
Multidimensional Clustering for
Spatio-Temporal Data and its

Application in Climate Research

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von
Benjamin Ertl

Tag der mündlichen Prüfung: 03.12.2021
1. Referent: Prof. Dr. Achim Streit
2. Referent: Prof. Dr. Peter Braesicke



This document is licensed under a Creative Commons  
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):  
https://creativecommons.org/licenses/by-sa/4.0/deed.en



Erklärung zur selbständigen Anfertigung der Dissertationsschrift

Hiermit erkläre ich, dass ich die Dissertationsschrift mit dem Titel

Multidimensional Clustering for Spatio-Temporal Data and its
Application in Climate Research

selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht und die Regeln zur Sicherung guter wissenschaftlicher Praxis am Karlsruher
Institut für Technologie (KIT) beachtet habe.

Ort, Datum Benjamin Ertl





To my family



Acknowledgements

I would like to thank Prof. Dr. Achim Streit for supervising this thesis and Prof. Dr.
Peter Braesicke for co-supervising this thesis. Thank you both for your continuous
support, advice, guidance and the opportunity to pursue the doctoral degree.

Also, this thesis would not have been possible without the support and advice of
Dr. Jörg Meyer and Dr. Matthias Schneider, their encouragement, discussions, advice
and proofreading of this thesis. Thank you so much!

I would also like to thank all friends, colleagues, and fellow doctoral researchers at
IMK and SCC, especially Dr. Uğur Çayoğlu, for accepting to proofread this thesis and
always been open for discussions within our research group.

Special thanks in no particular order to Marcus Strobl, Elnaz Azmi, Uros Stevanovic,
Diana Gudu, Marcus Hardt, Mehmet Soysal, Eileen Kühn, Christopher Diekmann,
Darko Dubravica, Marleen Braun, Amelie Röhling, Thomas Blumenstock, Frank Hase,
Qiansi Tu, Farah Khosrawi, Jochen Groß, Carlos Alberti and everyone I forgot to
mention here who have accompanied me over the years.

Last but not least, I would like to thank my family that has been growing since I
started this thesis, for their unconditional support and encouragement throughout this
endeavour.



Abstract

Through the increasing amount of high dimensional data that is available today through
new technologies, higher processing power, bigger storage capacities, and data-driven
research, the tasks of mining and analysing datasets have become more challenging.
Especially advances in sensor and measurement technologies translate into an increasing
amount of spatio-temporal data available for researchers across a wide variety of
disciplines. Spatio-temporal data exhibit observations across space and time, for
example, gathered by large sensor networks or satellites that provide remote sensing
data or satellite imagery data. Finding clusters in such datasets can reveal interesting
patterns and dependencies often caused by complex correlations. However, traditional
full-space clustering algorithms suffer the curse of dimensionality. For example, points
tend to become equidistant from one another as the dimensionality increases. Current
subspace clustering and correlation clustering approaches overcome these issues but
still face challenges when data points have complex relations or clusters in the dataset
are not compact or clearly separable. Moreover, current methods lack the exploitation
of available a priori knowledge that can improve the clustering results.

This thesis presents a novel data-driven approach of analysing clusters in spatio-
temporal data that is based on the Gaussian mixture model in the area of unsupervised
clustering, as well as a novel clustering algorithm based on the original DBSCAN
algorithm, namely CoExDBSCAN, in the are of semi-supervised clustering. While the
data-driven approach is best suited to extract cluster properties that can be analysed
for changes over space and time, the semi-supervised clustering algorithm is able to
align the outcome of the cluster analysis to a priori knowledge about the data.

Finally, this thesis presents the utilization of the proposed CoExDBSCAN algorithm
for multivariate time-series. Especially recurring subsequences in streams of multiple
measurements that can be organised as multivariate time-series, can be interpreted as
recurring events or actions. These recurring events can be used to discover repeating
patterns, understanding trends, detect anomalies and in general better interpret large
and high-dimensional datasets. By utilizing the proposed CoExDBSCAN algorithm
for such time-series data and constraining the cluster extension to the correlation
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of time point values, clusters of segments with similar correlations can be identified.
This novel semi-supervised approach for subsequence time-series clustering follows the
pairwise semi-supervision approach and extends the concept to cluster-wide constraints.
This approach has been demonstrated for semi-supervised time point clustering for
multivariate time-series in general and as a semi-supervised approach for trajectory
segmentation to identify different moisture processes in the atmosphere in particular.

The main field of application for the proposed clustering methods in this thesis is
within the domain of climate research. The main interest in this domain has been to
analyse pair distributions of water vapour (H2O) and its isotopologue (HDO), which
can be associated with atmospheric moisture processes. Identifying such processes is an
important scientific task to infer the dynamics of cloud-circulation systems. Investigating
the atmosphere from a cloud-circulation system perspective is essential to address the
significant uncertainty of climate predictions. However, the application of the proposed
clustering methods is not limited to a specific domain. The results of this thesis are
beneficial to the analysis of spatio-temporal data in general.
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Zusammenfassung

Durch die zunehmende Menge an hochdimensionalen Daten die heutzutage durch neue
Technologien, höhere Rechenleistung, größere Speicherkapazitäten und datengetriebener
Forschung verfügbar ist, sind die Aufgaben des Data-Minings und der Analyse von
Datensätzen anspruchsvoller geworden. Vor allem Fortschritte in der Sensor- und
Messtechnik führen zu einer steigenden Anzahl von raum-zeitlichen Daten die Forsch-
ern aus einer Vielzahl von Disziplinen zur Verfügung stehen. Raum-zeitliche Daten
zeigen Beobachtungen über Raum und Zeit, zum Beispiel gesammelt von großen Sen-
sornetzen oder Satelliten die Fernerkundungs- oder Satellitenbilddaten bereitstellen.
Das Auffinden von Clustern in solchen Datensätzen kann interessante Muster und
Abhängigkeiten aufdecken die oft durch komplexe Zusammenhänge verursacht sind.
Existierende Clustering-Algorithmen die alle Attribute oder Attributkombinationen
berücksichtigen leiden jedoch unter dem Fluch der Dimensionalität. Zum Beispiel neigen
Punkte dazu äquidistant zueinander zu werden wenn die Dimensionalität zunimmt.
Aktuelle Ansätze in den Bereichen der Unterraum-Clusteranalyse und Korrelations-
Clusteranalyse überwinden diese Probleme, stehen aber immer noch vor Herausforderun-
gen wenn Datenpunkte komplexe Beziehungen haben oder die Cluster im Datensatz
nicht kompakt oder klar trennbar sind. Darüber hinaus fehlt es aktuellen Ansätzen an
der Nutzung von verfügbarem a priori Wissen das die Clustering Ergebnisse verbessern
kann.

Diese Dissertation präsentiert einen neuartigen datengetriebenen Ansatz zur Analyse
von Clustern in raum-zeitlichen Daten der basierend auf dem Gaußschen Mischungsmod-
ell im Bereich des unüberwachten Clusterings angesiedelt ist, sowie einen neuartigen
Clustering-Algorithmus, CoExDBSCAN basierend auf dem ursprünglichen DBSCAN
Algorithmus, der im Bereich des halbüberwachten Clusterings angesiedelt ist. Während
der datengetriebene Ansatz am besten geeignet ist um Clustereigenschaften zu ex-
trahieren die auf Änderungen über Raum und Zeit analysiert werden können, ist der
halbüberwachte Clustering-Algorithmus in der Lage das Ergebnis der Clusteranalyse
mit a priori Wissen über die Daten zu vereinbaren.
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Abschließend präsentiert diese Arbeit die Verwendung des neu entwickelten CoExDB-
SCAN Algorithmus für multivariate Zeitfolgen. Besonders wiederkehrende Teilsequen-
zen in kontinuierlichen Mehrfachmessungen die als multivariate Zeitreihen organisiert
werden können, können als wiederkehrende Ereignisse oder Aktionen interpretiert wer-
den. Diese wiederkehrende Ereignisse können verwendet werden um wiederholende
Muster zu entdecken, Trends zu verstehen, Anomalien zu erkennen und im Allgemeinen
große und hochdimensionale Datensätze besser zu interpretieren. Durch Verwendung
des vorgeschlagenen CoExDBSCAN Algorithmus für solche Zeitreihendaten und der
Einschränkung der Cluster-Expansion anhand der Korrelation von Zeitpunktwerten
können Cluster von Segmenten mit ähnlichen Korrelationen identifiziert werden. Dieser
neuartige halbüberwachte Ansatz für das Clustering von Zeitreihen in Teilsequen-
zen folgt dem paarweisen halbüberwachten Ansatz und erweitert das Konzept auf
clusterweite Einschränkungen. Diese Methode wird demonstriert anhand des hal-
büberwachten Zeitpunkt-Clustering für multivariate Zeitreihen im Allgemeinen und
als halbüberwachter Ansatz zur Trajektoriensegmentierung für die Identifizierung ver-
schiedener Feuchtigkeitsprozesse in der Atmosphäre im Besonderen.

Das Hauptanwendungsgebiet der in dieser Arbeit vorgeschlagenen Clustering-Methoden
liegt im Bereich der Klimaforschung. Das Hauptinteresse in diesem Bereich ist die
Analyse von Paarverteilungen von Wasserdampf (H2O) und seinem Isotopolog (HDO),
die mit atmosphärischen Feuchtigkeitsprozessen in Verbindung gebracht werden können.
Die Identifizierung solcher Prozesse ist eine wichtige wissenschaftliche Aufgabe um
die Dynamik der Wolkenzirkulation ableiten zu können. Die Atmosphäre aus der Per-
spektive eines Wolkenzirkulationssystems zu untersuchen ist wichtig um die erhebliche
Unsicherheit von Klimavorhersagen zu verbessern. Die Anwendung der vorgeschlagenen
Clustering-Methoden ist jedoch nicht auf eine bestimmte Domäne beschränkt. Die
Ergebnisse dieser Arbeit verbessern vielmehr die Analyse von raum-zeitlichen Daten im
Allgemeinen.
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Chapter 1

Introduction

Cluster analysis remains a research topic of great interest, and a considerable number of
clustering algorithms have been developed and studied over time. Jain (2010) provides
a well-received survey on clustering methods and summarizes major challenges and key
issues in designing clustering algorithms. One of Jain’s main conclusions is that:

"Given the inherent difficulty of clustering, it makes more sense to de-
velop semi-supervised clustering techniques in which the labelled data and
(user specified) pair-wise constraints can be used to decide both (i) data
representation and (ii) appropriate objective function for data clustering."

This conclusion is well demonstrated throughout this thesis, where the research focus
evolves from unsupervised clustering to semi-supervised clustering. The overall goal and
challenge of this thesis are to better understand the natural structure of spatio-temporal
data that is reflected by meaningful clusters. In this context, meaningful clusters are
partitions of data points that are similar to each other and can be related to known
events or occurrences. In particular, this thesis is concerned with known occurrences
that are correlated in multidimensional space.

The primary field of application for the proposed clustering methods is within the
domain of climate research. The main interest in this domain has been to analyse
pair distributions of water vapour (H2O) and its isotopologue (HDO), which can
be associated with atmospheric moisture processes. Identifying such processes is an
important scientific task to infer the dynamics of cloud-circulation systems. Investigating
the atmosphere from a cloud-circulation system perspective is essential to address the
significant uncertainty of climate predictions (Bony et al., 2015).
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Chapter 1 1.1

Developing new methods for multidimensional clustering of spatio-temporal data
poses several challenges. The main challenges addressed by this thesis can be described
as following:

Challenge 1. Learning the natural structure of spatio-temporal data reflected by mean-
ingful clusters.

Cluster analysis should aid researchers to learn the natural structure of data repre-
sented by meaningful clusters. Typically meaningful clusters are clusters of prominent
groups in the data where points in the same cluster are more similar to each other than
to points in different clusters.

Challenge 2. Analysing existing clustering algorithms to cluster spatio-temporal data
and to identify correlated structures in the dataset.

Analysing existing clustering algorithms is the first step to find meaningful clusters in
spatio-temporal data. For this purpose, a comprehensive review of available algorithms
from literature has to be conducted and analysed in the context of spatio-temporal
data. However, stipulating additional properties for the data points within the same
cluster, i.e. defining terms for their similarity, such as identifying correlated structures,
requires the inclusion of a priori knowledge into the clustering process.

Challenge 3. Developing a clustering algorithm that can form partitions of data
complying with a priori constraints in full value space or value subspaces.

After identifying deficits in existing clustering algorithms, a novel clustering algo-
rithm can be developed incorporating the findings of the analysis. In addition, this
novel algorithm has to be capable of incorporating a priori knowledge in the form of
constraints that restrict the formation of incomprehensible clusters.

Challenge 4. Designing appropriate constraints and parameters for the developed
clustering algorithm to identify correlated structures in spatio-temporal data.

Suitable constraints have to be designed to fully utilize the a priori knowledge about
the data, e.g. possible relations between variables. These constraints have to guide the
clustering process to align the outcome of the clustering result with the expectations of
the analyst.

Challenge 5. Demonstrating the value of the developed clustering algorithm to perform
cluster analysis of spatio-temporal data.

The value of the developed clustering algorithm to perform cluster analysis of
spatio-temporal data that incorporates a priori knowledge into the clustering process
has to be demonstrated for scientific problems.
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Chapter 1 1.1

1.1 Scientific Contributions

This thesis addresses the presented challenges through the following achieved contribu-
tions in the respective research subtopics.

1.1.1 Unsupervised Cluster Analysis of Spatio-Temporal
Data

The simultaneous observation of multiple variables or measurements at geo-referenced
locations or areas over time enables the analysis of multivariate distributions of spatio-
temporal data. In this context, cluster analysis is especially suited to discover and
track multivariate distributions over time. The problem definition in the literature most
closely related to these tasks is formulated as the analysis of moving spatio-temporal
objects (Maciąg, 2017).

A data-driven approach of tracking clusters in spatio-temporal data has
been presented at the International Conference on Knowledge Discovery and Information
Retrieval (KDIR) (Ertl et al., 2019). This approach is based on the Gaussian Mixture
Model (GMM) to extract cluster properties that can be analysed for changes over space
and time. The work provides a methodology based on well-known algorithms and an
interpretation of the algorithmic results in a spatio-temporal context.

In addition, the supervision of the master thesis by Weber (2019) has resulted in
a comprehensive overview of clustering metrics for hyper-parameter optimization for
spatio-temporal clustering with DBSCAN and HDBSCAN.

These activities can be summarised in the following contribution:

Contribution 1. Cluster analysis of spatio-temporal data applying existing clustering
algorithms to learn the intrinsic structure of the data.

1.1.2 Semi-Supervised Cluster Analysis of Spatio-Temporal
Data

Applying and analysing existing clustering algorithms has been the first step to find
meaningful clusters in spatio-temporal data. While many advances in clustering
algorithms have been made for spatio-temporal data (Maciąg, 2017; Wang et al.,
2013), in general, the developed methods lack the exploitation of available a priori
knowledge that might improve the clustering quality. Especially semi-supervised
clustering algorithms, which incorporate a priori knowledge into the clustering process,
can improve the quality of the results (Dinler and Tural, 2016).
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After identifying the deficits with existing unsupervised clustering algorithms a
novel semi-supervised clustering algorithm has been proposed that incorporates
the findings of the initial analysis. The algorithm is based on the original DBSCAN
clustering algorithm (Ester et al., 1996) and can be described as a density-based
clustering algorithm with constrained expansion, namelyCoExDBSCAN. The
algorithm and the results have been published in Ertl et al. (2020) and presented at
KDIR 2020. This can be summarised as following contribution.

Contribution 2. Development of a novel semi-supervised clustering algorithm for
spatio-temporal data.

Especially recurring subsequences in streams of multiple measurements that can be
organised as multivariate time-series, can be interpreted as recurring events or actions.
These recurring events can be used to discover repeating patterns, to understand trends,
to detect anomalies and in general to better interpret large and high-dimensional
datasets (Hallac et al., 2017). By utilizing the proposed CoExDBSCAN algorithm
for such time-series data and constraining the cluster extension to the correlation
of time point values, clusters of segments with similar correlations can be identified.
This novel semi-supervised approach for subsequence time-series clustering follows the
pairwise semi-supervision approach from Aggarwal and Reddy (2013) and extends the
concept to a novel concept of cluster-wide constraints. This approach has been
demonstrated for semi-supervised time point clustering for multivariate time-
series in general (Ertl et al., 2021a) at the Canadian Conference on Artificial Intelligence
(CAI 2021) and as a semi-supervised approach for trajectory segmentation to
identify different moisture processes in the atmosphere in particular (Ertl et al.,
2021b) at the International Conference on Computational Science (ICCS 2021).

These activities can be summarised in the following three contributions:

Contribution 3. Evaluation of constraints and parameters for the developed clustering
algorithm to identify correlated structures in spatio-temporal data.

Contribution 4. Introduction of semi-supervised time point clustering for multivariate
time-series.

Contribution 5. Introduction of a novel semi-supervised approach for trajectory seg-
mentation to identify different moisture processes in the atmosphere.

1.1.3 Operational Processing of Climate Research Data

Finally, the related work to the doctoral research presented in this thesis has provided
datasets with accurate, long-term, global and high-resolution observations of tropo-
spheric {H2O, δD} pairs from remote sensing data (Schneider et al., 2021b; Diekmann
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et al., 2021a). This dataset is subject to a number of research studies in climate research
(García et al., 2018; Borger et al., 2018; Diekmann et al., 2021b; Dahinden et al., 2021;
Tu et al., 2021; Schneider et al., 2021a; Toride et al., 2021).

This activity can be summarised as the following contribution.

Contribution 6. Generation of climate research data from observations for a five-
year-long period for scientific studies.

1.1.4 List of Publications

The following lists the publications to the contributions presented.

• Ertl, Meyer, Streit, and Schneider (2019).
Application of Mixtures of Gaussians for Tracking Clusters in Spatio-Temporal
Data. In Proceedings of the 11th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management - Volume 1:
KDIR, pages 45–54. INSTICC, SciTePress, 2019. ISBN 978-989-758-382-7.
DOI:10.5220/0007949700450054.

• Ertl, Meyer, Schneider, and Streit (2020).
CoExDBSCAN: Density-Based Clustering with Constrained Expansion. In Pro-
ceedings of the 12th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management - Volume 1: KDIR, pages
104–115. INSTICC, SciTePress, 2020. ISBN 978-989-758-474-9.
DOI: 10.5220/0010131201040115.

• Ertl, Meyer, Schneider, and Streit (2021a).
Semi-Supervised Time Point Clustering for Multivariate Time Series. In Proceed-
ings of the 34th Canadian Conference on Artificial Intelligence: CAI, 2021.
DOI: 10.21428/594757db.9fa1eff5.

• Ertl, Schneider, Diekmann, Meyer, and Streit (2021b).
A Semi-Supervised Approach for Trajectory Segmentation to Identify Different
Moisture Processes in the Atmosphere. In Computational Science – ICCS 2021.
Springer International Publishing, 2021.
DOI: 10.1007/978-3-030-77961-0_23.
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• Schneider, Ertl, Diekmann, Khosrawi, Weber, Hase, Höpfner, García, Sepúlveda,
and Kinnison (2021b).
Design and description of the MUSICA IASI full retrieval product. Earth System
Science Data Discussions, pages 1-51. 2021.
DOI: 10.5194/essd-2021-75

• Schneider, Ertl, Diekmann, Khosrawi, Röhling, Hase, Dubravica, García, Sepúlveda,
Borsdorff, Landgraf, Lorente, Chen, Kivi, Laemmel, Ramonet, Crevoisier, Pernin,
Steinbacher, Meinhardt, Deutscher, Griffith, Velazco, and Pollard (2021a).
Synergetic use of IASI and TROPOMI space borne sensors for generating a
tropospheric methane profile product. Atmospheric Measurement Techniques
Discussions, 2021:1–37, 2021.
DOI: 10.5194/amt-2021-31.

• Diekmann, Schneider, Ertl, Hase, García, Khosrawi, Sepúlveda, Knippertz, and
Braesicke (2021a).
The global and multi-annual MUSICA IASI {H2O, δD} pair dataset. Earth
System Science Data, pages 5273-5292. 2021.
DOI: 10.5194/essd-13-5273-2021.

• Diekmann, Schneider, Knippertz, de Vries, Pfahl, Aemisegger, Dahinden, Ertl,
Khosrawi, Wernli, and et al. (2021b).
A Lagrangian perspective on stable water isotopes during the West African
Monsoon. Earth and Space Science Open Archive, pages 1-43. 2021
DOI: 10.1002/essoar.10506628.1

• Dahinden, Aemisegger, Wernli, Schneider, Diekmann, Ertl, Knippertz, Werner,
and Pfahl (2021).
Disentangling different moisture transport pathways over the eastern subtropical
North Atlantic using multi-platform isotope observations and high-resolution
numerical modelling. Atmospheric Chemistry and Physics Discussions, pages 1-49.
2021
DOI: 10.5194/acp-2021-269

• Tu, Hase, Blumenstock, Schneider, Schneider, Kivi, Heikkinen, Ertl, Diekmann,
Khosrawi, Sommer, Borsdorff, and Raffalski (2021).
Intercomparison of arctic XH2O observations from three ground-based Fourier
transform infrared networks and application for satellite validation. Atmospheric
Measurement Techniques, 14(3):1993–2011, 2021.
DOI: 10.5194/amt-14-1993-2021.
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• Toride, Yoshimura, Tada, Diekmann, Ertl, Khosrawi, and Schneider (2021).
Potential of Mid-tropospheric Water Vapor Isotopes to Improve Large-Scale
Circulation and Weather Predictability. Geophysical Research Letters, 48(5):
e2020GL091698, 2021.
DOI: 10.1029/2020GL091698.

1.2 Thesis Outline

This thesis is structured in seven chapters. Following the introduction and scientific
contributions in this chapter, Chapter 2 explains the necessary concepts that serve
as a foundation for this thesis. A basic introduction to cluster analysis is given with
a detailed explanation of the Gaussian Mixture Model and the DBSCAN clustering
algorithm, which are extensively studied throughout this thesis. Further, important
metrics for the validation of clustering results are given, as well as an overview of the
characteristics of spatio-temporal data and the climate research data subject to this
thesis, the MUSICA IASI satellite-based remote sensing dataset, in particular.

Chapter 3 discusses related work in the area of unsupervised cluster analysis, semi-
supervised cluster analysis and cluster analysis of climate data. In particular with
focus on clustering moving objects (Section 3.1.1), time-series clustering (Section 3.1.2)
and semi-supervised clustering with point-wise and pair-wise semi-supervision (Section
3.2.1, 3.2.2).

Chapter 4 presents the initial work on analysing the evolution of geo-referenced
distributions over time by developing an unsupervised clustering method that allows
for tracking moving, emerging and changing distributions over time.

Following the evolution from unsupervised clustering towards semi-supervised cluster-
ing, Chapter 5 details the design, implementation and verification of the CoExDBSCAN
algorithm in the context of semi-supervised clustering of spatio-temporal data.

In Chapter 6, this novel semi-supervised clustering method is demonstrated for
semi-supervised time point clustering for multivariate time-series in general (Section
6.3.1) and as a semi-supervised approach for trajectory segmentation to identify different
moisture processes in the atmosphere in particular (Section 6.3.2).

Chapter 7 presents the final conclusion and an outlook for future work.
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Chapter 2

Background

In this chapter, the notion of cluster analysis in the context of spatio-temporal data
and climate research data in particular is explained. These explanations are given to
provide a common understanding of the terminology and notation used throughout this
thesis. The first sections provide an overview about the properties of spatio-temporal
data and climate research data in particular, which are the main types of datasets
under consideration for this thesis. The subsequent sections provide a brief overview
of the history of cluster analysis and introduce the basic methodology. Following this
introduction, clustering algorithms are classified based on their a priori knowledge about
the data. Two clustering algorithms extensively studied in this thesis are explained in
detail, the Gaussian Mixture Model and DBSCAN, a density-based clustering algorithm
for discovering clusters in large spatial databases with noise. The introduction to
cluster analysis concludes with a summary of metrics that have been used to assess the
quality of clustering algorithms throughout this thesis. The background presented in
this chapter has been published in parts in Ertl et al. (2019, 2020, 2021a,b).

2.1 Spatio-Temporal Data

Spatio-temporal data contains information about where and when the data has been
collected. Typical examples for spatio-temporal data are climate data or data about
moving objects in space. Without the temporal dimension, the data is referred to as
spatial data, for example, geographic data or any data that has an implicit or explicit
association with a location in a given space. In the absence of the spatial dimension,
the data is referred to as temporal data, for example, time-series where data points are
indexed by the time of collection.

Kisilevich et al. (2010) provide a survey on spatio-temporal clustering and a possible
classification of spatio-temporal data, see Figure 2.1.
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Figure 2.1: Classification of spatio-temporal data based on Kisilevich et al. (2010).

According to Kisilevich, spatio-temporal data can be distinguished based on the
temporal extension, i.e. to which extent the temporal history of spatial points or objects
is captured by the data, the spatial dimension, i.e. if the locations of the data points are
fixed or change dynamically, and the spatial extent of the data points, i.e. a distinction
between points and objects like lines, areas or volumes; the latter is not illustrated in
Figure 2.1.

A single snapshot provides a static temporal view of the data, where points or
objects do not evolve over time. A geo-referenced variable or moving points provide an
updated temporal view of the data, i.e. the most recent values, thus points or objects
evolving over time, but without any knowledge about the past history. If the past
history is recorded as well, points or objects belong into the category of geo-referenced
time-series or trajectories.

Depending on the analysis to conduct, spatio-temporal data can be transformed
from one category to another by moving along the directions on the spatial location
axis and the temporal extension axis indicated in Figure 2.1. From dynamic location to
fixed location, for example, by interpolation, and from time-series to single snapshot,
for instance, by analysing single time slices of the data.
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The datasets mainly used throughout this thesis cover most of the spatio-temporal
data classes by Kisilevich et al. (2010). For example the LÍngua BRAsileira de Sinais
(LIBRAS) movement dataset (Dias et al., 2009) analysed in Section 6.3.1 and the
atmospheric model data analysed in Section 6.3.2 can be classified as datasets of
trajectories, while the MUSICA IASI dataset described in detail in the next section can
be viewed as geo-referenced variables, geo-referenced time-series and moving points.

2.2 MUSICA IASI Data

Climate research data can be divided into measured data and simulated data. Measured
data is recorded by means of scientific instruments, while simulated data is computed
based on climate models. In the course of this thesis, datasets from both domains are
under study to uncover challenges for existing cluster analysis methods and to propose
solutions to these challenges.

The measured data primarily used throughout this thesis is the MUSICA IASI
satellite-based remote sensing dataset (Borger et al., 2018; Schneider et al., 2021b;
Diekmann et al., 2021a). This unique dataset has become only recently available
through advances in satellite sensor technology and retrieval theory. The generation
of this climate research data from observations for a five-year-long period as part of
this thesis has been a major contribution to multiple scientific studies (García et al.,
2018; Borger et al., 2018; Schneider et al., 2021a; Dahinden et al., 2021; Tu et al., 2021;
Toride et al., 2021) and is subject of multiple ongoing scientific studies.

The MUSICA IASI dataset provides accurate, long-term, global and high-resolution
observations of tropospheric {H2O, δD} pairs. H2O corresponds to the water vapour
concentration in the atmosphere and is measured in parts per million by volume (ppmv);
δD corresponds to the standardised ratio value between heavy and light water, i.e.
HDO and H2O. The Infrared Atmospheric Sounding Interferometer (IASI) onboard
the Metop-A, B and C polar-orbiting meteorological satellites measure approximately
90,000 spectra per orbit. Each satellite completes 14 orbits per day, which results in
around 3.8 million spectra per day. Each spectrum has to be processed with the thermal
nadir retrieval algorithm PROFFIT-nadir (Schneider and Hase, 2011; Wiegele et al.,
2014). A comprehensive summary of the MUSICA IASI dataset is given by Schneider
et al. (2021b).

The global {H2O, δD} pair distribution observed in the MUSICA IASI satellite-
based remote sensing dataset can be linked to different moisture processes that occurred
prior to the observation. For illustration purpose Figure 2.2 shows the global H2O

observations retrieved from the Infrared Atmospheric Sounding Interferometer (IASI)
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Figure 2.2: Example global MUSICA IASI H2O data for morning satellite overpasses
at 2016-06-08. H2O values are in parts per million by volume (ppmv) in logarithmic
scale. The depicted data are limited to cloud-free observations and have been filtered
for best quality (retrievals with good sensitivity and low errors).

onboard the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) Metop-A and Metop-B satellites for morning overpasses at the 8th

June 2016 for about five kilometers altitude. For this single day, 183,036 individual
observations are available after filtering out cloudy and partly cloudy observations as
well as observations with bad quality.

Figure 2.3 depicts the {H2O, δD} pair distribution starting from the same date at
the 8th June 2016 until the 30th June 2016 for some area of interest All MUSICA IASI
{H2O, δD} data are shown as grey dots and the contours are at 2.5%, 10% and 50%
levels, meaning the percentage of data lying outside the indicated area.

Different water cycle processes affect the isotopic composition of atmospheric water
differently. For example lighter isotopes evaporate preferentially while heavier isotopes
condense preferentially. The red lines in Figure 2.3 illustrate the theoretical dependencies
of δD as a function of H2O. Noone (2012) differentiates between five processes that
leave a distinct trace in the {H2O, δD} value space:

1. Rayleigh pseudoadiabatic process in which the liquid water that condenses
is assumed to be removed as soon as it is formed by idealized instantaneous
precipitation (red dotted line in Figure 2.3)

2. Super-Rayleigh remoistening associated with isotopic exchange as raindrops
evaporate into a subsaturated layer (red solid line in Figure 2.3)
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Figure 2.3: Example MUSICA IASI {H2O, δD} pair distribution. The 61,283 observa-
tions are for morning and evening satellite overpasses from 2016-06-08 to 2016-07-30
with H2O in logarithmic scale in an area over West Africa; red lines indicate theoretical
lines for different water cycle processes.

3. Reversible moist adiabatic process with a transition to a Rayleigh process
when condensation is to ice and irreversible (not shown, would be a line with a
weaker slope as the dotted line in Figure 2.3)

4. Mixing of two different mixing members having a specific {H2O, δD} character-
istic (red dashed lines in Figure 2.3 show two examples)

5. Terrestrial transpiration mixing with land source (not shown in Figure 2.3;
would be similar to the red dashed lines, but shifted to higher δD values)

Noone’s work establishes a theoretical basis for using isotope ratio observations paired
with the water vapour mixing ratio to identify different water sources, condensation
processes, and transport pathways in the troposphere. Moreover, Noone et al. (2011)
were able to derive slope and intercept of the linear relationship between H2O and δD
from measurements of the isotope ratio of water vapour at the Mauna Loa Observatory.
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2.3 Atmospheric Model Data

The simulated data primarily used throughout this thesis is the high-resolution data from
the regional isotope-enabled atmospheric model COSMO-iso (Pfahl et al., 2012) that
models {H2O, δD} pairs along Lagrangian air parcel trajectories. These trajectories are
determined with the Lagrangian Analysis Tool (LAGRANTO) (Sprenger and Wernli,
2015). The trajectories’ calculation setup is oriented towards the overpass times and
altitudes representative for the MUSICA IASI data. Analysing the model data helps
to reveal the kind of moisture processes that can be observed in the MUSICA IASI
{H2O, δD} pair data.

Figure 2.4 illustrates 11,853 Lagrangian air parcel trajectories with the arrival of all
trajectories in an area above West Africa at pressure levels 575 and 625 Hectopascal
(hPa), which corresponds to an altitude of about 5 km, i.e. the altitude of the data
points shown in Figure 2.2 and Figure 2.3. The trajectories are calculated daily for
local morning (9 am) and evening (9 pm) times during the period from June 8, 2016, to
July 30, 2016, with 169 time steps each with a time delta of one hour; each trajectory
comprises a time frame of 7 days. The coloured 1,479 trajectories (orange and green)
have been labelled according to their similarity, using DBSCAN on a pre-computed
distance matrix, as an illustrative example. For the pre-computed distance matrix, each
trajectory has been converted to a 4 · 169 = 676 dimensional vector; the latitudinal
(1) and longitudinal (2) difference for each time point to the arrival coordinates, the
bearing (3) for each consecutive point and the scaled height difference (4) for each
consecutive point, 169 points each.

Figure 2.5 shows the {H2O, δD} distributions of the model data illustrated in Figure
2.4 for all data points along the trajectories coloured according to their labelling. The
contour levels are at 10% and 50%, meaning the percentage of data lying outside the
indicated area. The {H2O, δD} distributions are visibly different for the two clusters
of trajectories, indicating a different air composition depending on the origin of the
trajectories (East or West). This elementary analysis demonstrates the information
content in the {H2O, δD} pair data and motivates further investigations on {H2O, δD}
clustering possibilities.
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Figure 2.4: Illustration of 1,479 trajectories out of 11,853 that have been coloured
according to their geographical closeness, bearing similarity and height difference along
each individual trajectory.
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Figure 2.5: Example {H2O, δD} distributions of the model data illustrated in Figure
2.4 for all noise, cluster #1 and cluster #2 data points; contour levels are at 10% and
50%.

2.4 Cluster Analysis

Cluster analysis can be expressed as the task of finding a partition of a given set of
points in a multidimensional space. The points within each partition are similar to one
another. The similarity is typically expressed as the closeness of points, i.e. the pairwise
distance of data points in a particular value space. Anthropologists have published the
earliest concepts for cluster analysis in the early 20th century by Driver and Kroeber
(1932), and were later picked up by psychologists Zubin (1938) and Tryon (1939),
according to Blashfield and Aldenderfer (1988). In the mid 20th century, one of the
most popular and simplest partitional algorithm k-means was independently discovered
in different scientific fields by Steinhaus (1956), Lloyd (1982), Ball and Hall (1965) and
MacQueen et al. (1967), as described by Jain (2010). In contrast to k-means, which
requires the number of clusters to be specified as a parameter, the mean shift algorithm
has been invented by Fukunaga and Hostetler (1975) as a non-parametric mode finding
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procedure around the same time. Towards the end of the 20th century, Ester et al.
(1996) published DBSCAN, a density-based clustering algorithm that introduced a
new notion of clusters based on the density of point neighbourhoods. DBSCAN has
been proven to be successful in many real-world applications and inspired many other
algorithms (Schubert et al., 2017). HDBSCAN* by Campello et al. (2013) and OPTICS
by Ankerst et al. (1999) are two examples of DBSCAN variants that are better known
and implemented in multiple clustering toolkits and libraries, for example, scikit-learn
(Pedregosa et al., 2011) or ELKI (Schubert and Zimek, 2019). Schubert et al. (2017)
have shown that DBSCAN continues to be relevant even for high-dimensional data,
although the parameters of the algorithm become hard to choose due to the loss of
contrast in distances. DBSCAN is one of the main algorithms extensively studied in
this thesis and is explained in more detail in Section 2.4.3.

2.4.1 Classification of Clustering Algorithms

A general distinction can be made between partitional and hierarchical clustering
algorithms. Partitional or flat methods, e.g. the k-means algorithm and its variants,
divide the data into several clusters in one go. Hierarchical methods represent clusters at
different levels of granularity, built either top-down (i.e. divisive approach) by splitting
bigger clusters into smaller clusters or bottom-up (i.e. agglomerative approach) by
merging smaller clusters into bigger clusters.

Partitional and hierarchical clustering algorithms can further follow a parametric
or non-parametric approach. Roberts (1997) provides a detailed view into parametric
versus non-parametric clustering methods, where either the data density is estimated
according to a parametric model or no parametric form of the data density is assumed.
The parametric approach is also referred to as a probabilistic or generative model.
Also, a combination of parametric and non-parametric clustering algorithms can be
used to group the modelled data as a semi-parametric density (Zhang et al., 2019).
With a probabilistic clustering model, data points can belong to several clusters with a
certain probability, also referred to as soft- or fuzzy clustering, unlike hard clustering,
where every data point belongs to exactly one cluster, for discriminative or distance-
/similarity-based clustering approaches.

Another distinction can be made between full-space clustering algorithms and
subspace clustering algorithms, depending on the dimensionality of the input data to
the algorithms. In general, full-space clustering algorithms have problems with high
dimensional data because of the curse of dimensionality. The curse of dimensionality
refers to a number of problems with high dimensionality, e.g. multivariate density
estimation (Scott, 2015; Beyer et al., 1999). As the number of dimensions in a dataset
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increases, the distance measures become more and more meaningless. In very high
dimensions, the data points are spread out until they are almost equidistant from each
other (Parsons et al., 2004). Therefore, in addition to full-space clustering algorithms,
subspace clustering algorithms have been proposed. Subspace clustering algorithms
aim to find clusters in multiple, possibly overlapping subspaces (Parsons et al., 2004).

Another differentiation can be made between traditional fully unsupervised clustering
algorithms and semi-supervised clustering algorithms. While unsupervised clustering
algorithms make no assumptions about the data subject to the clustering process,
semi-supervised clustering algorithms incorporate domain knowledge to some extent,
e.g. in the form of labels for a portion of the data, constraints on data points to
be in the same cluster (i.e. must-link) or in different clusters (i.e. cannot-link), or
otherwise formulated constraints. The main goal of semi-supervised clustering methods
is to align better the data partitioning with the domain knowledge. More details on
semi-supervised clustering methods are given in the next chapter, Chapter 3.

2.4.2 Gaussian Mixture Model

A frequently mentioned first publication that proposed a mixture of Gaussian models
to explain and partition data dates back to the statistician Karl Pearson (1894). Since
then, mixture models have been the subject of extensive research with finite mixtures
of distributions providing a sound mathematical basis for statistical modelling of a wide
variety of random phenomena (McLachlan et al., 2019). Finite mixture models are
formed by linear combinations of basic distributions that are superimposed. By using
a sufficient number of Gaussian distributions with adjusted means and covariances
as well as adjusted contributions to the linear combination, any continuous density
can be approximated to arbitrary accuracy with few exceptions (Bishop, 2006). For
the purpose of cluster analysis, this means that data is going to be partitioned into a
number of possible multi-variate Gaussian distributions with the mean and variance
parameters optimized with regards to the comprising data points. The Gaussian mixture
model for clustering data belongs into the category of unsupervised, partitional and
parametric model-based clustering algorithms, while non-parametric modifications have
been proposed as well, for example by Mallapragada et al. (2010).

Ankur Moitra provides a coherent introduction to the Gaussian mixture model in his
book "Algorithmic Aspects of Machine Learning" accompanying the identically named
MIT lecture (Moitra, 2015) that is adopted and complemented with the description of
the Gaussian Mixture Model by Bishop (2006) in the following summary of definitions
and equations. A list of mathematical symbols and expressions used in the following is
given in the nomenclature.
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The probability density function of a one-dimensional Gaussian distribution with
mean µ and variance σ2 for a data point x is:

N (µ, σ2, x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(2.1)

For a multidimensional Gaussian distribution in Rn with covariance matrix Σn×n

the probability density function is given by:

N (µ,Σ,x) =
1√

(2π)ndet(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.2)

A mixture model of two one-dimensional Gaussians, denoted as p1 and p2, and
probability (i.e. weight) w1 to choose from either distribution can be formulated without
loss of generality as:

p(x) = w1N (µ1, σ
2
1, x)︸ ︷︷ ︸

p1(x)

+(1− w1)N (µ2, σ
2
2, x)︸ ︷︷ ︸

p2(x)

(2.3)

The multidimensional model can be formulated accordingly with the total number
of mixture components K:

p(x) =
K∑
k=1

wkN (µk,Σk,x) (2.4)

with each Gaussian density component N (µk,Σk,x) having its own mean µk and
covariance Σk and the mixing coefficients or weight parameters wk satisfying the
condition:

K∑
k=1

wk = 1 (2.5)

The maximum likelihood can be estimated by the Expectation–maximization al-
gorithm (EM) to set the values for the Gaussian Mixture Model (GMM) parameters
µk, Σk and wk. The EM algorithm finds the local optimum for parameters in the
likelihood for models with latent variables from the given data (Dempster et al., 1977).
The logarithm of the likelihood function for Equation 2.4 summing over N number of
observations is given by:

ln p(X|w,µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

wkN (µk,Σk,xn)

}
(2.6)

After initializing the parameters µk, Σk and wk and evaluating the initial value of the
likelihood (see Equation 2.6) the EM algorithm iterates in two steps until convergence
for maximizing the likelihood.
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1. Expectation step: For all data points the posterior probabilities for each
responsibility are computed, i.e. the probability that the i-th data point xi

belongs to the k-th component of the mixture. Where zk is the k-th element of
the binary random variable z with

∑K
j=1 zj = 1 and zj ∈ {0, 1}, specified in terms

of the mixing coefficients wk such that p(zk = 1) = wk.

p(zk = 1|xi) =
p(zk = 1)p(xi|zk = 1)∑K
j=1 p(zj = 1)p(xi|zj = 1)

=
wkN (µk,Σk,xi)∑K
j=1 wjN (µj,Σj,xi)

(2.7)

2. Maximization step: The parameters µk, Σk and wk are re-estimated using
the computed responsibilities. If the convergence criterion is not satisfied the
algorithm returns to the expectation step.

µk =

∑
i

{
p(zk = 1|xi)xi

}∑
i p(zk = 1|xi)

Σk =

∑
i

{
p(zk = 1|xi)(xi − µk)(xi − µk)T

}∑
i p(zk = 1|xi)

wk =

∑
i p(zk = 1|xi)

N

(2.8)

After convergence of the EM algorithm, each k-th Gaussian distribution represents
a cluster, and the posterior probability for each data point xi can be computed (see
Equation 2.7). Each data point is associated with the cluster/mixture component with
the highest probability at the end.

Estimating the number of mixture components k can be done in an efficient way by
evaluating the Bayesian information criterion (BIC) (Schwarz, 1978) and penalizing the
likelihood by the number of clusters (Scott Shaobing Chen and Gopalakrishnan, 1998).
This procedure is explained in more detail in Section 2.4.4 together with other metrics
for clustering algorithms.

2.4.3 DBSCAN

Ester et al. (1996) presented the DBSCAN algorithm at the International Conference on
Knowledge Discovery and Data Mining (KDD) in 1996 as a density-based algorithm for
discovering clusters in large spatial databases with noise. Ester introduced six essential
definitions that are recapitulated in the following.

Definition 1. ε-neighbourhood of a point
Let D be a set (database) of points. The ε-neighbourhood of a point p, denoted by
Nε(p), is defined by

Nε(p) = {q ∈ D|dist(p, q) ≤ ε}
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The shape of any ε-neighbourhood is determined by the distance function dist(p, q).
The choice of a distance function has a significant impact on the clustering results. Any
metric can be used, while popular choices are the Euclidean distance or the Mahalanobis
distance (Xu and Tian, 2015). In particular, any distance matrix constructed to reflect
pairwise relationships can be utilized.

Definition 2. Directly density-reachable
A point p is directly density-reachable from a point q wrt. ε and minPts if

1. p ∈ Nε(q) and

2. |Nε(q)| ≥ minPts (core point condition).

According to Definition 2 only core points, i.e. points that have at least minPts
in their ε-neighbourhood, can have directly density-reachable relations to other points
within their ε-neighbourhood. To allow the algorithm to explore the full data space,
the directly density-reachable definition is extended as follows:

Definition 3. Density-reachable
A point p is density-reachable from a point q wrt. ε and minPts if there is a chain of
points (p1, ..., pn, p1 = q, pn = p) such that pi+1 is directly density-reachable from pi.

Definition 3 covers the reachability from core points (|Nε(q)| ≥ minPts) to border
points, points with less than minPts in their ε-neighbourhood that are not noise (see
Definition 6), but not from border points to border points, which is defined as following.

Definition 4. Density-connected
A point p is density-connected to a point q wrt. ε and minPts if there is a point o
such that both, p and q are density-reachable from o wrt. ε and minPts.

With Definition 1 to 4 a density-based cluster can be defined as following.

Definition 5. Cluster
A cluster C wrt. ε and minPts is a non-empty subset of a set of points, D, satisfying
the following conditions:

1. ∀p, q: if p ∈ C and q is density-reachable from p wrt. ε and minPts, then q ∈ C.
(Maximality)

2. ∀p, q ∈ C: p is density-connected to q wrt. ε and minPts. (Connectivity)

All points that do not belong to any cluster following Definition 5 are classified as
noise.
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Definition 6. Noise
Let C1, ..., Ck be the clusters of a set of points D wrt. parameters εi and minPtsi,
i = 1, ..., k. Then the noise can be defined as the set of points in D not belonging to
any cluster Ci, i.e. noise = {p ∈ D|∀i : p /∈ Ci}.

Equipped with these six definitions, a density-based algorithm has to find all clusters
with respect to the parameters ε and minPts for a given set of data points D. The
DBSCAN algorithm achieves this goal as outlined in the pseudocode representation
given in Algorithm 1, that has been adopted from Schubert et al. (2017), and can be
described as following (all Line references refer to Algorithm 1).

DBSCAN starts with an arbitrary point from the set of all points and iterates over
all points (outer loop, Line 1). The algorithm moves to the next point if the current
point has already been labelled (Line 2). If not, the ε-neighbourhood for the given point
is located (Line 3). If the ε-neighbourhood contains less than minPts points (Line 4),
the point is labelled as noise (Line 5) and the algorithm moves to the next point. If not,
the point is considered a core point, and the algorithm starts to form a cluster with the
next available label (Line 7-8). Proceeding from the core point, all neighbouring points
are added to a set of initially empty seeds (Line 9).

For each point in this set (inner loop, Line 10), if the point has been previously
labelled as noise, the point is labelled according to the current cluster label (Line 11). If
the point has already been labelled with a cluster label (Line 12), the algorithm moves
to the next point in the set (inner loop). If not, the ε-neighbourhood for the given
point is located, and the point is labelled with the current cluster label (Line 13-14).
If the ε-neighbourhood contains less than minPts (Line 15), the algorithm moves to
the next point in the set (inner loop). If not, each point from the ε-neighbourhood of
the current seed point is added to the set of seed points (Line 16-17). The algorithm
moves to the next point in the set (inner loop). If the set of seed points is empty, the
algorithm moves to the next point in the dataset (outer loop).
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Algorithm 1: Pseudocode of the DBSCAN Algorithm
input : dataset D
input : radius ε
input : density threshold minPts
input : distance function dist
output : point labels label initially undefined

1 foreach point p in dataset D do
2 if label(p) 6= undefined then continue;
3 Neighbours N ← RangeQuery(D, dist, p, ε);
4 if |N | < minPts then
5 label(p)← Noise;
6 continue;

7 c← next cluster label;
8 label(p)← c;
9 Seed set S ← N \ {p};

10 foreach q in S do
11 if label(q) = Noise then label(q)← c;
12 if label(q) 6= undefined then continue;
13 Neighbours N ← RangeQuery(D, dist, q, ε);
14 label(q)← c;
15 if |N | < minPts then continue;
16 foreach s in N do
17 S ← S ∪ s;

2.4.4 Metrics

Clustering validation metrics can be categorized into external clustering validation and
internal clustering validation (Aggarwal and Reddy, 2013, Chapter 23, Xiong et al.).
External validation metrics use external information, for example, the true labels of the
data, to validate the clustering result. Internal validation metrics use measurements
with respect to the discovered clusters, for example, the within- and between-cluster
distance. If a priori knowledge is available about the dataset subject to cluster analysis,
internal cluster measurements and cluster properties can provide a sound validation of
the clustering results.

The Rand index has been introduced by Rand (1971a) as a measure of similarity
between clusterings and is an internal metric. The Rand index measures the similarity
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between two data clusterings by counting equal elements in subsets created by the
two partitions of the data, the true partition (true labels) and the computed partition
(predicted labels) (Rand, 1971b). For this purpose, if P = {P1, ..., Ps} is the set of true
partitions and C = {C1, ..., Ct} the set of computed partitions and for the incidence
matrix N ×N for N data points O1, ..., ON , two indicators can be defined, Pij = 1 if
Oi and Oj belong to the same true partition in P , Pij = 0 otherwise, and Cij = 1 if Oi

and Oj belong to the same computed partition in C, Cij = 0 otherwise. With these two
indicators, Pij and Cij, four categories can be defined: 1) TT : Cij = 1 and Pij = 1, 2)
FF : Cij = 0 and Pij = 0, 3) TF : Cij = 1 and Pij = 0 and 4) FT : Cij = 0 and Pij = 1.
Category 1) and 2) indicate agreement while category 3) and 4) indicate disagreement.
With these definitions the Rand index can be formulated as following:

Definition 7. Rand index

Rand =
|Agreement|

|Agreement|+ |Disagreement|
=

|TT |+ |FF |
|TT |+ |TF |+ |FT |+ |FF |

Since the expected value of the Rand index, E(Rand), of two random partitions
does not take a constant value, Hubert and Arabie (1985) introduced an adjustment
for chance to the Rand index. The adjusted Rand index is thus ensured to have a value
close to zero for random labelling independently of the number of clusters and samples
and exactly one when the clusterings are identical, up to a permutation (Pedregosa
et al., 2011). With Definition 7 the adjusted Rand index can be formulated as follows:

Definition 8. Adjusted Rand index

ARI =
Rand− E(Rand)

max(Rand)− E(Rand)

Another metric, the clustering accuracy, finds the best match between true labels
and predicted labels. The greater the clustering accuracy, the better the clustering
performance (Role et al., 2019). The clustering accuracy can be defined as follows:

Definition 9. Clustering accuracy (ACC)
Given a number of clusters K and the set of all permutations P in [1;K], the clustering
accuracy between true labels y and predicted labels ŷ for n data points is

ACC(y, ŷ) = max
perm∈P

1

n

n−1∑
i=0

1(perm(ŷi) = yi)

The set of all permutations can be efficiently computed using the Hungarian algo-
rithm (Papadimitriou and Steiglitz, 1998).
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The Bayesian Information Criterion (BIC) is a model selection criterion in statistics
proposed by Schwarz (1978). This criterion is especially helpful in determining the
number of clusters for clustering algorithms that require such a parameter beforehand.
As a rough guide, the higher the complexity of the data, the more clusters are needed to
represent the data. Scott Shaobing Chen and Gopalakrishnan (1998) proposed to choose
the number of clusters by optimizing the BIC, where each clustering is evaluated by
its BIC value and the clustering with the highest BIC value is chosen. Scott Shaobing
Chen and Gopalakrishnan (1998) showed that the Bayesian Information Criterion
for a clustering Ck = {ci : i = 1, ..., k} with k clusters of a dataset {xi ∈ Rd : i =

1, ..., N}, where each cluster ci can be modelled as a multivariate Gaussian distribution
N (µi,Σi,xi) and has therefore d+ 1

2
d(d+ 1) parameters, can be formulated as:

Definition 10. Bayesian Information Criterion (BIC)

BIC(Ck) =
k∑
i=1

{−1

2
nilog|Σi|} −Nk(d+

1

2
d(d+ 1))

The Silhouette Coefficient (Rousseeuw, 1987) is another internal metric that allows
a visual representation and interpretation of a clustering result. Rousseeuw (1987)
proposed the Silhouette Coefficient as a new graphical display for partitioning and
clustering methods. Each cluster is represented by a silhouette, a plot of all Silhouette
Coefficients ranked in decreasing order for all objects in the respective cluster. The
Silhouette Coefficient for each data point is computed using the average dissimilarity of
a data point p to all other data points within the same cluster a(p) and the minimum
average dissimilarity of the same data point to all other data points in all other clusters
b(p) = minC 6=A d(p, C). The Silhouette Coefficient of a data point p is therefore defined
as:

Definition 11. Silhouette Coefficient

s(p) =


1− a(p)

b(p)
if a(p) < b(p)

0 if a(p) = b(p)

b(p)
a(p)
− 1 if a(p) > b(p)

The authors noted that this metric is particularly useful if the dissimilarities can be
measured on a ratio scale as in the case of the Euclidean distance to identify compact
and clearly separated clusters (Rousseeuw, 1987).
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In this thesis, the Bayesian Information Criterion (BIC) (Definition 10) is primarily
utilized for model selection and the Silhouette Coefficient (Definition 11) for parameter
evaluation, see Chapter 4. For example, comparing Gaussian mixture models with
different parameters and selecting the model with the highest BIC score.

The evaluation of clustering algorithms in Chapter 5 and Chapter 6 is mainly based
on the Adjusted Rand Index (ARI) and the Cluster Accuracy (ACC), see Definition 8
and Definition 9.

A more comprehensive overview of clustering metrics for hyper-parameter optimiza-
tion for spatio-temporal clustering, specifically with DBSCAN and HDBSCAN, is given
in the master thesis by Weber (2019), supervised within the context of this doctoral
research.
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Related Work

Following the introduction of the necessary concepts in Chapter 2, this chapter presents
related work directly connected to the research of this thesis. The presented overview
is by no means exhaustive but focuses on key scientific work that has been built on.
The related work presented in this chapter has been published in parts in Ertl et al.
(2019, 2020, 2021a,b).

3.1 Unsupervised Clustering of Spatio-Temporal
Data

Unsupervised learning methods such as cluster analysis are instrumental in the analysis
of large amounts of data since it allows domain experts to consider groups of objects
rather than individual objects and to focus on a higher-level representation of the
data (Wang et al., 2013). Unsupervised clustering of spatio-temporal data is an active
research area analysing spatial and temporal data at a higher level of abstraction by
grouping data points according to their similarity into meaningful clusters. Depending
on the spatio-temporal datatype and the analysis to conduct, as detailed in Section 2.1,
a variety of clustering algorithms have been proposed providing solutions for different
aspects of spatio-temporal data clustering. Most relevant literature for the work of this
thesis address the following problem definitions.

3.1.1 Clustering Moving Objects

The problem definition of analysing moving spatio-temporal objects can be compared
to the presented approach of analysing the evolution of geo-referenced distributions
over time in Chapter 4. Maciąg (2017) published a comprehensive survey on data
mining methods for clustering complex spatio-temporal objects, noting that current
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approaches often leverage variations of well-known methods and algorithms that have
been modified to operate on spatio-temporal data. The clustering methods summarised
by Maciąg (2017) range from clustering spatio-temporal events, polygons (geographical
areas), trajectories to clustering moving objects. In this context, Gaussian mixture
models have been proposed, for example, for image matching (Greenspan et al., 2001)
or to identify dynamic clusters in spatio-temporal data (Paci and Finazzi, 2018).

Greenspan et al. (2001) proposed a transition of the image pixels to coherent regions
in feature space via Gaussian mixtures to apply a probabilistic measure of similarity
between the Gaussian mixtures. The number of mixture components is chosen according
to the minimum description length (MDL) principle (Rissanen, 1978; Grünwald, 2007)
that chooses the simpler model, i.e. the model with the least number of free parameters
with regards to the number of mixture components, over more complex models. Similar
images are identified by the Kullback–Leibler divergence (Kullback and Leibler, 1951)
of their mixing components. Greenspan et al. (2001) evaluated their methodology
theoretically and experimentally in computer vision and discussed their approach for
audio segmentation. However, the authors noted that a Gaussian model is a suitable
representation for homogeneous regions with an ellipsoid-like shape but a Gaussian
distribution poorly represents non-convex regions.

Paci and Finazzi (2018) proposed a dynamic model-based clustering method for
spatio-temporal data with finite mixtures of Gaussians introducing spatio-temporally
varying mixing weights to accommodate space-time dependence. These adjusted mixing
coefficients allow assigning similar cluster membership probabilities to data points at
nearby locations and at consecutive points in time. Additionally, Paci and Finazzi
(2018) deploy a state-space model to describe the temporal evolution of the locations
belonging to each cluster. The authors showed that their approach is very flexible and
allows clusters identification with geo-referenced time-series even affected by missing
data. The model further allows prediction of the cluster membership probability of data
points and any observed location and any time, including future predictions. However,
the authors also noted that their approach needs to be extended from the univariate
setting to a multivariate setting.

Jin et al. (2005) presented a clustering system based on the Gaussian mixture
model with independent attributes within clusters. The main concept is to modify the
Expectation–maximization algorithm (EM) to generate a mixture from the summary
statistics of a set of subclusters of the given dataset (Huidong Jin et al., 2005). The
authors conducted a series of experiments on synthetic and real-life datasets and showed
that their approach can run faster and can generate much more accurate clustering
results than the random sampling EM algorithm.
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Kalnis et al. (2005) provided a formal definition of moving clusters and presented
three algorithms based on the DBSCAN clustering algorithm to identify moving clusters
over a period of time. Moving clusters will be identified over consecutive time slices if
the ratio of their intersect density to their joint density is greater or equal to a specified
threshold. The author’s experimental results demonstrated that their methods are
suitable for large datasets with varying object distribution and agility. The different
proposed algorithms can either be used to achieve the exact or approximate identification
of moving clusters.

3.1.2 Time-Series Clustering

Time-series clustering is a well-established and active research field across different ap-
plication domains, for example, in industry, biology, energy, medicine, finance or climate.
Multiple surveys provide a clear and structured overview of past and current research
in time-series clustering and its subdomains whole time-series clustering, subsequence
time-series clustering and time point clustering (Warren Liao, 2005; Aghabozorgi et al.,
2015; Zolhavarieh et al., 2014).

Trajectories can be described as sets of measurements that are measured as a
function of an independent variable, typically time, where each individual trajectory
measures a possible multidimensional response variable (Gaffney and Smyth, 1999),
see Section 2.1. Following the given notion of trajectory data, there is no distinction
to time-series data in general, however, the data records per individual trajectory can
frequently be too short to be amenable to conventional time-series modelling techniques,
which requires specialized approaches (Gaffney and Smyth, 1999).

The most relevant related work for this thesis falls into the category of time point
clustering. Zolhavarieh et al. (2014) described time point clustering in their review of
subsequence time-series clustering as

"[. . .] the clustering of time points on the basis of a combination of their
temporal proximity and the similarity of their corresponding values. This
approach is similar to time-series segmentation. However, time point clus-
tering is different from segmentation in the sense that all points do not need
to be assigned to the cluster; that is, some of [the] points are considered
noise."

Following this distinction, without the differentiation on noise points, i.e. points
that do not belong to any cluster, algorithms and methods developed for subsequence
clustering are inter-comparable to those developed for time point clustering in terms
of extracting similar segments from individual time-series. Zolhavarieh et al. (2014)
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provided a comprehensive overview of methods for subsequence time-series clustering,
especially within the context of the discussion if any method can produce meaningful
results at all or if all methods for subsequence time-series clustering are actually
meaningless (Keogh and Lin, 2005).

For the purpose of subsequence time-series clustering, time-series have to be seg-
mented and clustered in a way that the temporal proximity of time points is taken into
account and multiple segments can belong to the same cluster. Since the traditional
Euclidean distance metric as a similarity measure for clustering algorithms is not taking
the order of the data points into account, a similarity measure called Dynamic Time
Warping (DTW) has been proposed by Sakoe and Chiba (1978) and has been improved
over time, for example by averaging a set of sequence to be used with similarity-based
methods like k-means (Petitjean et al., 2011).

Besides distance-based algorithms, model-based clustering algorithms for time-
series have been proposed as well. Hallac et al. (2017) used graph representations
for time series subsequences from Markov random fields (MRF) to group similar
sequences into clusters, called Toeplitz inverse covariance-based clustering (TICC).
TICC simultaneously segments and clusters the data based on its correlation and has
been demonstrated to be able to find structural similarities in real-world data (Hallac
et al., 2017).

Also in the field of unsupervised learning and deep unsupervised learning, model-
based clustering algorithms for time-series data are subject to recent and continuous
research. Zhang et al. (2019) proposed a method for unsupervised salient subsequence
learning (USSL) to extract salient subsequence features from time-series called shapelets.

A number of methods can tackle the task of subsequence time-series clustering
for univariate time series (Warren Liao, 2005), but fall short to discover interpretable
clusters for multivariate time series (Ienco and Interdonato, 2020). Specifically, methods
merely based on distance metrics such as euclidean distance or dynamic time warping
(Berndt and Clifford, 1994) can not capture structural similarities based on correlations
across time. For static data, there has been a growing interest in semi-supervised
clustering methods, for example, constrained clustering, where additional a priori
information or domain knowledge is incorporated into the clustering process, to capture
complex relations between features better (Pourrajabi et al., 2014; Basu et al., 2008;
Dinler and Tural, 2016).
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3.2 Semi-Supervised Clustering

While many advances in clustering algorithms have been made for spatio-temporal
data (Maciąg, 2017; Wang et al., 2013) many proposed methods lack the exploitation
of available a priori knowledge that might improve the output quality (Ertl et al.,
2019). Especially semi-supervised learning clustering algorithms, which incorporate
a priori knowledge into the clustering process, can improve the quality of the results
(Dinler and Tural, 2016). According to Aggarwal and Reddy (2013) much of early work
in semi-supervised clustering focused on extending feature-based clustering methods
with regards to two types of semi-supervision, pointwise semi-supervision and pairwise
semi-supervision.

3.2.1 Pointwise Semi-Supervision

Pointwise semi-supervision describes the process where the availability of cluster labels
for a small number of points can guide the clustering method (Aggarwal and Reddy,
2013; Basu et al., 2002). Basu et al. (2002), for example, used partially labelled
data to generate seed clusters for the initialization of the k-means algorithm, namely
Seeded-KMeans. The initial centres for clusters are the mean values of the seed points.
In the subsequent steps in the algorithm, the seed labels are not further taken into
consideration, i.e. are disregarded.

Different from the Seeded-KMeans algorithm, the Constrained-KMeans algorithm
uses the partially labelled data to initialize the cluster centres and also uses the seed
labels in the subsequent k-means algorithm, i.e. the seed labels are kept unchanged and
only the labels of the non-seed data are re-estimated (Basu et al., 2002). Apparently,
cluster labels for pointwise semi-supervision can be converted to pairwise constraints
in the form of "must-link" and "cannot-link" constraints, detailed in the next section.
Data points with the same label define a pairwise "must-link" constraint, while data
points with different labels define a pairwise "cannot-link" constraint.

3.2.2 Pairwise Semi-Supervision

Pairwise semi-supervision describes the process where "must-link" and "cannot-link"
constraints between some pairs of points are available to guide the clustering method
(Aggarwal and Reddy, 2013). "Must-link" constraints specify that two instances have
to be in the same cluster, where "cannot-link" constraints specify that two instances
cannot be in the same cluster (Wagstaff and Cardie, 2000).

For example, the COP-KMeans algorithm (Wagstaff et al., 2001) follows the k-means
algorithm but assures that a point will only be assigned to its nearest cluster if none of
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its constraints is violated; otherwise the algorithm aborts. Wagstaff et al. (2001) showed
significant improvements in accuracy with random constraints on different datasets.
They suggested optimising the order-sensitive assignment of instances to clusters due
to the given constraints and relax constraints, moving from hard to soft constraints.

Another algorithm that generalizes the k-means algorithm to handle constraints is
the Constrained Vector Quantization Error (CVQE) algorithm (Davidson and Ravi,
2005) and its linear-time variant LCVQE (Pelleg and Baras, 2007). The authors of
the CVQE algorithm introduce a new differentiable error function, the constrained
vector quantization error. The algorithm minimizes this CVQE in the first step and
updates the cluster centroids accordingly in a second step. According to the authors,
this algorithm results in faster convergence and the satisfaction of a vast majority of
constraints.

Basu et al. (2004) further proposed a cost function for pairwise constrained clustering
equivalent to the configuration energy of a Hidden Markov Random Field (HMRF)
with a well-defined potential function and noise model. Basu et al. (2004) showed
that the pairwise constrained clustering problem could be solved by finding the HMRF
configuration with the highest posterior probability, i.e. minimizing its energy, and
proposed the PCK-means algorithm for solving this problem.

3.3 Cluster Analysis of Climate Data

While there are many examples that use cluster analysis in the domain of climate
research, this section focuses on the most relevant methods that have been demonstrated
to be valuable in this area.

One of the first comprehensive methods for cluster analysis of climate data has
been introduced by Gaffney and Smyth (1999), who proposed a probabilistic mixture
regression model applying the Expectation–maximization algorithm (EM) to cluster
trajectories and demonstrated their approach analysing extratropical cyclones (Gaffney
et al., 2007). Gaffney et al. (2007) applied curve-based mixture models to perform
probabilistic clustering of wintertime North Atlantic extratropical cyclone trajectories
in latitude-longitude space. The authors were able to identify three groups of tracks
oriented south-to-north, southwest-to-northeast and west-to-east predominantly. They
were also able to associate common attributes for each group in their simulation and
reanalysis datasets and associate the cyclone-track clusters in the reanalysis dataset with
well-defined anomalies in sub-weekly storm track variance and well-known low-frequency
teleconnection patterns.
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However, since clustering whole trajectories can overlook common behaviour in
partial segments of the trajectories, Lee et al. (2007) proposed a partition-and-group
framework and a trajectory clustering algorithm called TRACLUS, which they demon-
strated among others in the field of climate research for hurricanes landfall forecasts.
TRACLUS partitions a trajectory into a set of line segments at characteristic points
and groups similar line segments in a dense region into a cluster. Lee et al. (2007) were
able to identify seven representative trajectories in their hurricane track dataset, which
the authors correlated with known hurricane movement patterns.

Another approach by Birant and Kut (2007) used a spatio-temporal extension to
DBSCAN and demonstrated the applicability of the algorithm by clustering regions
with similar seawater characteristics from station and satellite data. Birant and Kut
(2007) extensions to the DBSCAN algorithm introduce two additional parameters,
an ε distance parameter for the spatial attributes and a threshold parameter ∆ε to
keep the cluster values close to the cluster attributes mean value. The authors could
discover clusters of data points with similar sea surface temperature characteristics and
significant wave height values for their task to discover the regions that have similar
seawater characteristics.

Steinhaeuser et al. (2011) provide a comprehensive comparative study on different
clustering algorithms and different regression algorithms for their predictability on
climate indices, i.e. time-series that summarise variability at local or regional scales
with relation to other events. The authors compared clustering methods based on
their ability to predict climate variability and demonstrated that the network-based
indices have significantly more predictive power. The clustering algorithms under
investigation are network communities based on the method by Pons and Latapy (2005)
to compute communities in large networks using random walks, the k-means algorithm,
the Partition Around Medoids (PAM) algorithm, the k-medoids algorithm by Kaufman
and Rousseeuw (2009), the spectral clustering implementation by Ng et al. (2001) and
the Gaussian Mixture Model (GMM) as an Expectation–maximization algorithm (EM)
implementation. The empirical comparison of clustering methods by Steinhaeuser et al.
(2011) shows that specifically community detection in climate networks stands out
among competing methods as the superior approach across a diverse range of test
cases. According to Steinhaeuser et al. (2011), reinforcing the notion that networks can
capture the complex relationships within the global climate system effectively.
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Analysing the Evolution of
Geo-Referenced Distributions over
Time

This chapter mainly addresses challenges one and two defined in Chapter 1, namely
learning the natural structure of spatio-temporal data reflected by meaningful clusters by
analysing existing clustering algorithms to cluster spatio-temporal data and to identify
correlated structures in the dataset. The presented work establishes a data-driven
approach of tracking clusters in spatio-temporal data based on the Gaussian Mixture
Model (GMM) to extract cluster properties that can be analysed for changes over space
and time. The methodology is based on well-known algorithms, and an interpretation
of the algorithmic results is given in a spatio-temporal context. The presented method
and results in this chapter are part of the initial work during the course of this thesis
and have been published in parts in Ertl et al. (2019).

4.1 Motivation

The simultaneous observation of multiple variables or measurements at geo-referenced
locations or areas over time enables the analysis of multivariate distributions of spatio-
temporal data. In particular remote sensing data, i.e. data provided by remote sensors,
exhibit these properties. For example, a single measured infrared emission spectrum at
a given location and time can be further processed to estimate the content of different
trace gases and water vapour as well as the temperature in the vertical column of the
atmosphere over this particular location and at the given time. By looking at multiple
multivariate observations, scientists can analyse multivariate distributions that can
evolve over space and time.
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In this context, cluster analysis is especially suited to discover and track multivariate
distributions over time. The problem definition in the literature most closely related
to these tasks is formulated as the analysis of moving spatio-temporal objects, see
Section 3.1. The following presents a data-driven approach to tracking clusters in
spatio-temporal data. This approach is based on the Gaussian Mixture Model (GMM),
see Section 2.4.2, to extract cluster properties that can be analysed for changes over
space and time. A methodology based on well-known algorithms is provided and an
interpretation of the algorithmic results in a spatio-temporal context is presented.

4.2 Data-Driven Approach

The proposed data-driven approach to track clusters and their changing properties over
space and time in spatio-temporal data based on GMM can be summarised in four
steps as follows.

1. Splitting the data in spatial regions of interest
This first step needs careful consideration if splitting the data significantly affects
the mixture components by including or excluding specific observations (”edge-
effects”). Also, splitting the data into spatial regions of interest (ROI) might not
always be applicable, for example, if all the clusters are tracked within one spatial
area. However, if the nature of the dataset allows the statistical evaluation and
mitigation of edge-effects, for example, by assuming or proving complete spatial
randomness (Diggle, 2014), and if the analysis is conducted over multiple spatial
areas, this step significantly increases the scalability of the model. Each mixture
model for any ROI can be computed in parallel, which decreases the overall
runtime, see Section 4.3.2. Selection criteria for the size of the ROI typically
depend on domain knowledge or the premise of the analysis.

2. Modelling the observed data in each ROI with mixtures of Gaussians
A range of Gaussian mixture component models with a different maximum number
of mixture components is fitted to the data for each spatial region. The model
with the lowest Bayesian Information Criterion (BIC) score determines the number
of clusters for the most suitable mixture model, see Section 2.4.4. An alternative
approach to infer the number of clusters of the most suited mixture model is
the variational Bayes approach (Attias, 1999). This approach, however, requires
additional fine-tuning of hyperparameters and introduces additional computational
overhead.
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3. Extracting cluster parameters for each Gaussian mixture component
Following a data summarisation approach (Nassar et al., 2004), the ellipsoid
properties of the multivariate Gaussian distribution, the centre and principal
axes given by the mean and length of the eigenvectors of the covariance matrix,
as well as the polar angle of the major axis are extracted. These properties
most prominently describe the underlying distribution. However, different cluster
properties can be selected according to the nature of the data and the expected
behaviour of spatio-temporal changes of the clusters.

4. Comparison of cluster parameters for spatio-temporal changes
This last step can be performed by a variety of suitable methods, which demon-
strates the flexibility of the proposed model. For the model evaluation and results
in the following experimental studies and evaluation, the DBSCAN clustering
algorithm (see Section 2.4.3) is used on the extracted cluster properties to find
similar clusters and account for spatio-temporal changes. By comparing the
extracted cluster parameters between clusters in different spatial regions over
time, similar clusters can be identified, and further occurrences can be reviewed
to investigate any underlying motion.

4.3 Evaluation

This section details the experimental studies to evaluate the proposed model on a
synthetic and a real dataset. First, the setup for conducting the experimental studies
with three main objectives is given. The main objectives are (1) to track moving
clusters, (2) to track emerging clusters and (3) to track changing clusters over space
and time. Second, the results for each objective are presented together with runtime
measurements for sequential and parallel computations.

4.3.1 Setup

Synthetic Data

The synthetic dataset is generated of similar size and structure as the real-world dataset
but with already known distributions in feature space. The spatial extent is given
in latitude and longitude for global coverage, and the temporal extent comprises six
consecutive days equal to the real-world dataset. The spatial points are generated from
a N-conditioned Complete Spatial Randomness (CSR) process (Diggle, 2014) to mimic
the remote sensing data generation process of the real-world dataset. A N-conditioned
CSR process can be defined as following, see Rey and Anselin (2007).
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Remark. N-conditioned Complete Spatial Randomness (CSR) process
Given the total number of events N occurring within an area A, the locations of the N
events represent an independent random sample of N locations where each location is
equally likely to be chosen as an event.

The two-dimensional feature patterns are well separated isotropic Gaussian blobs
that change their scale over time and are assigned to k-means clustered spatial regions.
The spatial partitioning in the data generation process into k-means clustered spatial
regions is different from the spatial partitioning in the analysis, a regular lattice, to
evaluate possible edge-effects better. The number of k-means clusters is equal to the
number of spatial grid cells so that clusters and grid cells have similar spatial extent, but
some data points at the cluster edges will be assigned to different grid cells during the
analysis. The k-means algorithm has been selected since it can form clusters of equal
variance with an extent of an individual cluster similar to the extent of an individual
Region of Interest (ROI).

Figure 4.1 illustrates the spatial extent of the synthetic dataset for one time snapshot,
i.e. one day, with colours indicating the k-means clustered spatial regions and the
grid lines indicating the spatial partitioning for the cluster analysis. For each k-means
clustered spatial region, three isotropic Gaussian blobs are generated by randomly
choosing their Gaussian distribution’s mean and standard deviation out of five predefined
mean and standard deviation values plus some random noise, summarised in Table
4.1. The number of total distributions is based on the occupancy of the feature space,
centre and edges (one + four); the number of selected distributions based on empirical
evaluation. Each blob of data points is scaled according to the time snapshot of the
data points, i.e. for the first snapshot, the scale factor is one, and for the last snapshot,
the scale factor is one point six, simulating an arbitrary 10% rate of expansion per day.

All generated data points following the described process are illustrated in Figure
4.2, five isotropic Gaussian blobs with 960,000 points in total, 160,000 points for each
time snapshot.

Table 4.1: Value range, noise and scale for the synthetic dataset.

Value range Noise Scale

µ [(-5,-5),(-5,5),(0,0),(5,5),(5,-5)] uniform [0,1) * 0.1
σ [0.25,1.0,0.5,1.0,0.25] uniform [0,1) * 0.01 [1.0, 1.1, 1.2, 1.3, 1.4, 1.5]
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Figure 4.1: Synthetic data for a one-time snapshot with k-means clustered spatial
regions and a 20◦ × 20◦ grid overlay in accordance with the ROI of the real-world
dataset, indicating the spatial partitioning for the cluster analysis.

Figure 4.2: Synthetic data in value space; five isotropic Gaussian blobs in total. Each
k-means clustered spatial region (see Figure 4.1) is associated with three random blobs
scaled according to the temporal order of the snapshot.
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Real-World Data

The real-world dataset contains time snapshots from the MUSICA IASI satellite-based
remote sensing dataset as described in Section 2.2. The dataset for this experimental
study contains global observations for six consecutive days from June 8, 2016, to July
30, 2016, at around five kilometer height, that have been processed according to the
MUSICA IASI retrieval process.

Figure 4.3 shows an example snapshot of one day of global observations with 383,591
individual observations after filtering out cloudy and partly cloudy observations as
well as observations with bad quality. Each daily dataset is partitioned into 20◦ × 20◦

longitude and latitude Region of Interest and clustered in the {H2O, δD} value space.
Figure 4.4 shows an example {H2O, δD} pair distribution for a single 20◦× 20◦ grid

cell as indicated by the red grid lines in Figure 4.3.

Figure 4.3: Real-world data from the MUSICA IASI dataset of 383,591 geo-referenced
observations at {Longitude,Latitude} for a one-time snapshot/day (2016-06-08) with a
20◦ × 20◦ grid overlay indicating the spatial partitioning for the cluster analysis.
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Figure 4.4: Real-world data in value space ({H2O, δD} pair distribution) for a random
single 20◦ × 20◦ grid cell (#77 from Figure 4.3) with 6,779 data points.

Application

The proposed method described in Section 4.2 is applied according to the presented
setup for each individual step for the synthetic and real-world dataset as follows.

1. Splitting the data in spatial regions of interest
Synthetic and real data is split into geospatial regions on a regular grid with a
grid size of 20 x 20 degrees for longitude 180 degrees West to 180 degrees East
and latitude 90 degrees South to 90 degrees North. The specific size of the ROI is
postulated by the domain expert. This step results in 162 ROIs, which is imposed
on the real and synthetic dataset.

2. Modelling the observed data in each ROI with mixtures of Gaussians
For each spatial region, multiple Gaussian mixture models are fitted to the
data with at least two observations per cluster and a maximum number of ten
components. Each model is evaluated according to its BIC score, and the model
with the lowest BIC score is selected as the best model. The maximum number
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of ten components has been selected out of multiple experimental runs, where the
trade-off between searching for models with a higher number of components and
lower BIC scores and the number of observations per cluster has been determined.

3. Extracting cluster parameters for each Gaussian mixture component
For each Gaussian mixture component identified in Step 2, the ellipsoid properties
of the multivariate Gaussian distribution have been extracted, namely the centre
and principal axes given by the mean and eigenvectors of the covariance matrix
as well as the angle of the major axis. More specifically, the major and minor axis
length and the axis angle in degrees for the bivariate contour where 95% of the
probability falls has been extracted. These ellipsoid properties have been proven
to be most descriptive of the underlying distributions.

4. Comparison of cluster parameters for spatio-temporal changes
The comparison is conducted using the DBSCAN algorithm with a maximum
distance between two samples ε and the number of minimum points minPts in
each ε-neighbourhood. Each ε-neighbourhood is defined by the specified radius
ε and the number of minimum points (minPts) within ε from a point under
consideration so that this point can be identified as a core point. Details on
the DBSCAN algorithm have been introduced in Section 2.4.3. The DBSCAN
parameters have been assessed and evaluated on the data through empirical
analysis.

Tracking Moving Clusters

Tracking moving clusters can be achieved by looking at all GMM clusters that DBSCAN
has assigned to the same group with differences in time and space. Such differences have
to be defined a priori to identify moving clusters, for example clusters that appear in
neighbouring grid cells with a defined time delay. For the evaluation of this experiment
a time lag of one day has been chosen, looking at all neighbouring grid cells (North,
Northeast, East, Southeast, South, Southwest, West and Northwest). However, the
proposed method allows to analyse similar clusters with different time lags and paths
across the imposed lattice as well.

Tracking Emerging Clusters

Emerging and disappearing clusters can be identified by comparing clusters of the same
group in the same spatial region over time. This can be achieved by observing cluster
occurrences over consecutive time snapshots, where at some snapshots, the clusters
are present, and at other snapshots, they are not present. For example, by observing
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cluster occurrences over three consecutive days, where a cluster has been identified on
the first and third day, but not on the second day.

Tracking Changing Clusters

The proposed approach also allows comparing statistics of cluster properties within the
same group and across cluster groups. By looking at the mean, standard deviation,
minimum, maximum and percentiles of the identified clusters within the same group
and across groups, these statistical measures can provide valuable insight into the
variability of cluster properties and possible inference between clusters and associated
events.

4.3.2 Results

Synthetic Data

The results after applying the proposed method to the synthetic dataset range from
a number of four to 260 clusters with a mean Silhouette Coefficient over all data
points between −0.3 and 0.4 respectively, depending on the ε and minPts parameters,
evaluated for a ε range of [0.1, 1.0] with a step size of 0.1 and a minPts range of [2, 15]

with a step size of 1; range and step size have been chosen to cover the main variability
of the number of clusters and the Silhouette Coefficient. It can be observed that results
with a high number of clusters also show the highest number of noise count and occur
at the lower end of the ε parameter range. Figure 4.5 and Figure 4.6 illustrate the
parameter dependencies.

Results with the highest mean Silhouette Coefficient have five distinct groups that
represent all of the generated Gaussian distributions following the generation process
as described with the parameters summarised in Table 4.1.

The five groups are in accordance with the generation process and can be visualised
by plotting the mean ellipsoids defined by the extracted cluster properties, the bi-variate
distributions’ mean, the major and minor axis length and the axis angle of the 95%
contour, illustrated in Figure 4.7.
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Figure 4.5: Dependencies between ε and the number of clusters with colours indicating
the minPts parameter. The grey dotted line is at five, the number of true cluster.
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Figure 4.6: Dependencies between ε and the Silhouette Coefficient with colours indicating
the minPts parameter.

42



Chapter 4 4.3

8 6 4 2 0 2 4 6 8
x

6

4

2

0

2

4

6

8
y

0

1

2

3

4

Figure 4.7: Mean ellipsoids of the DBSCAN cluster groups for the synthetic dataset
with ε = 1.0 and minPts = 15.

Real-World Data

Applying the proposed method to the MUSICA IASI dataset yields results ranging
from zero to 337 cluster with a mean Silhouette Coefficient over all data points between
−1 and 0.6 respectively, depending on the ε and minPts parameters, evaluated for
a ε range of [0.1, 1.0] with a step size of 0.1 and a minPts range of [2, 15] with a
step size of 1; range and step size have been chosen to cover the main variability of
the number of clusters and the mean Silhouette Coefficient. It can be observed that
results with ε = 0.3 have the highest number of clusters depending on the minPts
parameter, see Figure 4.8. While the mean Silhouette Coefficient continuously increases
with an increase of the ε parameter, see Figure 4.9, the number of clusters decreases
and plateaus around one cluster. Figure 4.8 and Figure 4.9 show that the choice of
DBSCAN parameters has to be a tradeoff between the number of clusters and the
coefficient of the mean intra-cluster distance and the mean nearest-cluster distance, as
measured by the Silhouette Coefficient.

43



Chapter 4 4.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 Parameter

0

50

100

150

200

250

300

350
Nu

m
be

r o
f C

lu
st

er
minPts

2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 4.8: Dependencies between ε and the number of clusters with colours indicating
the minPts parameter.
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Figure 4.9: Dependencies between ε and the Silhouette Coefficient with colours indicating
the minPts parameter.
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Figure 4.10: Mean ellipsoids of the DBSCAN cluster groups for the real-world dataset
with ε = 0.3 and minPts = 9.

In the case of the real-world dataset, the results with the highest Silhouette Coefficient
do not necessarily produce fitting cluster representations for the analysis to conduct, as it
is the case for the synthetic dataset. Rather than according to the Silhouette Coefficient,
the DBSCAN parameters have to be chosen according to the desired granularity of
cluster representation for the data analysis in this case. For the following analysis, a
granularity of 15 representative clusters has been chosen that allows to observe moving,
changing and emerging clusters as described in the experimental setup.

The 15 clusters can be visualised by plotting the mean ellipsoids defined by the
extracted cluster properties, the bi-variate distributions’ mean, the major and minor
axis length and the axis angle of the 95% contour, illustrated in Figure 4.10.

Runtime Measurements

As stated in Section 4.2 each mixture model for any ROI can be computed in parallel,
which decreases the overall runtime significantly. To demonstrate the scalability of the
model, tests have been run on both the real-world and synthetic data with an increasing
number of CPU cores and an increasing number of maximum mixture components
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Figure 4.11: Runtime per CPUs for the synthetic and real-world dataset.

sequentially and in parallel. The measurements have been taken on a computer with six
Intel© Core™ i7-9750H CPU at 2.60GHz (12 cores in total) and 64 GB main memory.

For the sequential execution of fitting the GMM models to one spatial region after
another, one CPU core was busy for up to around one minute for the real dataset
and around 20 seconds for the synthetic dataset. Running the GMM fitting for 12
spatial regions in parallel by distributing the work as separate processes on all 12
cores reduced the runtime significantly by at least a factor of three for the real-world
dataset and synthetic dataset, providing the same overall results. Figure 4.11 shows
the decreasing runtime with an increasing number of CPUs. The number of Gaussian
mixture components has been set to ten for all runs. It is clearly visible that the
maximum gain has been achieved with four cores while adding more cores decreases the
runtime more slowly towards the minimum time required to analyse one single spatial
cell. By looking at the runtime measurements, the conclusion can be made that the
proposed approach scales well with the number of spatial regions computed in parallel.
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(a) Runtime per number of GMM components for the synthetic dataset.
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(b) Runtime per number of GMM components for the real-world dataset.

Figure 4.12: Runtime measurements for sequential and parallel runs applying the
proposed method to the synthetic (a) and real-world (b) dataset.
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Figure 4.12a and Figure 4.12b illustrates the increasing amount of computational time
necessary with the increasing number of maximum mixture components, starting from
one up to 20 components. While an increasing number of maximum mixture components
requires an almost quadratic increasing amount of time, the overall computational
time can be significantly decreased by running the GMM fits for each spatial region in
parallel.

These results highlight the scalability of the approach, which becomes more and
more critical with the increasing amount of data that needs to be analysed. In fact,
even if splitting the data in spatial Region of Interest (ROI) might not be applicable,
analysing sub-samples can be done in parallel as well. By uniform random sampling
or biased sampling, the operation of general data mining tasks like clustering can be
significantly speed-up (Kollios et al., 2003).

Tracking Moving Clusters

If two GMM clusters are similar according to the result of the DBSCAN clustering and
one is present in grid cell A at day one and present in grid cell B, a neighbour grid cell
to A, at day two, the assumption can be made that the cluster or cluster generating
process has moved from cell A to cell B. The results for the real dataset show multiple
moving clusters according to the above definition; specifically, 218 occurrences can be
identified that comply with the above definition of moving clusters with the granularity
of cluster representation illustrated in Figure 4.10.

Figure 4.13a and Figure 4.13b give one example of two neighbouring grid cells with
observations from 2016-06-11 and 2016-06-12, at longitude 40 degrees East to 60 degrees
East, latitude 50 degrees North to 70 degrees North and latitude 70 degrees North to
90 degrees North respectively. Both cells contain a specific cluster that DBSCAN has
assigned to the same group and which is highlighted with the corresponding ellipses.
The presented result has been selected as a representative example for detecting moving
clusters between spatial regions. The clusters identified in Figure 4.13a and Figure 4.13b
show close similarities; their total absolute deviation of mean, angle and major/minor
axis length is below 1.7.

However, the proposed method allows also tracking clusters with varying cluster
properties, which might not be immediately apparent. The proposed model is not
limited to the definition of moving clusters used in this example. As outlined in 4.3.1,
the definition of a moving cluster has been generalised to one spatial neighbour and
one time lag, in this case, one day. However, each step in the model can be adjusted to
the premise of the analysis.
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(a) Observations at grid cell 40◦E to 60◦E and 50◦N to 70◦N with colours
according to the best GMM fit. The blue ellipse indicates a specific
DBSCAN cluster group.
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(b) Observations at grid cell 40◦E to 60◦E and 70◦N to 90◦N with colours
according to the best GMM fit. The blue ellipse indicates a specific
DBSCAN cluster group.

Figure 4.13: Observations for two neighbouring grid cells at consecutive days. The
blue ellipses represent the same cluster group identified by DBSCAN, indicating the
movement of the distribution or the generating process.
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For example, imposing different spatial structures and temporal slices (Step 1),
varying the number of mixture components (Step 2), applying and adjusting different
clustering algorithms for clustering the mixture components properties (Step 3) and
analysing the clusters of cluster properties according to the definition of the motion
(Step 4), including more complex search patterns such as trajectories across multiple
spatial regions with varying timestamps.

Tracking Emerging Clusters

Following the predefinition of emerging and disappearing clusters in Section 4.3.1, 32
occurrences can be identified with the granularity of cluster representation illustrated
in Figure 4.10. One example of an emerging cluster is given in Figure 4.14 for the
grid cell at 100 degrees West to 80 degrees West and 50 degrees South to 30 degrees
South. The observations of three consecutive days are plotted, from top to bottom,
with observations belonging to the same cluster group indicated by the blue ellipses in
the top and bottom graph. In the middle graph, the observations are not represented
by the two distributions in the areas indicated by the red ellipses. This behaviour
allows implicating that the cluster generating process is disappearing on day two and
reemerging on day three.

Detecting emerging, disappearing and reappearing clusters with varying cluster
properties in the real-world climatology data can be a strong indicator for emerging,
disappearing and reappearing climatology events. In the presented case, the emerg-
ing and disappearing cluster in the {H2O, δD} feature space can be associated with
atmospheric water transport due to air mass mixing with air masses of distinctive
isotopologue fingerprints.

Tracking Changing Clusters

The proposed method allows tracking the evolution of cluster properties within the
same cluster group and between different cluster groups. Figure 4.15 illustrates this
approach by showing the rate of expansion per day that has been put into place for the
synthetic dataset by showing the mean values of the major and minor axis length that
is scaled according to the time snapshot of the data.

Trends in the cluster features can be identified by looking at the temporal changes
of cluster properties of any cluster group. Converging trends for two different cluster
groups can indicate the convergence of the initial separated cluster generating processes
over a more extended period of time, while steady time-series of cluster properties can
indicate cluster generating processes that stay separated even over a longer period of
time.
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Figure 4.14: Observations for one grid cell at 100◦W to 80◦West and 50◦S to 30◦S for
three consecutive days (from top to bottom). The blue ellipses indicate the GMM
components from the same cluster group for day one and day three; the red ellipses
indicate the lack of these components at day two.

Figure 4.16 and Figure 4.17 illustrate the temporal trends over six consecutive days
for the mean values of two different cluster groups each in features space ({H2O, δD})
for the real-world dataset. While Figure 4.16 shows steady time-series of mean values
for two different cluster groups, Figure 4.17 shows intersecting and possibly converging
time series of mean values for two different cluster groups, which can give rise to further
in-depth analysis of both cluster groups to explore possible interactions between them.
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Figure 4.15: Illustration of the rate of expansion per day that has been put into place
for the synthetic dataset; major ellipse axis mean value in grey (left y-axis) and minor
ellipse axis mean value in blue (right y-axis) for two cluster groups (straight and dotted
line).
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Figure 4.16: Steady time-series of mean values for two different cluster groups; δD
mean value in grey (left y-axis) and ln(H2O) mean value in blue (right y-axis) for two
cluster groups (straight and dotted line).
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Figure 4.17: Intersecting time-series of mean values for two different cluster groups; δD
mean value in grey (left y-axis) and ln(H2O) mean value in blue (right y-axis) for two
cluster groups (straight and dotted line).

4.4 Summary

This chapter presents a scalable approach for tracking clusters in spatio-temporal data.
The presented method models the observed data in each spatial region with a mixture
of Gaussians and compares extracted cluster properties over time. By dividing the
initial dataset into spatial regions or applying sampling techniques such as random
uniform sampling or biased sampling, each subset can be processed independently and
in parallel, which significantly improves the overall runtime of the proposed model.
As verified on synthetic data with known data generating processes and applied to
real-world climatology data, the proposed model can reliably detect cluster changes
over space and time, indicating moving clusters, appearing and disappearing events,
and the evolution of clusters over time. Thus this approach enables the analysis of the
evolution of geo-referenced distributions over time.

The initial step of the proposed model, dividing the data into spatial regions of
interest, allows the parallel computation of Gaussian mixture models per area, which
considerably increases the scalability of the approach. Even if dividing the data into
spatial regions before applying the Gaussian mixture model might not always be
applicable, for example, if splitting the data has a significant effect on the mixture
components by including or excluding certain observations. In these cases, an analysis of
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the point generating process can help to determine if the edge-effects can be statistically
evaluated and mitigated (Diggle, 2014). To further improve the scalability of the
model, each Gaussian mixture model could theoretically be run in parallel. Instead
of sequentially evaluating the BIC score, the model with the best BIC score could be
selected from parallel computations.

The results of the experimental evaluation in Section 4.3.2 show that the approach
can detect changes in cluster properties over space and time successfully. The examples
illustrated in Section 4.3.2 identify clusters moving between neighbouring spatial regions
with similar cluster properties according to the applied DBSCAN algorithm on all
extracted cluster properties. Although the proposed approach is not restricted to any
method for comparing the Gaussian mixture components properties, DBSCAN shows
good results and has the advantages that the number of clusters has not to be specified
as a model parameter and the ε and minPts parameters can be fine-tuned according
to the cluster properties.

While identifying spatio-temporal changes successfully, one drawback of the proposed
approach is that modelling the data with mixtures of Gaussians with the number
of components depending on the model BIC score is not necessarily describing the
underlying process that generated the data accurately. Therefore the interpretation
of the results additionally relies on domain knowledge associating cluster and cluster
changes to processes. The utilization of a more specific model that can also capture the
underlying data generating processes more accurately is presented in the next chapter.
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CoExDBSCAN: Semi-Supervised
Clustering for Spatio-Temporal Data

This chapter introduces a novel semi-supervised clustering algorithm with regard
to spatio-temporal data; however, it is not limited to any particular set of data.
The algorithm is based on the original DBSCAN clustering algorithm and can be
described as a density-based clustering algorithm with constrained expansion, namely
CoExDBSCAN. The algorithm and the results presented in this chapter have been
published in parts in Ertl et al. (2020).

5.1 Motivation

The experimental studies and evaluation of unsupervised clustering methods for spatio-
temporal data detailed in the previous chapter, Chapter 4, show that in order to
identify correlated structures in spatio-temporal datasets, there is the need for a
clustering algorithm that can form partitions of data complying with a priori constraints
in full value space or value subspaces. To overcome the issues of conventional full-
space clustering methods, there has been a growing interest in subspace clustering
and correlation clustering methods (Achtert et al., 2008). For this purpose, different
subspace and correlation clustering algorithms have been proposed, which extend
traditional clustering algorithms to detect correlations in subsets of features (Agrawal
et al., 1998; Aggarwal and Yu, 2000). While some correlation algorithms are able to
find arbitrarily oriented subspace clusters, for example, the Clustering in Arbitrary
Subspaces based on the Hough transform (CASH) algorithm (Achtert et al., 2008),
or can identify local subgroups of data objects sharing a uniform but arbitrarily
complex correlation, for example the Computing Correlation Connected Clusters (4C)
algorithm (Böhm et al., 2004), theses algorithms still face challenges, for instance, with
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overlapping clusters or uncorrelated complex relations between features. For this reason,
there has been a growing interest in semi-supervised clustering methods, for example,
constrained clustering, where additional a priori information or domain knowledge is
incorporated into the clustering process to better capture complex relations between
features (Pourrajabi et al., 2014; Basu et al., 2008; Dinler and Tural, 2016). This
chapter introduces a novel semi-supervised clustering algorithm combining different
techniques from subspace, correlation and constraint clustering.

5.2 CoExDBSCAN Algorithm

The proposed algorithm, CoExDBSCAN, modifies the original DBSCAN algorithm (1)
to allow a subspace to be used for the density-based definition of neighbourhoods and
(2) to allow the restriction of the cluster expansion according to a priori constraints
in the same or a different subspace of the dataset. For this purpose, the DBSCAN
algorithm, that has been introduced in detail in Chapter 2, Section 2.4.3, needs to be
adopted for both proposed extensions. First, the ε-neighbourhood definition of a point,
see Definition 1, has to be reformulated.

Definition 12. CoExDBSCAN ε-neighbourhood of a point
Let D be a set (database) of points. The CoExDBSCAN ε-neighbourhood of a point p,
denoted by CoExNε(p), is defined by

CoExNε(p) = {q ∈ D|dist(pς , qς) ≤ ε ∧ constraints(pρ, qρ)}

where pς , qς are the subspace representations of point p and q of the user-defined spatial
subspace ς, pρ, qρ are the subspace representations of point p and q of the user-defined
constraint subspace ρ and the constraints function evaluates true for each constraint
Γi in a user-defined set of constraints Γ = {Γ1,Γ2, ...,Γm}.

The pseudocode of the CoExDBSCAN algorithm is given in Algorithm 2; differences
to the original DBSCAN algorithm, see Algorithm 1, in the pseudocode representation
by Schubert et al. (2017) are coloured in red and marked by a star (*). In addition to
the original input parameters ε and minPts, CoExDBSCAN requires the specification
of the spatial subspace (sDim) and the constraint subspace (cDim), as well as the
declaration of the user-defined constraints (cFunc).
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Algorithm 2: Pseudocode of the CoExDBSCAN Algorithm
input : dataset D
input : radius ε
input : density threshold minPts
input : distance function dist
input : spatial dimensions sDim *
input : user-defined constraints cFunc *
input : constraint dimensions cDim *
output : point labels label initially undefined

1 foreach point p in dataset D do
2 if label(p) 6= undefined then continue;
3 Neighbours N ← RangeQuery(D, dist, sdim, p, ε) *;
4 if |N | < minPts then
5 label(p)← Noise;
6 continue;

7 c← next cluster label;
8 label(p)← c;
9 Seed set S ← N \ {p};

10 foreach q in S do
11 if label(q) = Noise then label(q)← c;
12 if label(q) 6= undefined then continue;
13 if PointConstraint (cFunc, cDim, q) is false then continue *;
14 Neighbours N ← RangeQuery(D, dist, sdim, q, ε) *;
15 label(q)← c;
16 if |N | < minPts then continue;
17 foreach s in N do
18 S ← S ∪ s;
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The RangeQuery function from the DBSCAN algorithm returns all points in the
dataset that are within a certain distance to a given point, i.e. the ε-neighbourhood
(Definition 1). For the CoExDBSCAN algorithm, the RangeQuery function has been
modified to allow the specification of a subspace for the distance function dist, so that
the distance function is only evaluated in the given subspace.

The PointConstraint function has been newly introduced for the CoExDBSCAN
algorithm and evaluates for a given point the given set of user-defined constraints
in a specified subspace. While there are no general restrictions for the user-defined
constraints, to constrain the expansion of clusters, the constraints should be formulated
based on the cluster points currently under consideration. This means that the algorithm
should be enabled to decide if a new point should be included in the current set of
points to form a cluster or not.

With these modifications, the algorithm works similar to the DBSCAN algorithm
as following. CoExDBSCAN starts with an arbitrary point from the set of all points
and iterates over all points (outer loop, Line 1). If the current point has already been
labelled (Line 2), the algorithm moves on to the next point. If not, the CoExDBSCAN
ε-neighbourhood for the given point is located (Line 3). This initial ε-neighbourhood
corresponds to the DBSCAN ε-neighbourhood (Definition 1) with the difference that
the distance function is only evaluated in the given subspace. The additional restriction
on the user-defined constraints (Definition 12) is evaluated in the inner loop starting at
Line 10. If the ε-neighbourhood contains less than minPts points (Line 4), the point
is labelled as noise (Line 5), and the algorithm moves on to the next point. If not,
the point is considered a core point and starts to form a cluster, e.g. is labelled with
the next available label (Line 7-8). Proceeding from the core point, all neighbouring
points are added to a set of initially empty seeds (Line 9). For each point in the set
(inner loop, Line 10), if the point has been previously labelled as noise, the point is
labelled according to the current cluster label (Line 11). If the point has already been
labelled with a cluster label (Line 12) the algorithm continues with the next point in
the seed set (inner loop). If not, the user-defined constraints are evaluated for the given
point in the seed set and the specified subspace (Line 13). If the evaluation fails, the
algorithm continues with the next point in the seed set (inner loop). If the evaluation
holds true, the CoExDBSCAN ε-neighbourhood for the given point is located (Line 14),
and the point is labelled with the current cluster label (Line 15). If the ε-neighbourhood
contains less than minPts (Line 16), the algorithm continues with the next point in
the seed set (inner loop). If not, each point from the ε-neighbourhood of the current
seed point is added to the set of seed points (Line 17-18). The algorithm continues with
the next point in the seed set (inner loop). If the seed points are empty, the algorithm
continues with the next point in the dataset (outer loop).
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CoExDBSCAN Example

To provide an intuitively accessible example, a simplified constraint formulation can be
used that sets a threshold for a specific feature dimension. Figure 5.1 illustrates the
restriction for the cluster expansion step of the original DBSCAN algorithm; Figure
5.1a and Figure 5.1b both depict the state of the respective algorithm after the first
time a set of seed points has been located.

Starting from the blue-marked point, the original DBSCAN algorithm creates the
first cluster with all neighbouring points within the ε-neighbourhood of the starting
point, see red points in Figure 5.1a. Each point within the ε-neighbourhood is also
considered a seed point, and the algorithm tries to expand the cluster proceeding from
each seed point. A simplified constraint on the cluster expansion can be formulated as
following:

Definition 13. A Point pi belongs to a cluster C = p1, ..., pn, according to Definition
5, with n number of cluster points iff

pi(cDim) > ζ (5.1)

where cDim is the constraint dimensions and ζ a specified threshold.

The threshold ζ in the illustrated example is arbitrarily set to −0.8 for demonstration
purpose, and the x feature of the dataset is chosen as the constraint dimension cDim.
The first notable difference for the CoExDBSCAN algorithm compared to the DBSCAN
algorithm is the reduced number of cluster points (red points). Since the constraint
is also enforced at the initial creation of the cluster, the initial cluster contains fewer
points than compared to the initial cluster of the DBSCAN algorithm. With the initially
reduced cluster points there are consequently less neighbouring points, i.e. less points
in the set of seeds.

With the reduced set of seed points, the cluster expansion step can only operate
on the reduced set, which only allows the cluster to grow according to the formulated
constraint.
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(a) State of the DBSCAN algorithm before expanding the first cluster.
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(b) State of the CoExDBSCAN algorithm before expanding the first cluster.

Figure 5.1: Simplified example to demonstrate the constraint on the cluster expansion
step of the CoExDBSCAN algorithm compared to the original DBSCAN algorithm.
Initial cluster points are marked in red, with the initial core point (blue marking) and
two random neighbours (green marking); red circles indicate the ε-neighbourhood of
the marked points.
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5.3 Evaluation

This section details the experimental studies to evaluate the proposed model on synthetic
and real-world datasets. First, the setup for conducting the experimental studies is given
in the following section, with the main objective to detect correlations, especially linear
correlations, in subsets of features. Second, the results of comparing the CoExDBSCAN
algorithm to the original DBSCAN algorithm as well as state-of-the-art algorithms for
semi-supervised clustering and correlation clustering are presented together with the
runtime analysis.

5.3.1 Setup

Synthetic Data

The correctness of the CoExDBSCAN algorithm is verified on a generated synthetic
datasets. The dataset has been generated since the generation of a particular dataset
allows full control over the properties of the clusters. This dataset has been generated
to be especially challenging for density-based clustering methods as well as subspace
and correlation clustering methods but remains intuitively accessible and has a clear
visualization.

The synthetic dataset contains three true clusters with overlapping areas of all
three clusters and in total 2,000 points with a different number of points per cluster to
generate inhomogeneous clusters. Table 5.1 lists the generation methods and interval
ranges of the variables together with their linear dependencies. Figure 5.2 illustrates
the synthetic dataset in three-dimensional space (Figure 5.2a) and two-dimensional
projection (Figure 5.2b). The values for the x and y variables of the cluster with
label zero, blue colour in Figure 5.2, are generated by sampling the random uniform
distribution in the half-open interval [0, 1); the values for the z variable are computed
using the linear equation 0.1x+ 0.1y. For the cluster with label one, orange colour in
Figure 5.2, the values for the x and y variables are generated by sampling the random
uniform distribution in the half-open interval [0, 1); the values for the z variable are
computed using the linear equation 0.4x+ 0.2y. The green coloured cluster with label
two in Figure 5.2 is generated by evenly spaced x values in the closed interval [0, 1] and
the values for the y and z variables following the linear equation −0.5x+ 0.2 + ξ, where
ξ is some random variation with ξ ∼ N (0, 0.01).
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(a) Synthetic data with true labels.
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(b) Synthetic data {x,z} projection.

Figure 5.2: Synthetic dataset for the evaluation of the CoExDBSCAN algorithm.
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Table 5.1: Value range and dependencies for the first synthetic dataset.

Cluster Points x y z

0 1,000 uniform [0,1) uniform [0,1) 0.1x+ 0.1y

1 500 uniform [0,1) uniform [0,1) 0.4x+ 0.2y

2 500 evenly [0,1] −0.5x+ 0.2 + ξ −0.5x+ 0.2 + ξ

All parameters for generating the synthetic data, e.g. the number of clusters, points
per cluster and linear equation parameters, have been chosen from empirical knowledge
to provide a challenging dataset that remains intuitively accessible and has a clear
visualisation but poses a challenge to the evaluated clustering algorithms because 1)
the clusters have different densities, with a very dense, line-shaped cluster and two
looser, plane-shaped clusters and 2) all clusters are overlapping with some proportions.
The plane-shaped clusters have an overlapping edge, which is crossed by parts of the
line-shaped cluster. In addition, the dataset has an inhomogeneous distribution of
points for the three clusters.

Real-World Data

The real-world dataset remains the same as in the previous chapter, see Chapter 4
(Section 4.3.1), and contains time snapshots from the MUSICA IASI satellite-based
remote sensing dataset as described in Section 2.2. Different to the dataset from Chapter
4, the evaluation of the CoExDBSCAN algorithm focuses on a particular area of interest
which is subject of further analysis in the next chapter as well.

Figure 5.3 illustrates the first time snapshot at 2016-06-08 with the area of interest,
7.5 degrees North to 15 degrees North and 8 degrees East to 8 degrees West, highlighted
by the red rectangle. Domain experts have proposed this particular area of interest to
be aligned with multiple moisture transport processes studies. In the following, the
data from the period 2016-06-08 to 2016-06-14 of the area of interest are analysed.
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Figure 5.3: MUSICA IASI H2O data for morning satellite overpasses at 2016-06-08
with the area of interest highlighted by the red rectangle. H2O values are in parts
per million by volume (ppmv) in logarithmic scale. The depicted data are limited to
cloud-free observations and have been filtered for best quality (retrievals with good
sensitivity and low errors).

Application

To evaluate linear correlations in the synthetic dataset and real-world dataset, the
following constraint can be formulated to restrict the expansion of clusters to a defined
margin around the linear regression of existing cluster points.

Definition 14. A Point pi belongs to a cluster C = p1, ..., pn, according to Definition
5, with n number of cluster points iff

(YC∪pi − ŶC∪pi)2 < δ · 1

n

∑
C\pi

(YC\pi − ŶC\pi)2 (5.2)

where Y and Ŷ are the dependent variable and fitted value of the linear regression
respectively, fitted to the user-defined subspace of features.

In other words, a point pi is added to an existing cluster C only if the squared
residuals of the linear regression of all cluster points including pi is smaller than the
mean squared residuals of all cluster points without pi times a certain threshold δ. The
linear regression is fitted to the user-defined constraint subspace, see Definition 12,
and the threshold parameter δ provided by the user as well. Experiments have shown
that this constraint is a suitable constraint that expresses the a priori knowledge of
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correlated structures in the dataset generic and allows the algorithm to expand clusters
on arbitrarily correlated structures and changing correlations up to a certain degree.

The CoExDBSCAN algorithm outlined in Algorithm 2 has been implemented in
Python utilizing the scikit-learn (Pedregosa et al., 2011) machine learning package
implemented in Python as well. For the constraint formulated in Definition 14 the linear
regression is estimated by the ordinary least squares implementation by the statsmodels
Python module (Seabold and Perktold, 2010).

5.3.2 Results

Runtime Analysis

The main computational cost of the original DBSCAN algorithm is due to the compu-
tation of distance queries for each point in the dataset. Ester et al. (1996) argue that
such distance queries can be supported efficiently by spatial access methods such as
R∗-trees (Beckmann et al., 1990). R∗-trees have a height of O(log n) for a dataset of n
points in the worst case, and a query with a small query region has to traverse only
a limited number of paths (Ester et al., 1996). Ester et al. further argue that since
the ε-neighbourhood queries are expected to be in a small region compared to the size
of the whole data space, the average runtime complexity of a single region query is
O(log n). DBSCAN has to execute one query for each of n points in the dataset, which
results in an overall average runtime complexity of O(n log n).

Introducing a set of constraints Γ = {Γ1,Γ2, ...,Γm} (Definition 12) to the expansion
step of the DBSCAN algorithm adds the complexity of O(n ·max(Γ)) to check the
set of constraints for each point. The complexity of constraints can vary greatly, for
example from hash table searches with average time complexity O(1) (Cormen, 2009) to
linear regression complexity O(w2n+ w3) for n number of observations and w number
of weights (Mohri et al., 2012). The runtime complexity of CoExDBSCAN depends on
the user-defined constraints and is on average the runtime complexity of DBSCAN plus
the maximum complexity of the user-defined constraints, O(n ·max(Γ) + n · log n).

Synthetic Data

Since the true labels of the synthetic dataset are known, the CoExDBSCAN algorithm
can be evaluated according to the Adjusted Rand Index (ARI) and Cluster Accuracy
(ACC) metrics as detailed in Chapter 2, Section 2.4.4.

65



Chapter 5 5.3

The evaluation on the synthetic dataset compares the CoExDBSCAN algorithm to
the original DBSCAN algorithm as a baseline approach, the CK-means algorithm (Pelleg
and Baras, 2007) and the PCK-means algorithm (Basu et al., 2004) as a comparison
to existing semi-supervised clustering algorithms and the CASH algorithm by Achtert
et al. (2008) as a state-of-the-art comparison.

The constrained k-means algorithm (CK-means) and the pairwise constrained k-
means algorithm (PCK-means) are semi-supervised variants of the K-means algorithm,
see Chapter 3, Section 3.2.1 and Section 3.2.2. The implementations of both algorithms
are provided by the active-semi-supervised-clustering Python package.

The Clustering in Arbitrary Subspaces based on the Hough transform (CASH)
algorithm has been chosen, because according to the authors Achtert et al. (2008) CASH
significantly outperforms other correlation clustering algorithms, such as the Arbitrarily
ORiented projected CLUSter generation (ORCLUS) algorithm or the Computing
Correlation Connected Clusters (4C) algorithm, on datasets with highly overlapping
clusters in terms of robustness and effectiveness. The implementation is provided by the
Environment for deveLoping KDD-applications supported by Index-structures (ELKI)
data mining software (Schubert and Zimek, 2019) written in Java.

The CoExDBSCAN and DBSCAN algorithm are evaluated for an ε range of
[0.01, 0.20] with a step size of 0.01 and a minPts range of [10, 70] with a step size of
10; range and step size have been chosen to cover the main variability of the number
of clusters and the cluster accuracy. The δ threshold parameter for the constraint
formulated in Definition 14 is evaluated for three values [3, 4, 5] that yield the best
accuracy score on a given set of parameters. As spatial subspace and constraint subspace
for the CoExDBSCAN algorithm, see Definition 12, only the x and z features have been
selected, see Figure 5.2, based on empirical analysis. For the DBSCAN, CK-means,
PCK-means and CASH algorithm the full value space has been provided resulting in
higher accuracy scores in general.

The results after applying the proposed CoExDBSCAN algorithm to the synthetic
dataset range from zero to 26 clusters. The ARI score is between 0 and 0.60 and the
Cluster Accuracy (ACC) ranges from 0.32 to 0.82, depending on the ε and minPts

parameters of the original DBSCAN algorithm and the δ threshold parameter. Figure
5.4 illustrates the parameter dependencies to the Cluster Accuracy. The parameter
set with the highest accuracy (∼ 82%) corresponds to ε = 0.03, minPts = 20 and
δ = 5, indicated by the first red dashed line in Figure 5.4. The plot of the parameters’
dependencies and the ARI is given in Appendix A.1.
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Figure 5.4: Dependencies between ε,minPts and δ parameters and the Cluster Accuracy
(ACC). The two red dashed lines indicate the set of parameters with the highest
accuracies, 0.82 and 0.80.

However, the parameter set with the second highest accuracy (∼ 80%), with ε = 0.09,
minPts = 20 and δ = 4 indicated by the second red dashed line in Figure 5.4, yields
a better result in terms of the number of noise points, see Table 5.2, which can be
validated visually as well, see Figure 5.5 and Figure 5.6.
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Figure 5.5: CoExDBSCAN clustering result with the highest accuracy (∼ 82%), ε = 0.09,
minPts = 20 and δ = 4, indicated by the second red dashed line in Figure 5.4.
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Figure 5.6: CoExDBSCAN clustering result with the second highest accuracy (∼ 80%),
ε = 0.03, minPts = 20 and δ = 5, indicated by the first red dashed line in Figure 5.4.

Applying the DBSCAN algorithm to the synthetic dataset for the same parameter
range results in clusterings that range from zero to 24 clusters. The ARI score is
between 0 and 0.52 and the ACC ranges from 0.50 to 0.74, depending on the ε and
minPts parameters. The plots of the parameters’ dependencies and both metrics are
given in Appendix A.1. The clustering result with the highest accuracy produces only
one cluster; see Figure 5.7.

The clustering result with the highest accuracy (∼ 70%) and the correct number
of clusters does not correctly represent the true structure of the clusters as well, as
illustrated in Figure 5.8. An example for a clustering result that better captures the
true structure of the data is given in Figure 5.9. More details on the results are given
in Table 5.2.
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Figure 5.7: DBSCAN clustering result with the highest accuracy (∼ 74%), ε = 0.03

and minPts = 30.
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Figure 5.8: DBSCAN clustering result with the highest accuracy (∼ 70%) and correct
number of clusters, ε = 0.09 and minPts = 20.
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Figure 5.9: Example DBSCAN clustering result with a better visually verifiable repre-
sentation of the true clusters; cluster accuracy ∼ 60%, ε = 0.14 and minPts = 30.

While the CK-means algorithm can be applied to the synthetic data with partially
labelled data, the true labels have to be transformed into pairwise constraints for the
PCK-means algorithm, see Chapter 3 (Section 3.2.2). For the must-link constraints,
all pairwise combinations for each point within each cluster are generated, and for the
cannot-link constraints, all pairwise combinations between cluster points have to be
generated.

Figure 5.10 shows the increase of accuracy and the ARI score for the CK-means
algorithm depending on the fraction of true labels provided as partially labelled a priori
information to the algorithm. The fraction of labels has been randomly sampled from
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Figure 5.10: Cluster Accuracy and Adjusted Rand Index for the constraint k-means
clustering algorithm depending on the fraction of true labels provided; red dashed lines
indicate the same accuracy (∼ 80%) as for the CoExDBSCAN algorithm by ∼ 55% of
true labels provided.

all true labels without replacement. It can be observed that providing around 55% of
the true labels results in the same accuracy of the CK-means clustering algorithm as
the accuracy of the CoExDBSCAN algorithm.

Figure 5.11 visualizes an example clustering result of the synthetic data applying
the CK-means algorithm with 55% of the true labels randomly sampled provided to the
algorithm. With around half of the true labels provided in addition to the true number
of clusters k = 3, the clusters identified by the CK-means algorithm show overlapping
areas with a different inherent correlation structures. This can be observed for example
for cluster 0 (blue colour) and cluster 1 (orange colour) in the x− z projection for x
values greater 0.6. The parameter values, Cluster Accuracy (ACC) and Adjusted Rand
Index (ARI) are summarised in Table 5.2.

Figure 5.12 shows the increase of accuracy and the ARI score for the PCK-means
algorithm depending on the number of pairwise constraints provided. The pairwise
constraints have been sampled from the transformed true labels with the same proportion
of must-link and cannot-link constraints.

It can be observed in Figure 5.12 that providing around 2, 200 constraints, 1, 100

must-link and 1, 100 cannot-link constraints respectively, results in the same accuracy of
the PCK-means clustering algorithm as the accuracy of the CoExDBSCAN algorithm.
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Figure 5.11: Example constraint k-means clustering result; cluster accuracy ∼ 80%,
number of true clusters given k = 3 and 55% of true labels provided.
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Figure 5.12: Cluster Accuracy and Adjusted Rand Index for the pairwise constraint
k-means clustering algorithm depending on the number of constraints provided; red
dashed lines indicate the same accuracy (∼ 80%) as for the CoExDBSCAN algorithm
by 2, 200 constraints provided.

Figure 5.13 visualizes an example clustering result of the synthetic data applying
the PCK-means algorithm with 2, 200 constraints based on the true labels randomly
sampled provided to the algorithm. With 2, 200 constraints, 1, 100 must-link and 1, 100

cannot-link constraints respectively, provided in addition to the true number of clusters
k = 3, the PCK-means algorithm shows a qualitative better result as compared to
the CK-means clustering algorithm, where the overlap of identified clusters is visibly
smaller.

71



Chapter 5 5.3

x
0.0 0.2 0.4 0.6 0.8 1.0

y
0.0

0.2
0.4

0.6
0.8

1.0

z

0.0
0.1
0.2
0.3
0.4
0.5
0.6

cluster 0
cluster 1
cluster 2

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

z
Figure 5.13: Example pairwise constraint k-means clustering result; cluster accuracy
∼ 78%, number of true clusters given k = 3 and 2, 200 constraints based on the true
labels provided.

The parameters for the CASH algorithm as a state-of-the-art comparison that need
to be defined are first the minimum number of sinusoidal curves that need to intersect a
hypercuboid in the parameter space such that this hypercuboid is regarded as a dense
area (Achtert et al., 2008). The transformation from data space to parameter space is
done following an approach based on the Hough transformation (Duda and Hart, 1972).
According to Achtert et al. (2008) this parameter represents the minimum number of
points in a cluster. Second, the maximum number of splits along a search path in
parameter space has to be given that controls the maximally allowed deviation from the
hyperplane of the cluster in terms of orientation and jitter. Third, the jitter parameter
has to be defined that allows a certain degree of deviation from exact intersections of
sinusoidal curves due to the discretization of the parameter space into grid cells.

Figure 5.14 illustrates the dependencies of the three CASH parameters to the
cluster accuracy (y-axis) for the synthetic dataset, the minimum number of sinusoidal
curves/minimum number of points (minPts), the maximum number of splits (maxSplit)
indicated by colours and the jitter indicated by the line style. The parameter space
has been evaluated for the minimum number of curves in the interval [1, 1000] with a
step size of one, the maximum number of splits for 5, 10 and 20 and the jitter values
0.1, 0.15 and 0.2. The range for each parameter has been chosen to cover the main
variability in cluster accuracy.

The parameter space exploration shows that CASH reaches its highest cluster
accuracy (∼ 77%) for minPts = 460, maxSplit = 20 and jitter = 0.2, see Figure 5.14.
Figure 5.15 visualizes an example clustering result of the synthetic data applying the
CASH algorithm minPts = 460, maxSplit = 20 and jitter = 0.2.
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Figure 5.14: Dependencies between minPts, maxSplit and jitter parameters and the
Cluster Accuracy (ACC). The two red dashed lines indicate the set of parameters with
the highest cluster accuracy, minPts = 460, maxSplit = 20 and jitter = 0.2.

The number of true clusters has been correctly identified, further the algorithm
demonstrates its capability to find subspace clusters with correlated structures even if
they are intersected by other clusters. However, the CASH algorithm can not entirely
separate overlapping areas with a different inherent correlation structure similar to the
results with the CK-means algorithm, for example, cluster 0 (blue colour) and cluster 1
(orange colour) that are noticeable in the 3D view and the x-z projection for x values
smaller 0.4.
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Figure 5.15: Example CASH clustering result; cluster accuracy ∼ 77%, minPts = 460,
maxSplit = 20 and jitter = 0.2.
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Table 5.2 summarizes the clustering results for the synthetic data applying the
CoExDBSCAN algorithm, the DBSCAN algorithm the CK-means and PCK-means
algorithms and the CASH algorithm. Without the prior knowledge of the true number
of clusters or partially labelled data, CoExDBSCAN is outperforming the original
DBSCAN algorithm as a baseline approach and the state-of-the-art CASH algorithm
in terms of Cluster Accuracy (ACC), Adjusted Rand Index (ARI) and the ability
to separate clusters with different inherent correlated structures. To reach a similar
accuracy as the CoExDBSCAN algorithm, the semi-supervised algorithms CK-means
and PCK-means require around half of the true labels known a priori or around 2,000
pairwise constraints in addition to the true number of clusters. Although given this
amount of knowledge to the algorithms in advance, the clustering results can not clearly
separate the clusters with different inherent correlations.

ε minPts δ noise cluster ARI ACC

CoExDBSCAN
0.03 20 5 435 3 0.60 0.82
0.09 20 4 20 3 0.59 0.80

DBSCAN
0.03 20 - 405 1 0.37 0.70
0.02 10 - 428 3 0.37 0.70
0.08 50 - 21 3 0.20 0.61

k known labels cluster ARI ACC
CK-means 3 55% 3 0.49 0.80
PCK-means 3 2,200 3 0.46 0.78

maxSplit minPts jitter cluster ARI ACC
CASH 20 460 0.2 3 0.44 0.77

Table 5.2: Summary of clustering results for the synthetic data using the adjusted Rand
index (ARI) and Cluster Accuracy (ACC) metrics.

Real-World Data

To evaluate the proposed CoExDBSCAN algorithm on the real-world MUSICA IASI
dataset in the stipulated area of interest without a priori known labels, there can be
a comparison made between the DBSCAN algorithm, the CASH algorithm and the
CoExDBSCAN algorithm in terms of their ability to identify correlated structures that
are geographically close and that are expected to follow theoretical assumptions, see
Chapter 2 (Section 2.2).
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Figure 5.16: Dependencies between ε and minPts parameters and the number of
clusters identified by DBSCAN.

Applying the DBSCAN algorithm to an arbitrarily chosen time snapshot of the
data, i.e. one day, in the area of interest in the parameter space ε ∈ [0.05, 0.5] with
a step size of 0.05 and minPts ∈ [10, 50] with a step size of 1 results in zero up to
21 clusters, with the number of clusters peak at ε around 0.3 and minPts around 10,
as illustrated in Figure 5.16. To compare the selected algorithms on the same level
of granularity for the number of clusters, the parameter set that produces 20 clusters
has been chosen, i.e. ε = 0.35 and minPts = 12. The feature space for the clustering
algorithm consists of the latitude and longitude values as well as the natural logarithm
of the H2O values and the natural logarithm of the δD values divided by 1,000 plus
one, ln( δD

1000
+ 1), assuming a linear correlation between ln(H2O) and ln( δD

1000
+ 1). This

assumption is expected to be verifiable by correlated structures in the {H2O, δD} value
space. All features have been standardized by removing the mean and scaling to unit
variance to avoid individual features dominating the distance calculations.

Figure 5.17 shows the clustering result for the DBSCAN algorithm on the defined and
standardized feature space of the real-world data snapshot with the selected parameter
set in the geo-referenced latitude and longitude space. The result shows mostly spatial
discrete and concise clusters, except the first large cluster; points that do not belong to
any cluster (noise) are not shown. The same pattern can be observed in the {H2O, δD}
feature space, see Figure 5.18, which shows primarily discrete and concise clusters,
except for the first large cluster. However, there are no particular correlated structures
recognizable.
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Figure 5.17: Example DBSCAN clustering result for the real-world data at 2016-
06-08 in the area of interest. Each plot shows a single cluster in the geo-referenced
latitude/longitude space, 20 clusters in total.
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Figure 5.18: Example DBSCAN clustering result for the real-world data at 2016-06-08
in the area of interest. Each plot shows a single cluster in the {H2O, δD} value space,
20 clusters in total.
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This visual intuition can be qualified by looking at the distribution of the correlation
coefficient values and their p-values, see Figure 5.19 and Figure 5.20. The values of the
Pearson correlation coefficient, either negative or positive, for the DBSCAN clusters
are weak correlations with p-values well above an assumed cutoff at 0.05 as indicated
by the red dashed line in Figure 5.20.
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Figure 5.19: Distribution of correlation coefficient values for the DBSCAN, CASH and
CoExDBSCAN algorithms.
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algorithms.
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Figure 5.21: Dependencies between minPts, maxSplit and jitter parameters and the
number of clusters identified by CASH.

In comparison, the CASH algorithm can produce clustering results with the same
level of granularity, i.e. the same number of clusters, with the parameters minPts =

80, maxSplit = 5 and jitter = 0.20, that have been determined via grid search
on the parameter space minPts ∈ [10, 100], maxSplit ∈ {5, 10, 20} and jitter ∈
{0.10, 0.15, 0.20}, see Figure 5.21.

The clusters in the geo-referenced latitude and longitude space for the CASH
algorithm illustrated in Figure 5.22 are not as concise and spatial discrete as the clusters
identified by the DBSCAN algorithm. However, in the {H2O, δD} feature space,
the clusters found by the CASH algorithm exhibit noticeably more of the correlated
structures than the clusters found by the DBSCAN algorithm. The values of the
Pearson correlation coefficient, either negative or positive, for the CASH clusters are
in general higher than the values for the DBSCAN clusters, as shown in Figure 5.19.
The p-values are all below an assumed cutoff at 0.05, and therefore can be assumed to
be significant, as indicated by the red dashed line in Figure 5.19, except for negative
correlations where there are some values in the upper 1.5× Interquartile range (IQR)
above 0.05.
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Figure 5.22: Example CASH clustering result for the real-world data at 2016-06-08 in the
area of interest. Each plot shows a single cluster in the geo-referenced latitude/longitude
space, 20 clusters in total.
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Figure 5.23: Example CASH clustering result for the real-world data at 2016-06-08 in
the area of interest. Each plot shows a single cluster in the {H2O, δD} value space, 20
clusters in total.
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Figure 5.24: Dependencies between ε, minPts and δ parameters and the number of
clusters identified by CoExDBSCAN.

The CoExDBSCAN clustering results with the same level of granularity can be
achieved with the parameter set ε = 0.25, minPts = 10 and δ = 2.0. These parameters
have been determined via grid search on the parameter space ε ∈ [0.20, 0.50] with a
step size of 0.01, minPts ∈ [10, 20] with a step size of 5 and δ ∈ [1.0, 3.0] with a step
size of 0.5, see Figure 5.24.

The clusters in the geo-referenced latitude and longitude space for the CoExDBSCAN
algorithm illustrated in Figure 5.25 are very concise and spatial discrete; further, the
clusters exhibit the correlated structures to a high degree in the {H2O, δD} feature
space. For positive correlations, the values of the Pearson correlation coefficient for the
clusters are higher (median, lower and upper quartile) than the coefficient values for
the CASH and DBSCAN clusters. For negative correlations, the median of the Pearson
correlation coefficients for the clusters is below the median for the CASH correlation
coefficients, but higher than the median for the DBSCAN correlation coefficients. The
median p-values for both negative and positive correlations are below an assumed cutoff
at 0.05, and therefore can be assumed to be significant (Figure 5.19). In comparison
to the clusters found by DBSCAN, the clusters found by CoExDBSCAN are spatially
separated as well, but better represent the a priori assumed linear correlation in the
{H2O, δD} feature space.
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Compared to the clusters found by CASH, some represented correlations are not as
strong and significant as the represented correlations by the CASH clusters. However,
the spatial coherence outweighs this fact for the objective of the analysis to identify
correlated structures that are geographically close and that are expected to follow
theoretical assumptions.
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Figure 5.25: Example CoExDBSCAN clustering result for the real-world data at 2016-
06-08 in the area of interest. Each plot shows a single cluster in the geo-referenced
latitude/longitude space, 20 clusters in total.
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Figure 5.26: Example CoExDBSCAN clustering result for the real-world data at 2016-
06-08 in the area of interest. Each plot shows a single cluster in the {H2O, δD} value
space, 20 clusters in total.
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5.4 Summary

This chapter introduced a new density-based clustering algorithm with constrained
cluster expansion, namely CoExDBSCAN. CoExDBSCAN uses DBSCAN to find
density-connected clusters in a defined subspace of features and restricts the expansion
of clusters to a priori constraints. Incorporating a priori knowledge into the clustering
process can significantly improve the clustering results. It can align the outcome of
the clustering process with the objective of the data analysis, as demonstrated in
Section 5.3 for synthetic and real-world data. The proposed approach combines different
techniques from subspace, correlation and constrained cluster analysis. In particular,
two user-defined parameters are introduced to the original DBSCAN algorithm, one
to define the dimensions of the subspace to be used to discover density-based clusters,
and one to define the dimensions of the subspace to be used to apply constraints to the
cluster expansion, i.e. restricting the cluster expansion step in the original DBSCAN
algorithm to the provided user-defined constraints.

The validation of the algorithm on the synthetic and real-world dataset demonstrates
that CoExDBSCAN is especially suited for spatio-temporal data, where one subspace
of features defines the spatial extent of the data and another the correlations between
features. In the presented verification, CoExDBSCAN outperforms the DBSCAN
algorithm and the CASH algorithm in terms of Cluster Accuracy (ACC) and Adjusted
Rand Index (ARI) on the synthetic dataset. To achieve a similar accuracy with the
semi-supervised clustering algorithms CK-means and PCK-means on the presented
synthetic dataset, around 55% of true labels or around 2, 200 pairwise constraints have
to be provided a prior. In addition, the CK-means and PCK-means algorithms need to
know the number of clusters to form in advance, whereas the CoExDBSCAN is able to
explore the given dataset without this kind of restriction. The presented verification
on the real-world climatological dataset demonstrates that CoExDBSCAN is better
suited to identify correlated structures that are geographically close than the original
DBSCAN algorithm as well as the CASH algorithm.

Schubert et al. (2017) showed that the original DBSCAN algorithm continues to be
relevant even for high-dimensional data, although the parameters become hard to choose
in high-dimensional data due to the loss of contrast in distances. Since CoExDBSCAN
is based on DBSCAN and overcomes the issue of loss of contrast in distances by
utilizing a user-defined subspace for the distance measure, CoExDBSCAN also remains
relevant for high-dimensional data beyond the presented low-dimensional verification
and evaluation datasets. However, finding and expressing suitable constraints is a
challenging task. A generic constraint that allows the algorithm to expand clusters
for arbitrarily correlated data points has been proposed in the presented verification.
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Generic constraints can avoid overfitting the clustering algorithm, i.e. avoid constraining
the cluster expansion to the generating process. Whereas specially tailored constraints,
for example, if the information about the functions that generate the dependent y and
z variables in the example synthetic dataset is given as constraints, a perfect match
to the true labels of the dataset can be achieved, but the generality of the algorithm
would be lost. To simplify the process of defining constraints, methods from the field of
active learning can be included in the data analysis workflow (Zhu, 2005; Settles, 2009)
to provide appropriate constraints to the CoExDBSCAN algorithm. Furthermore, a
machine-learning-based selection of suitable constraints can additionally aid the user in
applying the algorithm to new datasets.

Besides the challenge of finding and expressing suitable constraints, finding the right
parameters for the CoExDBSCAN algorithm remains another challenge, especially for
high-dimensional data. In addition to the parameters of the DBSCAN algorithm, the
dimensions for the spatial- and constraint-subspace have to be determined by the user.
In the presented verification, the parameters of the CoExDBSCAN algorithm have been
selected based on hyperparameter optimization, in particular grid search, while varying
the selected dimensions based on domain knowledge and the expected outcome of the
analysis.
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Semi-Supervised Time Point
Clustering and Trajectory
Segmentation

The semi-supervised clustering algorithm CoExDBSCAN introduced in the previous
chapter effectively identifies correlated structures in spatio-temporal datasets by forming
partitions of data complying with a priori constraints in full value space or value
subspaces. Moreover, constraining the cluster extension to the correlation of time point
values in multivariate time-series enables the CoExDBSCAN algorithm to form clusters
of segments with similar correlations. This approach can be utilized for semi-supervised
time point clustering as well as trajectory segmentation which is described in the
following sections.

The results presented in this chapter have been published in parts in Ertl et al.
(2021a) and Ertl et al. (2021b).

6.1 Motivation

The increasing amount of data produced over time by a variety of sensors and scientific
instruments available through new technologies and increasing storage capacity provides
unique opportunities to discover characteristics and structures reflected by meaningful
clusters in such time-series. Especially recurring subsequences in streams of multiple
measurements that can be organised as multivariate time-series can be interpreted as
recurring events or actions. These recurring events can be used to discover repeating
patterns, understanding trends, detect anomalies and in general, better interpret large
and high-dimensional datasets (Hallac et al., 2017).
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By utilizing the proposed CoExDBSCAN algorithm for such time-series and con-
straining the cluster extension to the correlation of time point values, clusters of segments
with similar correlations can be identified. This novel semi-supervised approach for
subsequence time-series clustering follows the pairwise semi-supervision approach, see
Section 3.2.2, and extends the concept to a novel concept of cluster-wide constraints.

6.2 CoExDBSCAN Adaptation

This section provides the necessary definitions and details about the adaptation of the
CoExDBSCAN algorithm, as well as the formulation of the constraints to restrict the
cluster expansion.

Rodpongpun et al. (2012) provide the following definitions on subsequence time-series
clustering, i.e. Definition 15 and 16.

Definition 15. A time-series T of size m is an ordered sequence of real-value data,
where T = (t1, t2, ..., tm).

Definition 16. A subsequence Ti,n of length n of time-series T is
Ti,n = (ti, ti+1, ..., ti+n−1), where 1 ≤ i ≤ m− n+ 1, n < m.

Definition 16 can be extended to allow elements to be omitted as following.

Definition 17. A subsequence TS of length n of time-series T is an arranged sequence
of data that omits some elements without changing the order of the remaining elements.
TS = (ts1 , ts2 , ...tsn), where |TS| = n and ∀i ∈ [1, n] : si < si+1.

The CoExDBSCAN algorithm extends the definition of the ε-neighbourhood of the
original DBSCAN algorithm, see Definition 1, to the CoExDBSCAN ε-neighbourhood
of a point, see Definition 12. The transition from Definition 1 to Definition 12 allows to
define the temporal order of the data points as the spatial subspace and to provide a
constraint function that is evaluated in another subspace for the clustering algorithm.
With this configuration of the CoExDBSCAN algorithm, the ε-neighbourhood describes
a neighbourhood of lagged points, similar to a time window, where the maximum lag in
time for the initial data points is defined by the ε parameter and the minimal amount of
data points that are required to form a cluster is defined by the minPts parameter, see
Definition 2 for the definition of direct density-reachable points of the original DBSCAN
algorithm.

For any data point ti at time i the algorithm considers all points tj at times
j ∈ [i− ε, i+ ε] as candidates for an initial subsequence. If all constraints are satisfied
for any tj, ti and tj belong to the same subsequence, which is further extended at
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point tj. All resulting subsequences follow Definition 17 and all points within each
subsequence satisfy all constraints. If any, the omitted elements from one subsequence
are either belonging to another overlapping subsequence or are disregarded as noise.

A constraint formulation that has been empirically proven to be especially suited
for correlated data can be determined as follows, see Definition 18.

Definition 18. A point tj belongs to a subsequence TS of length n of a time-series T
of length m, with TS = (ts1 , ts2 , ...tsn) iff

(Ytj − Ŷtj)2 < δ · 1

n

sn∑
k=s1

(Ytk − Ŷtk)2 (6.1)

where Y and Ŷ are the dependent variable and fitted value of the linear regression
respectively.

For each evolving subsequence, the residuals of an ordinary least squares linear
regression are computed, and neighbouring points are included in this subsequence if
and only if the square of the residual of a neighbouring point deviates from the mean
of the square of the residuals of the current points in the subsequence only by a certain
factor δ. This δ has to be determined either via parameter selection, see Claesen and
De Moor (2015) for examples on current hyperparameter search approaches, or via a
priori knowledge about the nature of the time-series.

After splitting the time-series into subsequences, all sequences with less than required
data points (reqP ts) are labelled as noise; such sequences can appear if the minPts
parameter has been set to a small number and the sequence could not be expanded
due to the given constraint. Second, the regression coefficients for each remaining
subsequence is computed, and sequences with equal or slightly different regression
coefficients for the dependent variable are grouped into the same cluster. The threshold
for different coefficients has to be determined the same way as the δ parameter, either
via parameter selection, for example, grid-search, or via a priori knowledge about the
nature of the time-series. This process can be repeated for multiple time-series and will
result in clusters of subsequences as following.

Definition 19. A cluster C is a set of subsequences of one or multiple time-series,
C = {T (l)

S } for 1 ≤ l ≤ N , where N is the total number of subsequences, where each
time point in every subsequence satisfies the conditions formulated in Definition 2 and
Definition 18, and each subsequence of points T (l)

S satisfies the following conditions:

1. ∀T (l)
S :

∣∣T (l)
S | ≥ reqP ts (subsequences with more than reqPts)

2. ∀T (l)
S , T

(o)
S ∈ C : ‖βl − βo‖ < θ (regression coefficients close),
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where βl, βo are the regression coefficients of a linear regression of all time points in
subsequences T (l)

S , T
(o)
S respectively for a threshold θ.

It should be noted that the constraint definition (Definition 18) has been specifically
formulated to cluster linear segments with similar regression coefficients for a given
time-series. This makes the presented approach especially suited for time-series that
exhibit such inherent characteristics, for example, correlated events in the feature space.
However, the approach could be used to find non-linear segments as well by designing an
appropriate constraint or multiple constraints, i.e. by utilizing a non-linear regression
instead of the applied linear regression.

6.3 Evaluation

6.3.1 Setup

This section details the experimental studies to evaluate the proposed model for semi-
supervised time point clustering and semi-supervised trajectory segmentation.

Following Definition 15 to 19 the general approach for semi-supervised time point
clustering and semi-supervised trajectory segmentation for multivariate time-series can
be summarised in four steps.

1. Compute the CoExDBSCAN clustering result for each time-series with the time
dimension as the spatial subspace and the correlated features as the correlation
subspace with the constraint formulated in Definition 18. Each cluster is equivalent
to a subsequence.

2. Label all subsequences with less than the minimum required number of time
points as noise, if any.

3. Compute the linear regression coefficients between the correlated features for each
subsequence.

4. Group all subsequences with equal or close regression coefficients up to a certain
threshold into one cluster. The resulting clusters, see Definition 19, contain
segments of one or multiple time-series that are similar to each other in terms of
temporal proximity and correlation of the comprising time points.
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Semi-Supervised Time Point Clustering

For verification and comparison, a synthetic dataset is generated that has known
correlations between two features and known temporal subsequences. Because the
correlations and the order of subsequences are known, all methods can be evaluated
against the ground truth. The Adjusted Rand Index (ARI) and the Cluster Accuracy
(ACC) are used as metrics, see Chapter 2 (Section 2.4.4).

The synthetic dataset has four temporal sequences that are repeated once: "1, 2,
3, 4, 1, 2, 3, 4", illustrated in Figure 6.1a and Figure 6.1b. Each sequence has two
correlated features (x1 and x2) that are generated according to Table 6.1.

For each sequence, one feature is evenly distributed on the given interval plus some
randomly distributed noise, and the other feature follows a specific linear equation
plus some randomly distributed noise that leads to overlapping areas in the joint
feature space as depicted in Figure 6.1c. This overlap in feature space is particularly
challenging for cluster algorithms, since distance-based and density-based algorithms
can not distinguish between the overlapping clusters without a priori information.

To demonstrate the significance of the approach for real-world data, the LÍngua
BRAsileira de Sinais (LIBRAS) movement dataset has been chosen (Dias et al., 2009)
to cluster similar partial movements across different movement patterns. The LIBRAS
movement dataset is available from the University of California, Irvine (UCI) Machine
Learning Repository (Dua and Graff, 2017) and contains 15 classes of 24 instances
each, where each class references to a hand movement type in the LIBRAS Brazilian
sign language. All movements were tracked from video analysis, where in each frame,
the centroid pixels of the segmented objects (the hand) are found, which compose the
discrete version of a curve with 45 points. All curves are normalized in the unitary
space and mapped in a representation with 90 features, representing the coordinates of
the movement (Dua and Graff, 2017). Each hand movement can be further segmented
in distinct sub-movements, e.g. upper left to lower right, therefore makes it suitable for
subsequence and time point clustering.

Sequence Points Feature x1 Feature x2 Noise
1 10 x1 ∈ [−50, 100] + ξ x2 = 0.1 · x1 + ξ ξ ∼ N (0, σ2)

2 20 x1 ∈ [100, 250] + ξ x2 = −0.2 · x1 + 39.65 + ξ ξ ∼ N (0, σ2)

3 20 x1 ∈ [100, 250] + ξ x2 = 0.5 · x1− 106.94 + ξ ξ ∼ N (0, σ2)

4 10 x1 ∈ [−50, 100] + ξ x2 = −0.6 · x1 + 4.52 + ξ ξ ∼ N (0, σ2)

Table 6.1: Value range and generation methods.
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Figure 6.1: Example synthetic dataset with noise ξ ∼ N (0, 42); labels are true labels.
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Algorithm 3: Semi-Supervised Time Point Clustering
input : set of time-series T
input : time radius ε
input : density threshold minPts
input : residual threshold δ
output : point labels labelsT initially undefined

1 foreach time-series t in time-series T do
2 labelst = CoExDBSCAN(t.time, t.{x1, ..., xn}, ε, minPts, δ);
3 labelst = labelOnePointClusterAsNoise(labelst);

4 labelsT = groupByCoefficient(T , {labelst});

However, there are no true labels available for individual segments of the LIBRAS
movement dataset, and thus external clustering validation with the ARI or the ACC
metrics can not be performed for the real-world data.

Algorithm 3 gives a pseudocode representation of the semi-supervised time point
clustering approach. The algorithm takes a set of multivariate time-series as input,
as well as the parameters and subspace selections for the CoExDBSCAN algorithm.
For each individual time-series, Line 1, the algorithm computes the CoExDBSCAN
clustering result, Line 2, with the time dimension (t.time) as the spatial subspace and
the correlated features (t.{x1, ..., xn}) as the correlation subspace. In addition, the
DBSCAN parameters ε and minPts are provided, as well as the residual threshold
parameter δ for the constraint formulated in Definition 18. After the labels for a
specific time-series have been computed, all clusters, i.e. subsequences, with less than
the minimum required number of time points are labelled as noise (see Line 3). The
last step of the algorithm (Line 4) takes the set of time-series T and all labels for
each individual time-series {labelst} and groups similar subsequences into final clusters
labelled by labelsT . The similarity can be expressed, for example, based on a threshold
on the absolute difference of coefficient values or by quantization of the coefficients.

Semi-Supervised Trajectory Segmentation

Similar to the approach for semi-supervised time point clustering detailed in the previous
subsection, the CoExDBSCAN algorithm can be adopted for semi-supervised trajectory
segmentation as well. In the following, a trajectory is considered as a time-series
according to Definition 15, and a subsequence is considered an arranged sequence of
data that omits some elements without changing the order of the remaining elements
according to Definition 17.
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For the demonstration of this approach, trajectory data from a climatological model
has been chosen. The data contains {H2O, δD} pairs modelled along Lagrangian
air parcel trajectories. As climatological model the high-resolution data from the
regional isotope-enabled atmospheric model COSMO-iso (Pfahl et al., 2012) is used
and the trajectories are determined with the tool LAGRANTO (Sprenger and Wernli,
2015). The trajectories’ calculation setup is oriented towards the overpass times and
altitudes representative for the MUSICA IASI data, presented in Chapter 2 (Section
2.2). Analysing the model data allows revealing the kind of moisture processes that can
be observed in the MUSICA IASI {H2O, δD} pair data. Theoretical and observational
findings by Noone et al. (2011) can be utilised in the experimental evaluation to
identify atmospheric moisture processes that correspond to different {H2O, δD} pair
distribution for different segments of the trajectory data. The focus for the segmentation
of the {H2O, δD} pairs modelled along Lagrangian air parcel trajectories is to identify
different rain events, where Rayleigh pseudo adiabatic, Super-Rayleigh, and reversible
moist adiabatic processes affect the {H2O, δD} pair distribution, in contrast to non-rain
events, where air mass mixing processes are dominating the {H2O, δD} pair distribution.
Example trajectories are illustrated in Figures 6.2a to 6.3d in spatial space and value
space. Each trajectory has rain phases (marked with crosses) and non-rain/mixing
phases (marked with circles). The timely order of single data points is coloured from
deep blue (168 hours before arrival) to dark red (0 hours, time of arrival).

Algorithm 4 gives a pseudocode representation of the semi-supervised trajectory
segmentation approach. The algorithm takes a set of trajectories as input, as well
as the parameters and subspace selections for the CoExDBSCAN algorithm. The
identified trajectories with a subset of rain events are sorted by time in ascending and
descending order; see Line 2 and 4 in Algorithm 4. For each time ordering the labels
are computed using CoExDBSCAN with the time dimension, timePoints.time, as the
spatial subspace and the correlated features ({x1, ..., xn}) as the correlation space. In
addition, the DBSCAN parameters ε and minPts are provided, as well as the residual
threshold parameter δ for the constraint formulated in Definition 18.

Computing the segmentation in both temporal orders is necessary because the
outcome of the linear regression of the constraint depends on the deviation of the
residuals from the current cluster points, which can be different following the trajectory
points in ascending or descending temporal order. The final segmentation of the
trajectory, or the subset of time points within a trajectory, is the selection of phases
from the ascending and descending CoExDBSCAN run where the outcome with the
squared residual sum is lowest, Line 6 to 11 in the algorithm.
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Algorithm 4: Semi-Supervised Trajectory Segmentation
input : trajectories T
input : time radius ε
input : density threshold minPts
input : residual threshold δ
output : point labels per trajectory labelt initially undefined

1 foreach trajectory t in trajectories T do
2 timePoints = sortByTime(t, ascending);
3 phasesAscending = CoExDBSCAN(timePoints.time,

timePoints.{x1, ..., xn}, ε, minPts, δ);
4 timePoints = sortByTime(t, descending);
5 phasesDescending = CoExDBSCAN(timePoints.time,

timePoints.{x1, ..., xn}, ε, minPts, δ)
6 foreach phaseAscending in phasesAscending do
7 foreach phaseDescending in phasesDescending do
8 if sum(OrdinaryLeastSquares(phaseAscending).residuals2) < sum(

OrdinaryLeastSquares(phaseAscending).residuals2) then
9 labelt ← phaseAscending;

10 else
11 labelt ← phaseAscending;
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6.3.2 Results

Semi-Supervised Time Point Clustering

To verify the proposed approach for semi-supervised time point clustering detailed in
Section 6.3.1, the results of the presented method are compared to a baseline k-means
clustering for time-series data with Dynamic Time Warping (DTW), a Gaussian Mixture
Model (GMM) and the Toeplitz Inverse Covariance-based Clustering (TICC) method
that are presented in Chapter 3 (Section 3.1.2) in more detail.

The k-means with DTW algorithm is a well established similarity-based method
for time-series and time point clustering and is available in a variety of programming
languages. The Gaussian Mixture Model is a general, model-based approach that
provides a sound mathematical-based approach for statistical modelling of a wide
variety of random phenomena as detailed in Chapter 2 (Section 2.4.2). For a state-of-
the-art comparison, the Toeplitz Inverse Covariance-based Clustering (TICC) method
has been chosen (see Chapter 3, Section 3.1.2) since the authors have shown that their
method outperforms a range of model-based and distance-based clustering methods for
clustering multivariate time-series in subsequences. The implementation of the modified
CoExDBSCAN algorithm is based on Python, the implementation of the k-means with
DTW algorithm is provided by the tslearn machine learning toolkit for time-series data
in Python (Tavenard et al., 2020) and the GMM implementation is provided by the
scikit-learn machine learning package in Python (Pedregosa et al., 2011); the code of
the TICC method is also provided in Python by the authors Hallac et al. (2017).

Experiments showed that varying the standard deviation of the noise for the synthetic
data leads to different performances of the compared algorithms. Figure 6.4 and Figure
6.5 show the Cluster Accuracy (ACC) and Adjusted Rand Index (ARI) for the clustering
results of the CoExDBSCAN algorithm, the GMM method, the k-means with DTW
algorithm and the TICC algorithm for the synthetic data with varying noise. The
standard deviation for the noise distribution ξ ∼ N (0, σ2) varies in the range [0.01, 5.0]

with a step size of 0.5. The lower limit is set slightly above zero to prevent numerical
errors with the TICC algorithm, while increasing the standard deviation beyond 5.0

shows the same trend for all algorithms. All results are averaged over ten consecutive
runs with negligible variance.

As illustrated in Figure 6.4 and Figure 6.5 the CoExDBSCAN algorithm achieves
the highest accuracy on the synthetic dataset, ranging from 94.17% to 98.33% accuracy,
with the highest ARI score, ranging from 0.91 to 0.96.
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Figure 6.4: Cluster Accuracy (ACC) of the compared algorithms depending on the
noise standard deviation for the synthetic dataset.
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Figure 6.5: Adjusted Rand Index (ARI) of the compared algorithms depending on the
noise standard deviation for the synthetic dataset.
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Figure 6.6: Example ACC and ARI for the TICC clustering algorithm depending on
the smoothness penalty parameter β; with a noise distribution for the synthetic data
ξ ∼ N (0, σ2) with σ = 4.0.

The GMM method shows a similarly high accuracy for the lowest standard deviation
of the noise distribution (97.42% accuracy) but performs significantly worse for higher
standard deviation values (70.00% to 78.33% accuracy). The k-means with DTW
algorithm performs with a continuously low accuracy, between 40.83% to 55.83%, and
with a continuously low ARI score, between 0.19 to 0.32. The TICC algorithm performs
poorly for the lowest standard deviation of the noise distribution (9.00%) and close to
the range of the GMM method for higher standard deviation values, 69.17% to 86.76%

accuracy and 0.68 to 0.82 ARI.
The parameters for the compared algorithms have been determined from the result

with the highest ACC via grid search for each run. Since k-means, GMM and TICC
require the number of clusters as a parameter; this parameter has been fixed to the
true number of subsequences. The number of initializations for the GMM method has
been set to ten iterations with the best results to keep, and the window size for TICC
that has been set to one, both parameters due to empirical evaluation. The smoothness
penalty parameter β for the TICC algorithm has been evaluated in the range of [1, 200]

with a step size of one, whereas values greater than 130 yielded numerical errors. It
should be noted that without a temporal consistency constraint, see Hallac et al. (2017),
the β parameter should be kept at zero to comply with Definition 17, however the best
accuracy for the TICC algorithm can be achieved with β ∈ [80, 110], see Figure 6.6.
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The parameters for the adapted version of the CoExDBSCAN algorithm have been
evaluated for ε in the range [1, 5] (step size one), minPts in the range [1, 5] (step
size one) and δ in the range [1, 10] (step size one) which empirically showed the best
results and cover the main variability of the ARI and ACC values. More details on the
empirical evaluation of the parameters are given in Appendix B.1. In comparison, the
modified and adapted version of CoExDBSCAN yields the best clustering result for
all generated synthetic data regardless of the noise distribution’s standard deviation.
This approach significantly outperforms the baseline k-means with DTW, the general
clustering approach with GMM and also the state-of-the-art TICC algorithm, see Table
6.2.

Figure 6.7, Figure 6.8 and Figure 6.9 illustrate the clustering results of the CoExDB-
SCAN semi-supervised time point clustering method for the synthetic dataset with
noise distribution ξ ∼ N (0, 42) and the parameters ε = 2, minPts = 1 and δ = 6. The
subsequences have been accurately identified and clustered together, with four data
points labelled as noise (∼ 3% of all data points).
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Figure 6.7: Semi-supervised time point clustering with the modified CoExDBSCAN
algorithm; time-series for feature x1 with predicted labels.
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Figure 6.8: Semi-supervised time point clustering with the modified CoExDBSCAN
algorithm; time-series for feature x2 with predicted labels.
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Figure 6.9: Semi-supervised time point clustering with the modified CoExDBSCAN
algorithm; joint feature space {x1,x2} with predicted labels.
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ACC ARI
standard deviation method
0.01 CoExDBSCAN 0.983333 0.958709

GMM 0.974167 0.936560
Kmeans DTW 0.521667 0.233889
TICC 0.090000 0.086261

0.50 CoExDBSCAN 0.983333 0.959186
GMM 0.730000 0.629611
Kmeans DTW 0.538333 0.296864
TICC 0.741667 0.716166

1.00 CoExDBSCAN 0.966667 0.919901
GMM 0.716667 0.637987
Kmeans DTW 0.550000 0.302922
TICC 0.733333 0.705104

1.50 CoExDBSCAN 0.966667 0.919901
GMM 0.708333 0.638106
Kmeans DTW 0.408333 0.193940
TICC 0.691667 0.684092

2.00 CoExDBSCAN 0.950000 0.894413
GMM 0.700000 0.613985
Kmeans DTW 0.408333 0.193940
TICC 0.783333 0.737931

2.50 CoExDBSCAN 0.941667 0.881699
GMM 0.700000 0.613985
Kmeans DTW 0.408333 0.193940
TICC 0.733333 0.688192

3.00 CoExDBSCAN 0.941667 0.881699
GMM 0.700000 0.613985
Kmeans DTW 0.408333 0.193940
TICC 0.866667 0.806535

3.50 CoExDBSCAN 0.941667 0.881699
GMM 0.700000 0.613985
Kmeans DTW 0.491667 0.221350
TICC 0.866667 0.806535

4.00 CoExDBSCAN 0.941667 0.854677
GMM 0.700000 0.613985
Kmeans DTW 0.475000 0.268655
TICC 0.733333 0.688192

4.50 CoExDBSCAN 0.941667 0.905909
GMM 0.783333 0.601686
Kmeans DTW 0.550000 0.300687
TICC 0.866667 0.824262

5.00 CoExDBSCAN 0.950000 0.867239
GMM 0.700000 0.613985
Kmeans DTW 0.491667 0.260299
TICC 0.733333 0.688192

Table 6.2: Summary of clustering results for the synthetic data using the adjusted Rand
index (ARI) and cluster accuracy (ACC) metrics for different noise distributions.
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Figure 6.10, Figure 6.11 and Figure 6.12 illustrate the clustering result for the
TICC algorithm for the same synthetic dataset. Varying the TICC input parameter β
yields results with an ACC between 0.58 and 0.80 and an ARI score between 0.36 and
0.69. While the algorithm is able to distinguish between the second, third and fourth
sequence, the first and second as well as fourth and first sequence cannot accurately be
separated. The β parameter for the illustrated example is 80, and the true number of
clusters is provided.
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Figure 6.10: Semi-supervised time point clustering with the TICC algorithm; time-series
for feature x1 with predicted labels.
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Figure 6.11: Semi-supervised time point clustering with the TICC algorithm; time-series
for feature x2 with predicted labels.
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Figure 6.12: Semi-supervised time point clustering with the TICC algorithm; joint
feature space {x1,x2} with predicted labels.

The third best clustering results are obtain by the Gaussian Mixture Model with all
dimensions included in the clustering process, see Figure 6.13, Figure 6.14 and Figure
6.15. Similar results have been shown by Hallac et al. (2017) in their comparison for the
same order of subsequences. While the third and fourth sequences can be distinguished,
the first and second subsequences have been aggregated into one cluster. Moreover,
the GMM makes a distinction between the first occurrence of sequences one and two
(green squares) and the second occurrence of sequences one and two (orange crosses)
and therefore does not correctly cluster the sequences.
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Figure 6.13: Semi-supervised time point clustering with the Gaussian mixture model
(GMM); time-series for feature x1 with predicted labels.
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Figure 6.14: Semi-supervised time point clustering with the Gaussian mixture model
(GMM); time-series for feature x2 with predicted labels.
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Figure 6.15: Semi-supervised time point clustering with the Gaussian mixture model
(GMM); joint feature space {x1,x2} with predicted labels.

The results for the k-means with DTW algorithm are illustrated in Figure 6.16,
Figure 6.17 and Figure 6.18. Each sequence is split into two parts and the respective
parts clustered together across sequences, e.g. the parts of the first and fourth sequence
into cluster zero and two (blue and green colour) and the parts of the second and third
sequence into cluster one and three (orange and red colour).
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Figure 6.16: Semi-supervised time point clustering with the k-means with DTW
algorithm; time-series for feature x1 with predicted labels.
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Figure 6.17: Semi-supervised time point clustering with the k-means with DTW
algorithm; time-series for feature x2 with predicted labels.
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Figure 6.18: Semi-supervised time point clustering with the k-means with DTW
algorithm; joint feature space {x1,x2} with predicted labels.

The modified CoExDBSCAN does not require the number of clusters as an input
parameter, which is usually unknown a priori and should instead be discovered in
the clustering process. The other parameters are intuitively comprehensible, with ε
corresponding to the time window, δ corresponding to the factor of maximum deviation
from the residuals mean of the linear regression and θ corresponding to the similarity
threshold of the linear regression coefficients for each subsequence. Given these parame-
ters either through empirical evaluation or expert knowledge, the approach captures
the inherent structure of the data best compared to the selected algorithms, which is
further demonstrated in the following for the real-world dataset.

For the evaluation of the selected algorithms on a real-world dataset, the vertical
zigzag class of the LIBRAS dataset provides an intuitively accessible example. The
vertical zigzag class contains 24 instances referencing a hand movement from either the
upper left or upper right to the lower right or lower left, respectively, following a zigzag
motion. Figure 6.19 illustrates an example of the LIBRAS dataset with nine samples
from the vertical zigzag class out of 24 instances.
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Figure 6.19: Example of the LIBRAS dataset with nine samples from one class (vertical
zigzag).

Figure 6.20a to Figure 6.20d provide a visual comparison of the CoExDBSCAN,
TICC, GMM and k-means with DTW algorithms on the LIBRAS dataset on an arbitrary
individual sample from the vertical zigzag class, see sample number 123 in Figure 6.19.
For each algorithm, the discretization of the linear regression coefficients for each cluster
has been performed by grouping the coefficients into equal-sized buckets based on
their quantiles. The visual comparison shows that CoExDBSCAN provides the best
qualitative result. With CoExDBSCAN similar partial motions are grouped into the
same category, see Figure 6.20a, while with the TICC algorithm (Figure 6.20b), the
GMM method (Figure 6.20c) and the k-means with DTW algorithm (Figure 6.20d),
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(a) CoExDBSCAN results.
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(b) TICC results.
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(c) GMM results.
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(d) kmeans with DTW results.

Figure 6.20: Comparison of clustering algorithms on the LIBRAS dataset on an
individual sample from the vertical zigzag class, see sample 123 from Figure 6.19; points
labelled as noise are omitted.

partial motions with a visual clear change of course could not be separated. Furthermore,
GMM, TICC and k-means with DTW require the number of clusters to form as input
parameter, which depends on the class of motion and number of partial motions to
identify. Therefore, these algorithms can merely express the inherent structure of
the dataset, but the modified CoExDBSCAN method can independently discover the
intrinsic properties of the data.

Figure 6.21 exemplifies the result of the experimental evaluation, depicting all of
the nine sample time series illustrated in Figure 6.19, without loss of generality, after
applying the modified CoExDBSCAN algorithm on each series. The discretization of
the linear regression coefficients for each cluster results in three clusters that correspond
to similar partial motions. The blue dot time points indicate a motion staring left in
the coordinate space and ending in a lower right position of the coordinate space. The
green square time points indicate a mirrored motion that starts right in the coordinate
space and ends in a lower left position. The third class of subsequences, orange crosses,
indicate a motion similar to the blue dot sequences but with a less steep slope, e.g.
oriented to a horizontal motion.

The extracted subsequences are also identifiable across classes. Figure 6.22 shows
nine arbitrary samples from the horizontal zigzag class.
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Figure 6.21: Semi-supervised time point clustering with the modified CoExDBSCAN
algorithm on the LIBRAS dataset. Nine samples from the vertical zigzag class illustrate
the successful segmentation of each time-series into similar motions.
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Figure 6.22: Semi-supervised time point clustering with the modified CoExDBSCAN
algorithm on the LIBRAS dataset. Nine samples from the horizontal zigzag class
illustrate the successful segmentation of each time-series into similar motions.
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It is apparent that the blue partial motions from Figure 6.21 are also present in
Figure 6.22, indicating a hand motion starting in the upper left and ending in the lower
right from the starting position.

In addition to the clustering of similar subsegments, the clustering results can be
utilized to serve as an effective basis for time-series classification by comparing the
distributions of coefficients. For example, the Kolmogorov-Smirnov statistic (Hodges,
1958) can be computed for each learned distribution against an unseen distribution. This
approach can classify time-series that exhibit similar subsequences up to an accuracy
of ∼ 67%. Similar accuracy can be achieved by k-nearest neighbors vote (∼ 79%) or a
time-series specific Support Vector Classifier (∼ 68%) from the tslearn toolkit without
parameter optimization.

Semi-Supervised Trajectory Segmentation

Following the experimental setup described in Section 6.3.1, CoExDBSCAN can be
utilized to segment trajectories similar to the approach for semi-supervised time point
clustering. The experimental trajectory data consists of {H2O, δD} pair distributions
that are segmented into multiple phases, which can be associated with atmospheric
moisture processes. Identifying such processes is an essential scientific task to infer
the dynamics of cloud-circulation systems. Investigating the atmosphere from a cloud-
circulation system perspective is essential to address the significant uncertainty of
climate predictions (Bony et al., 2015).

To differentiate multiple phases of individual trajectories, the constraint on the
{H2O, δD} pair distribution has been conceptualised together with domain experts and
the constraint parameter δ empirically determined, see Definition 18. The expansion
of clusters e.g. subsequences, is constraint by including a neighbouring point in the
ε-neighbourhood only if the residuals of an ordinary least squares linear regression for
the current cluster points without the neighbouring point deviates only by a certain
factor δ from the ordinary least squares linear regression including the neighbouring
point, formulated in Definition 18.

To exemplify the approach and demonstrate the flexibility to segment likewise
only a subset of individual trajectories, the experimental study focuses on rain events
within trajectories without any loss of generality. These events have been identified by
retrieving the time points where the moving average over three consecutive time points
for the relative humidity are above a certain threshold and extending the event to at
least three time points if necessary.

For the experimental evaluation, the Lagrangian air parcel trajectory dataset has
been organised as multivariate time-series, e.g. backward trajectories for individual air
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parcels, with a focus on an area of interest with the arrival of all trajectories above
West Africa at pressure levels 575 and 625 Hectopascal (hPa). The trajectories are
calculated daily for the local morning (9 am) and evening (9 pm) times during the
period from June 8, 2016, to July 30, 2016, resulting in 12,720 individual trajectories
(11,853 after filtering) with 169 time-steps each with a time delta of one hour; each
trajectory comprises a time frame of 7 days.

Figure 6.23a illustrates the trajectory dataset, depicting 3,194 individual trajectories
out of 11,853 that have been coloured according to their similarity, using DBSCAN on
a pre-computed distance matrix. For the pre-computed distance matrix, each trajectory
has been converted to a 4 · 169 = 676 dimensional vector; the latitudinal (1) and
longitudinal (2) difference for each time point to the arrival coordinates, the bearing
(3) for each consecutive point and the scaled height difference (4) for each consecutive
point, 169 points each. This initial clustering is only done to associate and compare
individual segments as a result of the CoExDBSCAN segmentation, see Figure 6.23b,
and is entirely independent of the trajectory segmentation approach.

Following Algorithm 4 in Section 6.3.1, that describes the semi-supervised trajectory
segmentation approach applied to the experimental data, the identified trajectories
with a subset of rain events are sorted by time in ascending and descending order, see
Line 2 and 4 in Algorithm 4.

For each time ordering the labels are computed using CoExDBSCAN with the
time dimension, timePoints.time, as the spatial subspace and the natural logarithm
of the water vapour values together with the natural logarithm of the isotopologue
ratio value divided by 1,000 plus one, timePoints.{ln(H2O),ln(deltaD/1000 + 1)},
as the constraint subspace, see Line 3 and 5. This subspace defines the correlation
subspace between ln(H2O) and (ln(HDO) − ln(H2O)), which is a proxy for δD as
shown in the following equations.

δD = [
HDO

H2O
/R− 1] ∗ 1000 (6.2)

ln(
δD

1000
+ 1) = ln(

HDO

R
/H2O) (6.3)
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(a) Example DBSCAN clustering result.

(b) Example moisture processes.

Figure 6.23: (a) Illustration of 3,194 trajectories out of 11,853 that have been coloured
according to their geographical closeness, bearing similarity and height difference along
each individual trajectory. (b) Illustration of the association of individual trajectories
to different moisture processes as a result of the CoExDBSCAN segmentation.
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Equation 6.3 can be approximated for standardized HDO by multiplying the above
equation with 1

R
with R = 3.1152 · 10−4, the Standard Mean Ocean Water (SMOW)

constant, which results in the δD proxy.

ln(
HDO

H2O
) = (ln(HDO)− ln(H2O)) (6.4)

The remaining parameters have been empirically determined and proposed by
domain experts and set to ε = 2, minPts = 3 and δ = 2 in this example. Computing
the segmentation in both temporal orders is necessary because the outcome of the linear
regression of the constraint depends on the deviation of the residuals from the current
cluster points, which can be different following the trajectory points in ascending or
descending temporal order. The final segmentation of the trajectory, or the subset
of time points within a trajectory, is the selection of phases from the ascending and
descending CoExDBSCAN run where the outcome with the squared residual sum is
lowest, Line 6 to 11 in the algorithm.

Figure 6.24 shows the segmentation result of two example trajectories. Figure 6.24a
and Figure 6.24c depict the results of the semi-supervised segmentation approach with
dots indicating non-rain events (air mass mixing) and crosses indicating rain events,
which have been segmented into different coloured phases with different regression
coefficients. Figure 6.24b and Figure 6.24d visualize the temporal order of the corre-
sponding trajectories’ events coloured according to the number of hours before arrival
from 168 to 0 (dark blue to dark red). The first example trajectory in Figure 6.24a has
two rain events with three distinct phases, where the first event from hour 168 to hour
159 before arrival (see Figure 6.24b) has been segmented into two different phases with
different regression coefficients with statistical significance (p-value < 0.05, blue crosses
and orange crosses); the second event starts at hour 124 and ends at hour 119 before
arrival with a steady regression coefficient, however not statistically significant (green
crosses). The second example trajectory in Figure 6.24c shows again two rain events,
the first from hour 140 to hour 133 before arrival and the second from hour 38 to hour
32 before arrival.

The regression coefficients in Figure 6.24c are unvarying with statistical significance
(blue crosses and orange crosses). The different slopes of the linear regression lines
fitted to the two different rain events are clearly observable.

Comparing the rain segments from both example trajectories with the theoretical
evolution of δD as a function of H2O, see Section 2.2, the segmented event in Figure
6.24a (blue and orange crosses) and the two timely separated phases in Figure 6.24c
(blue and orange crosses) can be interpreted as different kind of rain processes.
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(a) Three phases example trajectory.
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(b) Timely order of events for (a).
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(c) Two phases example trajectory.
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(d) Timely order of events for (c).

Figure 6.24: Example trajectories with two rain sequences, which can be identified by
the crosses; (a) with additional segmentation (c) without additional segmentation (blue
and orange crosses in (c) correspond to temporally separated rain events). (b) and (d)
illustrate the timely order of events according to the number of hours before arrival
from 168 to 0 (dark blue to dark red).

For example, the first phase in Figure 6.24c (blue crosses) is in line with super-
Rayleigh processes, i.e. there is some interchange between condensed moisture and
vapour. The second phase (orange crosses) is close to a Rayleigh process, i.e. can be
explained by condensation and direct rainout, without significant interchange between
condensed moisture and vapour.

These two example trajectories demonstrate that this semi-supervised approach for
trajectory segmentation can (1) identify timely separated events as well as (2)
split timely connected events with varying regression coefficients. The latter gives
novel opportunities for identifying details of the related rain processes. Distinguishing
these fine-grained structures in large volumes of data emphasises the benefit of applying
this method. Analysing the distributions of regression coefficients for all segments
allows identifying different moisture processes in the atmosphere.
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Figure 6.25: Histogram of regression coefficients (slope of linear regression line) for all
rain segments as a result of the semi-supervised trajectory segmentation with statistical
significance (p-value < 0.05).

The histogram in Figure 6.25 outlines the distribution of regression coefficients
with statistical significance (p-value < 0.05) for all rain segments as a result of the
semi-supervised trajectory segmentation, analysing all 11,853 trajectories, clipped to the
interval [−1.0, 1.0] (omitting four segments < −1.0 and three segments > 1.0 overall).
Of all rain events, 7.6% have a negative slope, 58.6% have a slope between 0.0 and 0.1,
and 33.8% have a slope greater than 0.1.

Figure 6.26 incorporates these distributions of regression coefficients with the distri-
bution of the {H2O, δD} pairs modelled in the area of interest and the time of arrival
of the trajectories at atmospheric pressure levels between 575 - 625 hPa, i.e. about 3.5
- 4.5 km a.s.l that is the altitude for which the MUSICA IASI {H2O, δD} pair data
generally have the best sensitivity. The grey dots show all model data, i.e. represent
the same data points presented in Section 2.2 (grey dots in Figure 2.3), but modelled
instead of measured data. The lines are 50% contour lines.
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Figure 6.26: {H2O, δD} distributions of the model data in the area of interest for all
data points (grey dots and contour line) and for data points representing air masses
that experienced rain events (blue, orange and green colours are as in Figure 6.25 for
rain events being characterised by different regression coefficients); contour levels are at
50%.

The grey contour line is for the whole dataset, the blue, orange, and green contour
lines are for data points representing air masses that experienced rain events during
the last five days before arrival. The colours are according to the coefficients that
characterise the rain events (i.e. they are in line with Figure 6.25). If an air mass
experienced rain events with two different characteristics, the respective data point
belongs to both groups. The orange contour line is for air masses that experienced a
rain process with a slope for ln(H2O) versus (ln(HDO)− ln(H2O)) as a proxy for δD
between 0.0 and 0.1. This slope is typical for a Rayleigh process and the data points
at arrival for atmospheric pressure levels between 575 - 625 hPa group around the
theoretical Rayleigh line (red dotted line). The green contour line outlines air masses
with steeper slopes than what can be expected from a Rayleigh process, i.e. slopes
greater or equal than 0.1. Such large slopes indicate a Super-Rayleigh process, an
interchange between condensed water (cloud droplets or rain) and water vapour. Such
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interchange is typical for convective processes, and at the arrival point, the respective
{H2O, δD} pair generally lies below the theoretical Rayleigh line and close to the
illustrated example Super-Rayleigh line (solid red line). The blue contour line indicates
air masses with negative slopes. Such slopes can be explained by the mixing of two
air masses, where one air mass has a {H2O, δD} pair distribution above the Rayleigh
line and the other air mass has a {H2O, δD} pair distribution below the Rayleigh line.
Respective air might also be related to convective processes. The grey contour line
represents the entire dataset, and it is situated above the Rayleigh line. This contour line
is dominated by non-rain events, indicating that such events are dominated by mixing
processes (red dashed lines). In summary, this study with simulated data shows that
the {H2O, δD} distribution at the arrival point gives insight into the moisture transport
process that a respective air mass has experienced. This leads to the conclusion that
the {H2O, δD} distribution as observed in the MUSICA IASI dataset can be utilised
as a good proxy for characterising the moisture processes that has been experienced by
different air mass as well.

6.4 Summary

This chapter proposes two adaptations of the CoExDBSCAN algorithm introduced in
Chapter 5, a new approach for semi-supervised time point clustering for multivariate
time-series and a novel semi-supervised approach for trajectory segmentation.

The approach for semi-supervised time point clustering adopts and modifies the
CoExDBSCAN algorithm and applies the algorithm to time-series data to find temporal
neighbourhoods, whose expansions are restricted to a priori constraints. In Section
6.2 a constraint formulation has been proposed to restrict the cluster expansion to
the correlation of time point values. This constraint is defined by the deviation of
time point residuals from the mean of residuals of time points within a subsequence,
based on linear regression. Forming groups of segments with similar correlations results
in clusters of subsequences, which can be interpreted as recurring events or actions;
for example, similar movements as shown in the experimental evaluation in Section
6.3.2. The verification on the synthetic dataset demonstrates that the proposed method
based on CoExDBSCAN significantly outperforms the baseline k-means with DTW
approach, the general clustering approach with GMM and also the state-of-the-art
TICC algorithm. The validation and application to the real-world LIBRAS movement
dataset demonstrates that this approach can accurately identify subsequences of similar
motions and is able to extract distributions of coefficients for each subsequence towards
an effective classification approach.
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The approach for semi-supervised trajectory segmentation demonstrates the appli-
cation of the CoExDBSCAN algorithm to identify different processes in the atmosphere.
The CoExDBSCAN algorithm can be adopted for trajectory segmentation by formulat-
ing a constraint on the deviation from the ordinary least squares regression residuals of
combined or split segments. By further extracting information about the regression
coefficients for each segment and comparing the distribution of coefficients to theoretical
values, it is possible to identify corresponding atmospheric processes. This approach
is demonstrated in the experimental evaluation for Lagrangian air parcel trajectories
together with data from the regional isotope-enabled atmospheric model COSMO-iso
(Pfahl et al., 2012). The experimental evaluation in Section 6.3.2 demonstrates that the
approach can successfully segment time-series, e.g. trajectories or subsequences, into
sequences that contain close temporal points which follow a priori constraints. With the
constraint formulated in Definition 18 each segment is differentiated by the deviation
from the ordinary least squares regression residuals, which in effect splits sequences if
their individual linear regression is a better fit than their combined linear regression.
This constraint is particularly useful for the research objective to analyse {H2O, δD}
pair distributions that follow theoretical linear relations. However, in general, this
constraint restricts the cluster expansion to the correlation of time point values and
can be transferred to different domains and datasets. For example, motion data in 2D
or 3D space can be segmented with the same approach and constraint formulation,
identifying recurring, similar motions that follow similar linear correlations.

Segmenting the Lagrangian air parcel trajectories enables researchers to better un-
derstand the complex dynamics that cause the {H2O, δD} pair distribution observable
in the MUSICA IASI dataset introduced in Section 2.2. Since the proposed approach is
able to distinguish fine-grained structures in large volumes of data, it is an effective
data-driven analysis method for this purpose. For instance, with the grouping of trajec-
tories, researchers can draw conclusions on atmospheric moisture transport patterns.
Ongoing research in the area of observational atmospheric data orientated towards the
combination of different sensors might soon allow the global detection of the vertical
distribution of {H2O, δD} pairs. A method for such a synergistic combination has
recently been demonstrated using CH4 as an example by Schneider et al. (2021a). By
using state-of-the-art reanalysis datasets for calculating the trajectories, the presented
approach is expected to be able to directly identify different moisture processes in the
measured {H2O, δD} fields.
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Conclusion and Outlook

This chapter summarizes the main contributions of this thesis and gives possible future
research directions.

7.1 Conclusion

The research in this thesis evolves around the main challenge to better understand
the natural structure of spatio-temporal data that is reflected by meaningful clusters.
The conducted cluster analysis of spatio-temporal data by applying existing clustering
algorithms shows that the proposed data-driven approach allows to learn the intrinsic
structure of the data and to analyse the evolution of geo-referenced distributions over
time. However, the presented approach does not necessarily describe the underlying
process that generated the data accurately. Therefore the interpretation of the results
additionally relies on domain knowledge associating cluster and cluster changes to
processes.

This conclusion leads up to the main contribution of this thesis, the development of
a novel semi-supervised clustering algorithm for spatio-temporal data, CoExDBSCAN,
a density-based clustering algorithm with constrained expansion. The CoExDBSCAN
algorithm is based on the DBSCAN algorithm to find density-connected clusters in
a defined subspace of the data and restricts the expansion of clusters to a priori
constraints. A priori knowledge in the form of constraints for the clustering algorithm
can significantly improve the clustering results and align the outcome of the clustering
process with the objective of the data analysis. This assertion is demonstrated for
spatio-temporal data in general and for climatological data in particular.

CoExDBSCAN significantly outperforms the original DBSCAN algorithm and the
algorithms that CoExDBSCAN has been compared to, i.e. the CASH algorithm as a
state-of-the-art comparison, the constrained k-means algorithm (CK-means) and the
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pairwise constrained k-means algorithm (PCK-means), and is better suited to identify
correlated structures that are geographically close than the compared algorithms. The
real-world evaluation demonstrates that CoExDBSCAN can also capture the underlying
data generating processes more accurately than the proposed data-driven approach.

The introduction of the novel semi-supervised clustering algorithm CoExDBSCAN
enables a novel method for semi-supervised time point clustering of multivariate time-
series and a novel semi-supervised approach for trajectory segmentation. Both methods
adopt the CoExDBSCAN algorithm to find temporal neighbourhoods in multivariate
time-series, i.e. trajectories represented as multivariate time-series, and restrict the
expansion of the clusters to the correlation of time point values. Forming groups of
segments with similar correlations results in clusters of subsequences, i.e. trajectory
segments, which can be interpreted as recurring events or actions.

In the case of semi-supervised time point clustering, CoExDBSCAN significantly
outperforms the baseline k-means with DTW approach, the general clustering approach
with GMM and also the state-of-the-art TICC algorithm on synthetic data and the
LIBRAS movement dataset. The validation and application to the real-world LIBRAS
movement dataset demonstrate that the proposed approach can accurately identify
subsequences of similar motions. The approach further allows to extract distributions of
coefficients for each subsequence that can serve as an effective basis for classification, for
example, by computing the Kolmogorov-Smirnov statistic for each learned distribution
of coefficients against an unseen distribution of coefficients, which yields a similar
accuracy compared to methods like k-nearest neighbours vote or a time-series specific
Support Vector Classifier without parameter optimization.

In the case of the semi-supervised segmentation of Lagrangian air parcel trajectories,
CoExDBSCAN is able to identify different processes in the atmosphere by extracting
information about the regression coefficients for each segment and comparing the
distribution of coefficients to theoretical values. This approach allows to unveil fine-
grained structures in large volumes of data and to extract segments from subsequences
of continuous temporal events successfully. These segments can further be compared to
the theoretical evolution of the dependent variable δD as a function of H2O.

The presented segmentation of the Lagrangian air parcel trajectories helps better
understand the complex dynamics that cause specific {H2O, δD} pair distributions
that the Metop-A, B and C satellites observe and are available in the MUSICA IASI
dataset. Specifically, distributions that are discovered by the segmentation approach
can be compared to {H2O, δD} distributions in the observational data to conclude the
origin and formation of different water transport pathways in the atmosphere.
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7.2 Outlook

The presented research in this thesis provides several starting points for future research.
The presented approach for analysing the evolution of geo-referenced distributions

over time allows investigating the application of different Bayesian models in
exchange for the Gaussian mixture model for future work. Different Bayesian models
could incorporate more a priori domain-specific knowledge into the clustering process
and better catch the underlying processes that generated the data.

One of the uppermost tasks for future research should address the challenge of find-
ing and expressing suitable constraints for the CoExDBSCAN algorithm. While
generic constraints can avoid overfitting the clustering algorithm, i.e. avoid constraining
the cluster expansion to the generating process, specially tailored constraints can lead
to a loss of generality. Possible solutions to simplify the process of defining constraints
could rely on methods from the field of active learning or apply machine-learning-based
methods for the selection processes.

Another task for future work would be to integrate the CoExDBSCAN algorithm
with standard data mining and data analysis tool-kits/libraries, e.g. the Python scikit-
learn library or the ELKI data mining software.

With regards to the presented semi-supervised time point clustering approach, the
classification aspect of the proposed method by extracting distributions of coefficients
for subsequences shows an interesting approach that requires more detailed comparison
studies with other algorithms in the field of subsequence and time point classification
for multivariate time-series.

Considering the case of the semi-supervised segmentation of Lagrangian air parcel
trajectories, future work could improve the extraction of specific {H2O, δD} se-
quences in the model domain and use the model data of rain, cloud or others to relate
specific {H2O, δD} distributions to distinct moist processes clearly. One application
for this improved segmentation can demonstrate that the proposed method can be
used to distinguish between air masses that experienced shallow convection
or deep convection. The long-term perspective for this approach would be to gener-
ate multisensor {H2O, δD} observation data, i.e. to create observation data that offer
{H2O, δD} pair information at different altitudes. Then use trajectories calculated from
state-of-the-art reanalysis fields and apply the method directly to the observational data.
Data-driven analysis of observation data could significantly improve the insight
into the dynamics of such cloud-circulation systems and would help to improve
the significant uncertainty of climate predictions.
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Appendix

A.1 CoExDBSCAN Parameter Evaluation

This appendix details further the parameter evaluation of the CoExDBSCAN and
DBSCAN algorithm presented in Section 5.3.2 for the synthetic dataset.
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Figure A.1: Dependencies between ε, minPts and δ parameters and the Adjusted Rand
Index (ARI) for the CoExDBSCAN algorithm.
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Figure A.2: Dependencies between ε and minPts and the Adjusted Rand Index (ARI)
for the DBSCAN algorithm.
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Figure A.3: Dependencies between ε and minPts and the Cluster Accuracy (ACC) for
the DBSCAN algorithm.
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Appendix

B.1 Semi-Supervised Time Point Clustering
Parameter Evaluation

This appendix details further the parameter evaluation of the CoExDBSCAN and
DBSCAN algorithm presented in Section 6.3.2 for the synthetic dataset.
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Figure B.1: Dependencies between ε, minPts and δ parameters and the Cluster
Accuracy (ACC) for the CoExDBSCAN algorithm.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
 parameter

0.0

0.2

0.4

0.6

0.8

Ad
ju

st
ed

 R
an

d 
In

de
x 

(A
RI

) minPts
1
2
3
4
5
delta
1
2
3
4
5

Figure B.2: Dependencies between ε, minPts and δ parameters and the Adjusted Rand
Index (ARI) for the CoExDBSCAN algorithm.
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