188 research outputs found

    On mm-Wave Multi-path Clustering and Channel Modeling

    Get PDF
    Efficient and realistic mm-wave channel models are of vital importance for the development of novel mm-wave wireless technologies. Though many of the current 60 GHz channel models are based on the useful concept of multi-path clusters, only a limited number of 60 GHz channel measurements have been reported in the literature for this purpose. Therefore, there is still a need for further measurement based analyses of multi-path clustering in the 60 GHz band. This paper presents clustering results for a double-directional 60 GHz MIMO channel model. Based on these results, we derive a model which is validated with measured data. Statistical cluster parameters are evaluated and compared with existing channel models. It is shown that the cluster angular characteristics are closely related to the room geometry and environment, making it infeasible to model the delay and angular domains independently. We also show that when using ray tracing to model the channel, it is insufficient to only consider walls, ceiling, floor and tables; finer structures such as ceiling lamps, chairs and bookshelves need to be taken into account as well

    60 GHz Wireless Propagation Channels: Characterization, Modeling and Evaluation

    Get PDF
    To be able to connect wirelessly to the internet is nowadays a part of everyday life and the number of wireless devices accessing wireless networks worldwide are increasing rapidly. However, with the increasing number of wireless devices and applications and the amount available bandwidth, spectrum shortage is an issue. A promising way to increase the amount of available spectrum is to utilize frequency bands in the mm-wave range of 30-300 GHz that previously have not been used for typical consumer applications. The 60 GHz band has been pointed out as a good candidate for short range, high data rate communications, as the amount of available bandwidth is at least 5 GHz worldwide, with most countries having 7 GHz of bandwidth available in this band. This large bandwidth is expected to allow for wireless communication with bit rates up to 7 Gbit/s, which can be compared to the typical WLAN systems of today that typically provide bit rates up to 0.6 Gbit/s. However, the performance of any wireless system is highly dependent on the properties and characteristics of the wireless propagation channel. This thesis focuses on indoor short range wireless propagation channels in the 60 GHz band and contains a collection of papers that characterizes, models and evaluates different aspects that are directly related to the propagation channel properties. Paper I investigates the directional properties of the indoor 60 GHz wireless radio channel based on a set of indoor measurements in a conference room. In the paper, the signal pathways and propagation mechanisms for the strongest paths are identified. The results show that first and second order interactions account for the major contribution of the received power. The results also show that finer structures, such as ceiling lamps, can be significant interacting objects. Paper II presents a cluster-based double-directional channel model for 60 GHz indoor multiple-input multiple-output (MIMO) systems. This paper is a direct continuation of the results in paper I. The model supports arbitrary antenna elements and array configurations and is validated against measurement data. The validation shows that the channel model is able to efficiently reproduce the statistical properties of the measured channels. The presented channel model is also compared with the 60 GHz channel models developed for the industry standards IEEE802.15.3c and IEEE802.11ad. Paper III characterizes the effect of shadowing due to humans and other objects. Measurements of the shadowing gain for human legs, metallic sheets, as well as metallic and plastic cylinders are presented. It is shown that the shadowing gain of these objects are fairly similar and that the shadowing due to the metal cylinder can be determined based on the geometrical theory of diffraction. Next, the shadowing due to a water-filled human body phantom is compared with the shadowing due to real humans. The results show that the water-filled phantom has shadowing properties similar to those of humans and is therefore suitable for use in 60 GHz human body shadowing measurements. Paper IV presents a novel way of estimating the cluster decay and fading. Previously, the cluster decay has usually been determined by performing a simple linear regression, without considering the effects of the noise floor and cluster fading. The paper presents an estimation method which takes these effects into account and jointly estimates both the cluster decay and cluster fading. It is shown that this estimation method can greatly improve the estimated parameters. Paper V evaluates the capacity improvement capability of spatial multiplexing and beamforming techniques for 60 GHz systems in an indoor environment. In this paper, beamforming refers to conventional gain focusing in the direction of the strongest propagation path. The paper uses a capacity metric that only depends on the multi-path richness of the propagation channel and the antenna aperture size. In the paper, it is shown that, when the link budget is limited due to electrically small antennas and long Tx-Rx separation distances, beamforming approximates the capacity of spatial multiplexing. However, spatial multiplexing is a worthwhile option when Rx SNR is favorable and a higher peak data rate is required. Paper VI describes different methods for the clustering of wireless multi-path components. In the literature, the clustering method that is predominantly used is the K-means algorithm, or a power-weighted version of K-means, called K-power means. In this paper, we point out that K-means is a special case of a Gaussian mixture model (GMM). The paper presents a clustering method based on a GMM. This method is able to handle arbitrary cluster spreads in the different dimensions better than the K-means algorithm. A power-weighted version of the GMM is also presented. In addition to this, a mixture model based on asymmetric Laplace distributions is also presented, with and without power-weighting. Paper VII is based on channel measurements in a small and a large room, where the Tx and Rx arrays have dual polarized elements. Using these measurements, the cross-polarization ratio (XPR) of the multi-path components are characterized. This gives valuable information on how the MPCs are affected by the propagation channel. A statistical description of the XPR is also needed for the development of a propagation channel model that supports polarization. The paper also investigates the eigenvalue spreads for single and dual polarized elements. Furthermore, the measurements include LOS and NLOS measurement, where the NLOS scenarios include water-filled human presented in paper III. The results show that the capacity can be greatly improved if dual-polarized elements are used, and that the XPR values are in general higher compared to lower frequencies

    Performance Analysis of Polarization Diversity for Indoor Scenarios at 41.4 GHz and 61.5 GHz

    Get PDF
    We present the radio channel experiments conducted in indoor scenarios to test the performance of a dual orthogonal polarization scheme in the single-branch receiver end of a mobile system with a centre frequency of 41.4 GHz and 61.5 GHz. The diversity gain has been obtained according to three main combination methods for an outage probability of 1%: signal selection, equal gain combining, and maximal ratio combining. Diversity gain calculated ranges from 0.25 to 4.5 dB, depending on the combination technique used, the radiation pattern, the scenario, and the frequency band. The spatial variation of the cross-polar discrimination factor (XPD) has been estimated. The XPD ranges from 31 dB to 34 dB at 41.4 GHz and between 26 dB and 29 dB for the 61.5 GHz band. From the gain and discrimination results, we evaluated the performance of this scheme to conclude its suitability as either a diversity technique for reducing signal fading, as the 41.4 GHz, or as a method for increasing the link capacity in the 61.5 GHz case

    Radio Channel Characterization for Future Wireless Networks and Applications

    Get PDF
    The new frontier of Above-6GHz bands is revolutionizing the field of wireless telecommunications, requiring new radio channel models to support the development of future Giga-bit-per-second systems. Recently, deterministic ray-based models as Ray Tracing are catching on worldwide thanks to their frequency-agility and reliable predictions. A modern 3D Ray Tracing developed at University of Bologna has been indeed calibrated and used to investigate the Above-6GHz radio channel properties. As starting point, an item-level electromagnetic characterization of common items and materials has been achieved successfully to obtain information about the complex permittivity, scattering diagrams and even de-polarization effects, both utilizing Vector Spectrum Analyzer (at 7-15GHz) and custom Channel Sounder (at 70GHz). Thus, a complete tuning of the Ray Tracing has been completed for Above-6GHz frequencies. Then, 70GHz indoor doubledirectional channel measurements have been performed in collaboration with TU Ilmenau, in order to attain a multidimensional analysis of propagation mechanisms in time and space, outlining the differences between Below- and Above-6GHz propagation. Furthermore, multi-antenna systems, as Multiple-Input-Multiple- Output (MIMO) and Beamforming have been taken into considerations, as strategic technologies for Above-6GHz systems, focusing on their implementation, limits and differences. Finally, complex system simulations of Space-Division-Multiple- Access (SDMA) networks in indoor scenarios have been tested, to assess the capabilities of Beamforming. In particular, efficient Beam Search and Tracking algorithms have been proposed to assess the impact of interference on Multi-User Beamforming at 70GHz and, also, novel Multi-Beam Beamforming schemes have been tested at 60GHz to investigate diversity strategies to cope with NLOS link and Human Blockage events. Moreover, the novel concept of Ray-Tracing-assisted Beamforming has been outlined, showing that ray-based models represent today the promising key tools to evaluate, design and enhance the future Above-6GHz multi-antenna systems

    Empirical multi-band characterization of propagation with modelling aspects for communictions

    Get PDF
    Diese Arbeit präsentiert eine empirische Untersuchung der Wellenausbreitung für drahtlose Kommunikation im Millimeterwellen- und sub-THz-Band, wobei als Referenz das bereits bekannte und untersuchte sub-6-GHz-Band verwendet wird. Die großen verfügbaren Bandbreiten in diesen hohen Frequenzbändern erlauben die Verwendung hoher instantaner Bandbreiten zur Erfüllung der wesentlichen Anforderungen zukünftiger Mobilfunktechnologien (5G, “5G and beyond” und 6G). Aufgrund zunehmender Pfad- und Eindringverluste bei zunehmender Trägerfrequenz ist die resultierende Abdeckung dabei jedoch stark reduziert. Die entstehenden Pfadverluste können durch die Verwendung hochdirektiver Funkschnittstellen kompensiert werden, wodurch die resultierende Auflösung im Winkelbereich erhöht wird und die Notwendigkeit einer räumlichen Kenntnis der Systeme mit sich bringt: Woher kommt das Signal? Darüber hinaus erhöhen größere Anwendungsbandbreiten die Auflösung im Zeitbereich, reduzieren das small-scale Fading und ermöglichen die Untersuchung innerhalb von Clustern von Mehrwegekomponenten. Daraus ergibt sich für Kommunikationssysteme ein vorhersagbareres Bild im Winkel-, Zeit- und Polarisationsbereich, welches Eigenschaften sind, die in Kanalmodellen für diese Frequenzen widergespiegelt werden müssen. Aus diesem Grund wurde in der vorliegenden Arbeit eine umfassende Charakterisierung der Wellenausbreitung durch simultane Multibandmessungen in den sub-6 GHz-, Millimeterwellen- und sub-THz-Bändern vorgestellt. Zu Beginn wurde die Eignung des simultanen Multiband-Messverfahrens zur Charakterisierung der Ausbreitung von Grenzwert-Leistungsprofilen und large-scale Parametern bewertet. Anschließend wurden wichtige Wellenausbreitungsaspekte für die Ein- und Multibandkanalmodellierung innerhalb mehrerer Säulen der 5G-Technologie identifiziert und Erweiterungen zu verbreiteten räumlichen Kanalmodellen eingeführt und bewertet, welche die oben genannten Systemaspekte abdecken.This thesis presents an empirical characterization of propagation for wireless communications at mm-waves and sub-THz, taking as a reference the already well known and studied sub-6 GHz band. The large blocks of free spectrum available at these high frequency bands makes them particularly suitable to provide the necessary instantaneous bandwidths to meet the requirements of future wireless technologies (5G, 5G and beyond, and 6G). However, isotropic path-loss and penetration-loss are larger with increasing carrier frequency, hence, coverage is severely reduced. Path-loss can be compensated with the utilization of highly directive radio-interfaces, which increases the resolution in the angular domain. Nonetheless, this emphasizes the need of spatial awareness of systems, making more relevant the question “where does the signal come from?” In addition, larger application bandwidths increase the resolution in the time domain, reducing small-scale fading and allowing to observe inside of clusters of multi-path components (MPCs). Consequently, communication systems have a more deterministic picture of the environment in the angular, time, and polarization domain, characteristics that need to be reflected in channel models for these frequencies. Therefore, in the present work we introduce an extensive characterization of propagation by intensive simultaneous multi-band measurements in the sub-6 GHz, mm-waves, and sub-THz bands. Firstly, the suitability of the simultaneous multi-band measurement procedure to characterize propagation from marginal power profiles and large-scale parameters (LSPs) has been evaluated. Then, key propagation aspects for single and multi-band channel modelling in several verticals of 5G have been identified, and extensions to popular spatial channel models (SCMs) covering the aforementioned system aspects have been introduced and evaluated
    corecore