169 research outputs found

    SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial Objects

    Full text link
    With the proliferation of mobile devices and location-based services, continuous generation of massive volume of streaming spatial objects (i.e., geo-tagged data) opens up new opportunities to address real-world problems by analyzing them. In this paper, we present a novel continuous bursty region detection problem that aims to continuously detect a bursty region of a given size in a specified geographical area from a stream of spatial objects. Specifically, a bursty region shows maximum spike in the number of spatial objects in a given time window. The problem is useful in addressing several real-world challenges such as surge pricing problem in online transportation and disease outbreak detection. To solve the problem, we propose an exact solution and two approximate solutions, and the approximation ratio is 1−α4\frac{1-\alpha}{4} in terms of the burst score, where α\alpha is a parameter to control the burst score. We further extend these solutions to support detection of top-kk bursty regions. Extensive experiments with real-world data are conducted to demonstrate the efficiency and effectiveness of our solutions

    Impact of the spatial context on human communication activity

    Full text link
    Technology development produces terabytes of data generated by hu- man activity in space and time. This enormous amount of data often called big data becomes crucial for delivering new insights to decision makers. It contains behavioral information on different types of human activity influenced by many external factors such as geographic infor- mation and weather forecast. Early recognition and prediction of those human behaviors are of great importance in many societal applications like health-care, risk management and urban planning, etc. In this pa- per, we investigate relevant geographical areas based on their categories of human activities (i.e., working and shopping) which identified from ge- ographic information (i.e., Openstreetmap). We use spectral clustering followed by k-means clustering algorithm based on TF/IDF cosine simi- larity metric. We evaluate the quality of those observed clusters with the use of silhouette coefficients which are estimated based on the similari- ties of the mobile communication activity temporal patterns. The area clusters are further used to explain typical or exceptional communication activities. We demonstrate the study using a real dataset containing 1 million Call Detailed Records. This type of analysis and its application are important for analyzing the dependency of human behaviors from the external factors and hidden relationships and unknown correlations and other useful information that can support decision-making.Comment: 12 pages, 11 figure

    In Search of Indoor Dense Regions:An Approach Using Indoor Positioning Data

    Get PDF

    ON CORRELATING BIRD MIGRATION TRAJECTORY WITH CLIMATE CHANGES

    Get PDF
    Climate changes are expected to affect bird migration in several aspects including timing changes, breeding and migration orientation. The correlation analysis of several climate conditions (e.g. temperature, wind, humidity, etc) and bird migration trajectory is the key for explaining bird behavior during migration. Moreover, the resulting correlation can be used for predicting new bird behavior according to climate changes. In this paper we propose an integrated solution for correlating bird migration trajectory with climate conditions. This solution is composed by two orthogonal and complementary methods. The first method concerns discovering regions where birds are used to stop during their migration. The second method is based on a machine learning algorithm for classifying bird stops according to climate conditions. A real bird migration scenario was used for assessing the accuracy of the integrated solution

    Enabling near-term prediction of status for intelligent transportation systems: Management techniques for data on mobile objects

    Get PDF
    Location Dependent Queries (LDQs) benefit from the rapid advances in communication and Global Positioning System (GPS) technologies to track moving objects\u27 locations, and improve the quality-of-life by providing location relevant services and information to end users. The enormity of the underlying data maintained by LDQ applications - a large quantity of mobile objects and their frequent mobility - is, however, a major obstacle in providing effective and efficient services. Motivated by this obstacle, this thesis sets out in the quest to find improved methods to efficiently index, access, retrieve, and update volatile LDQ related mobile object data and information. Challenges and research issues are discussed in detail, and solutions are presented and examined. --Abstract, page iii

    Multidimensional Clustering for Spatio-Temporal Data and its Application in Climate Research

    Get PDF
    • …
    corecore