10 research outputs found

    Towards Strong Normalization for Dependent Object Types (DOT)

    Get PDF
    The Dependent Object Types (DOT) family of calculi has been proposed as a new theoretic foundation for Scala and similar languages, unifying functional programming, object oriented programming and ML-style module systems. Following the recent type soundness proof for DOT, the present paper aims to establish stronger meta-theoretic properties. The main result is a fully mechanized proof of strong normalization for D_<:, a variant of DOT that excludes recursive functions and recursive types. We further discuss techniques and challenges for adding recursive types while maintaining strong normalization, and demonstrate that certain variants of recursive self types can be integrated successfully

    {mitten}: A Flexible Multimodal Proof Assistant

    Get PDF
    Recently, there has been a growing interest in type theories which include modalities, unary type constructors which need not commute with substitution. Here we focus on MTT [Daniel Gratzer et al., 2021], a general modal type theory which can internalize arbitrary collections of (dependent) right adjoints [Birkedal et al., 2020]. These modalities are specified by mode theories [Licata and Shulman, 2016], 2-categories whose objects corresponds to modes, morphisms to modalities, and 2-cells to natural transformations between modalities. We contribute a defunctionalized NbE algorithm which reduces the type-checking problem for MTT to deciding the word problem for the mode theory. The algorithm is restricted to the class of preordered mode theories - mode theories with at most one 2-cell between any pair of modalities. Crucially, the normalization algorithm does not depend on the particulars of the mode theory and can be applied without change to any preordered collection of modalities. Furthermore, we specify a bidirectional syntax for MTT together with a type-checking algorithm. We further contribute mitten, a flexible experimental proof assistant implementing these algorithms which supports all decidable preordered mode theories without alteration

    Multimodal Dependent Type Theory

    Get PDF
    We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations

    Type soundness proofs with definitional interpreters

    Get PDF
    While type soundness proofs are taught in every graduate PL class, the gap between realistic languages and what is accessible to formal proofs is large. In the case of Scala, it has been shown that its formal model, the Dependent Object Types (DOT) calculus, cannot simultaneously support key metatheoretic properties such as environment narrowing and subtyping transitivity, which are usually required for a type soundness proof. Moreover, Scala and many other realistic languages lack a general substitution property. The first contribution of this paper is to demonstrate how type soundness proofs for advanced, polymorphic, type systems can be carried out with an operational semantics based on high-level, definitional interpreters, implemented in Coq. We present the first mechanized soundness proofs in this style for System F<: and several extensions, including mutable references. Our proofs use only straightforward induction, which is significant, as the combination of big-step semantics, mutable references, and polymorphism is commonly believed to require coinductive proof techniques. The second main contribution of this paper is to show how DOT-like calculi emerge from straightforward generalizations of the operational aspects of F<:, exposing a rich design space of calculi with path-dependent types in between System F and DOT, which we dub the System D Square. By working directly on the target language, definitional interpreters can focus the design space and expose the invariants that actually matter at runtime. Looking at such runtime invariants is an exciting new avenue for type system design.This research was supported by NSF through awards 1553471 and 1564207

    Multimodal Dependent Type Theory

    Get PDF
    We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations

    Dependent Object Types

    Get PDF
    A scalable programming language is one in which the same concepts can describe small as well as large parts. Towards this goal, Scala unifies concepts from object and module systems. In particular, objects can contain type members, which can be selected as types, called path-dependent types. Focusing on path-dependent types, we develop a type-theoretic foundation for Scala: the calculus of Dependent Object Types (DOT). We derive DOT from System F, we add a lower bound to each type variable, in addition to its usual upper bound, (2) in System D, we turn each type variable into a regular term variable containing a type, (3) for a full subtyping lattice, we add intersection and union types, (4) for objects, we consolidate all values into records, (5) for objects that close over a self, we introduce a recursive type, binding a self term variable, (6) for recursive types, we first extend the theory in typing and then also in subtyping. Through this bottom-up exploration, we discover a sound, uniform yet powerful design for DOT. We devise strategies and techniques for proving soundness that scale through this iterative step-by-step process: (1) "pushback" of subtyping transitivity or subsumption, to concisely capture inversion of subtyping or typing, (2) distinction between concrete vs. abstract context variables, to resolve tension between preservation of types vs. preservation of type abstractions, (3) and, specifically for big-step semantics, a type that closes over an environment, to relate context-dependent types across closures. While ultimately, we have developed sound models of DOT in both big-step and small-step operational semantics, historically, the shift to big-step semantics has been helpful in focusing the requirements. In particular, by developing a novel big-step soundness proof for System F<:, calculi like System D<: emerge as straightforward generalizations, almost like removing artificial restrictions. Interesting in their own right, our type soundness techniques for definitional interpreters extend to mutable references without use of co-induction. The DOT calculus finally grounds languages like Scala in firm theory. The DOT calculus helps in finding bugs in Scala, and in understanding feature interaction better as well as requirements. The DOT calculus serves as a good basis for future work which studies extensions or encodings on top of the core, bridging the gap from DOT to Dotty / Scala

    On Induction, Coinduction and Equality in Martin-L\uf6f and Homotopy Type Theory

    Get PDF
    Martin L\uf6f Type Theory, having put computation at the center of logicalreasoning, has been shown to be an effective foundation for proof assistants,with applications both in computer science and constructive mathematics. Oneambition though is for MLTT to also double as a practical general purposeprogramming language. Datatypes in type theory come with an induction orcoinduction principle which gives a precise and concise specification of theirinterface. However, such principles can interfere with how we would like toexpress our programs. In this thesis, we investigate more flexible alternativesto direct uses of the (co)induction principles.As a first contribution, we consider the n-truncation of a type in Homo-topy Type Theory. We derive in HoTT an eliminator into (n+1)-truncatedtypes instead of n-truncated ones, assuming extra conditions on the underlyingfunction.As a second contribution, we improve on type-based criteria for terminationand productivity. By augmenting the types with well-foundedness information,such criteria allow function definitions in a style closer to general recursion.We consider two criteria: guarded types, and sized types.Guarded types introduce a modality ”later” to guard the availability ofrecursive calls provided by a general fixed-point combinator. In Guarded Cu-bical Type Theory we equip the fixed-point combinator with a propositionalequality to its one-step unfolding, instead of a definitional equality that wouldbreak normalization. The notion of path from Cubical Type Theory allows usto do so without losing canonicity or decidability of conversion.Sized types, on the other hand, explicitly index datatypes with size boundson the height or depth of their elements. The sizes however can get in theway of the reasoning principles we expect. Our approach is to introduce newquantifiers for ”irrelevant” size quantification. We present a type theory withparametric quantifiers where irrelevance arises as a “free theorem”. We alsodevelop a conversion checking algorithm for a more specific theory where thenew quantifiers are restricted to sizes.Finally, our third contribution is about the operational semantics of typetheory. For the extensions above we would like to devise a practical conversionchecking algorithm suitable for integration into a proof assistant. We formal-ized the correctness of such an algorithm for a small but challenging corecalculus, proving that conversion is decidable. We expect this development toform a good basis to verify more complex theories.The ideas discussed in this thesis are already influencing the developmentof Agda, a proof assistant based on type theory

    Polarised subtyping for sized types

    No full text
    corecore