance, l'angle zénithal du soleil est pour la première fois estimé dans ce travail à partir des schémas de polarisation incidents. Nous proposons également d'estimer l'orientation d'un véhicule à partir de ces motifs de polarisation.Enfin, le travail est conclu et les possibles perspectives de recherche sont discutées dans le chapitre (6). D'autres exemples de schémas de polarisation de la lumière naturelle, leur calibrage et des applications sont proposées en annexe (B).Notre travail pourrait ouvrir un accès au monde de la vision polarimétrique omnidirectionnelle en plus des approches conventionnelles. Cela inclut l'orientation bio-inspirée des robots, des applications de navigation, ou bien la localisation en plein air pour laquelle les motifs de polarisation de la lumière naturelle associés à l'orientation du soleil à une heure précise peuvent aboutir à la localisation géographique d'un véhiculePolarization is the phenomenon that describes the oscillations orientations of the light waves which are restricted in direction. Polarized light has multiple uses in the animal kingdom ranging from foraging, defense and communication to orientation and navigation. Chapter (1) briefly covers some important aspects of polarization and explains our research problem. We are aiming to use a polarimetric-catadioptric sensor since there are many applications which can benefit from such combination in computer vision and robotics specially robot orientation (attitude estimation) and navigation applications. Chapter (2) mainly covers the state of art of visual based attitude estimation.As the unpolarized sunlight enters the Earth s atmosphere, it is Rayleigh-scattered by air, and it becomes partially linearly polarized. This skylight polarization provides a signi cant clue to understanding the environment. Its state conveys the information for obtaining the sun orientation. Robot navigation, sensor planning, and many other applications may bene t from using this navigation clue. Chapter (3) covers the state of art in capturing the skylight polarization patterns using omnidirectional sensors (e.g fisheye and catadioptric sensors). It also explains the skylight polarization characteristics and gives a new theoretical derivation of the skylight angle of polarization pattern. Our aim is to obtain an omnidirectional 360 view combined with polarization characteristics. Hence, this work is based on catadioptric sensors which are composed of reflective surfaces and lenses. Usually the reflective surface is metallic and hence the incident skylight polarization state, which is mostly partially linearly polarized, is changed to be elliptically polarized after reflection. Given the measured reflected polarization state, we want to obtain the incident polarization state. Chapter (4) proposes a method to measure the light polarization parameters using a catadioptric sensor. The possibility to measure the incident Stokes is proved given three Stokes out of the four reflected Stokes. Once the incident polarization patterns are available, the solar angles can be directly estimated using these patterns. Chapter (5) discusses polarization based robot orientation and navigation and proposes new algorithms to estimate these solar angles where, to the best of our knowledge, the sun zenith angle is firstly estimated in this work given these incident polarization patterns. We also propose to estimate any vehicle orientation given these polarization patterns. Finally the work is concluded and possible future research directions are discussed in chapter (6). More examples of skylight polarization patterns, their calibration, and the proposed applications are given in appendix (B). Our work may pave the way to move from the conventional polarization vision world to the omnidirectional one. It enables bio-inspired robot orientation and navigation applications and possible outdoor localization based on the skylight polarization patterns where given the solar angles at a certain date and instant of time may infer the current vehicle geographical location.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Unifying terrain awareness for the visually impaired through real-time semantic segmentation.

    Get PDF
    Navigational assistance aims to help visually-impaired people to ambulate the environment safely and independently. This topic becomes challenging as it requires detecting a wide variety of scenes to provide higher level assistive awareness. Vision-based technologies with monocular detectors or depth sensors have sprung up within several years of research. These separate approaches have achieved remarkable results with relatively low processing time and have improved the mobility of impaired people to a large extent. However, running all detectors jointly increases the latency and burdens the computational resources. In this paper, we put forward seizing pixel-wise semantic segmentation to cover navigation-related perception needs in a unified way. This is critical not only for the terrain awareness regarding traversable areas, sidewalks, stairs and water hazards, but also for the avoidance of short-range obstacles, fast-approaching pedestrians and vehicles. The core of our unification proposal is a deep architecture, aimed at attaining efficient semantic understanding. We have integrated the approach in a wearable navigation system by incorporating robust depth segmentation. A comprehensive set of experiments prove the qualified accuracy over state-of-the-art methods while maintaining real-time speed. We also present a closed-loop field test involving real visually-impaired users, demonstrating the effectivity and versatility of the assistive framework

    Applications of ISES for vegetation and land use

    Get PDF
    Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Metal-Air Power Sources With Hydrogel Electrolytes For Long Endurance Robots

    Get PDF
    To power electronics for long durations, batteries need to be recharged because they store only a small amount of total energy, which is limited by the mass of energy storage materials in the battery electrodes. Harvesters can provide longer continuous energy, but their limited power and need for precise operating conditions severely restricts their application in off-grid robots, microelectronics, and internet connected devices. In this dissertation, we designed a new strategy for powering robots and electronics by electrochemically scavenging energy from metal surfaces, which breaks energy storage scaling laws by allowing robots and electronics to extract energy from large volumes of energy dense material without having to carry the material on-board. When moving across a metal surface, metal scavenging exceeds the energy densities of lithium ion and metal-air batteries by 13x and 2x. We also showed how the same technology can power a vehicle and make computer-free decisions about how to navigate the vehicle’s environment by responding to chemical features through electro-chemotaxis. To minimize the mass loading and cost of catalysts in the air cathode and improve their stability, we synthesized nanoporous gold catalysts with increased (100) surface facets using electrochemical dealloying in sodium citrate surfactant electrolytes. These modified nanoporous gold catalysts achieved a 7.7% higher operating voltage and 30.2% greater power density in aluminum-air batteries over traditionally prepared nanoporous gold, and their performance was superior to commercial platinum nanoparticle electrodes at a 10 times lower mass loading. We investigated morphology changes and material distribution through the anode using microscale X-ray computed tomography (micro-CT) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). In addition, we also synthesized poly (vinyl alcohol (PVA)/SiO2 and PVA/Agarose hydrogel to increase water retention to extend the lifetime of the hydrogel, which can significantly contribute to the long duration application of metal-air batteries

    NASA Capability Roadmaps Executive Summary

    Get PDF
    This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Motorcycles that see: Multifocal stereo vision sensor for advanced safety systems in tilting vehicles

    Get PDF
    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue
    • …
    corecore