2,620 research outputs found

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    IRS-assisted UAV Communications: A Comprehensive Review

    Full text link
    Intelligent reflecting surface (IRS) can smartly adjust the wavefronts in terms of phase, frequency, amplitude and polarization via passive reflections and without any need of radio frequency (RF) chains. It is envisaged as an emerging technology which can change wireless communication to improve both energy and spectrum efficiencies with low energy consumption and low cost. It can intelligently configure the wireless channels through a massive number of cost effective passive reflecting elements to improve the system performance. Similarly, unmanned aerial vehicle (UAV) communication has gained a viable attention due to flexible deployment, high mobility and ease of integration with several technologies. However, UAV communication is prone to security issues and obstructions in real-time applications. Recently, it is foreseen that UAV and IRS both can integrate together to attain unparalleled capabilities in difficult scenarios. Both technologies can ensure improved performance through proactively altering the wireless propagation using smart signal reflections and maneuver control in three dimensional (3D) space. IRS can be integrated in both aerial and terrene environments to reap the benefits of smart reflections. This study briefly discusses UAV communication, IRS and focuses on IRS-assisted UAC communications. It surveys the existing literature on this emerging research topic and highlights several promising technologies which can be implemented in IRS-assisted UAV communication. This study also presents several application scenarios and open research challenges. This study goes one step further to elaborate research opportunities to design and optimize wireless systems with low energy footprint and at low cost. Finally, we shed some light on future research aspects for IRS-assisted UAV communication

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    A Survey on the Security and the Evolution of Osmotic and Catalytic Computing for 5G Networks

    Full text link
    The 5G networks have the capability to provide high compatibility for the new applications, industries, and business models. These networks can tremendously improve the quality of life by enabling various use cases that require high data-rate, low latency, and continuous connectivity for applications pertaining to eHealth, automatic vehicles, smart cities, smart grid, and the Internet of Things (IoT). However, these applications need secure servicing as well as resource policing for effective network formations. There have been a lot of studies, which emphasized the security aspects of 5G networks while focusing only on the adaptability features of these networks. However, there is a gap in the literature which particularly needs to follow recent computing paradigms as alternative mechanisms for the enhancement of security. To cover this, a detailed description of the security for the 5G networks is presented in this article along with the discussions on the evolution of osmotic and catalytic computing-based security modules. The taxonomy on the basis of security requirements is presented, which also includes the comparison of the existing state-of-the-art solutions. This article also provides a security model, "CATMOSIS", which idealizes the incorporation of security features on the basis of catalytic and osmotic computing in the 5G networks. Finally, various security challenges and open issues are discussed to emphasize the works to follow in this direction of research.Comment: 34 pages, 7 tables, 7 figures, Published In 5G Enabled Secure Wireless Networks, pp. 69-102. Springer, Cham, 201

    Identification of key research topics in 5G using co-word analysis

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe aim of this research is to better understand the field of 5G by analyzing the more than 10000 publications found in the Web of Science database. To achieve this, a co-word analysis was performed to identify research topics based on the author keywords and a strategic diagram was used to measure their level of maturity and relevance to the field. In total this analysis identified that all the articles can be grouped into seven topics, from which, two are mature but peripheral, one is both well developed and central to the field, and the rest are central, but underdeveloped. The value of this research, was the usage of a well-established technique that has been used in many fields, but never in the field of 5G which is growing in relevance
    corecore