108,879 research outputs found

    Benchmarking Cerebellar Control

    Get PDF
    Cerebellar models have long been advocated as viable models for robot dynamics control. Building on an increasing insight in and knowledge of the biological cerebellum, many models have been greatly refined, of which some computational models have emerged with useful properties with respect to robot dynamics control. Looking at the application side, however, there is a totally different picture. Not only is there not one robot on the market which uses anything remotely connected with cerebellar control, but even in research labs most testbeds for cerebellar models are restricted to toy problems. Such applications hardly ever exceed the complexity of a 2 DoF simulated robot arm; a task which is hardly representative for the field of robotics, or relates to realistic applications. In order to bring the amalgamation of the two fields forwards, we advocate the use of a set of robotics benchmarks, on which existing and new computational cerebellar models can be comparatively tested. It is clear that the traditional approach to solve robotics dynamics loses ground with the advancing complexity of robotic structures; there is a desire for adaptive methods which can compete as traditional control methods do for traditional robots. In this paper we try to lay down the successes and problems in the fields of cerebellar modelling as well as robot dynamics control. By analyzing the common ground, a set of benchmarks is suggested which may serve as typical robot applications for cerebellar models

    A Supervisor for Control of Mode-switch Process

    Get PDF
    Many processes operate only around a limited number of operation points. In order to have adequate control around each operation point, and adaptive controller could be used. When the operation point changes often, a large number of parameters would have to be adapted over and over again. This makes application of conventional adaptive control unattractive, which is more suited for processes with slowly changing parameters. Furthermore, continuous adaptation is not always needed or desired. An extension of adaptive control is presented, in which for each operation point the process behaviour can be stored in a memory, retrieved from it and evaluated. These functions are co-ordinated by a ¿supervisor¿. This concept is referred to as a supervisor for control of mode-switch processes. It leads to an adaptive control structure which quickly adjusts the controller parameters based on retrieval of old information, without the need to fully relearn each time. This approach has been tested on experimental set-ups of a flexible beam and of a flexible two-link robot arm, but it is directly applicable to other processes, for instance, in the (petro) chemical industry

    Point trajectory planning of flexible redundant robot manipulators using genetic algorithms

    Get PDF
    The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRMs based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable

    Experiments in identification and control of flexible-link manipulators

    Get PDF
    Interest in the study of flexible-link manipulators for space-based applications has risen strongly in recent years. Moreover, numerous experimental results have appeared for the various problems in the modeling, identification and control of such systems. Nevertheless, relatively little literature has appeared involving laboratory verification of tuning controllers for certain types of realistic flexible-link manipulators. Specifically flexible-link manipulators which are required to maintain endpoint accuracy while manipulating loads that are possibly unknown and varying as they undergo disturbance effects from the environment and workspace. Endpoint position control of flexible-link manipulators in these areas are discussed, with laboratory setups consisting of one and two-link manipulators
    corecore