38 research outputs found

    Statistical Modeling of FSO Fronthaul Channel for Drone-based Networks

    Full text link
    We consider a drone-based communication network, where several drones hover above an area and serve as mobile remote radio heads for a large number of mobile users. We assume that the drones employ free space optical (FSO) links for fronthauling of the users' data to a central unit. The main focus of this paper is to quantify the geometric loss of the FSO channel arising from random fluctuation of the position and orientation of the drones. In particular, we derive upper and lower bounds, corresponding approximate expressions, and a closed-form statistical model for the geometric loss. Simulation results validate our derivations and quantify the FSO channel quality as a function of the drone's instability, i.e., the variation of its position and orientation.Comment: This paper has been submitted to ICC 201

    Prototype Development in General Purpose Representation and Association Machine Using Communication Theory

    Get PDF
    Biological system study has been an intense research area in neuroscience and cognitive science for decades of years. Biological human brain is created as an intelligent system that integrates various types of sensor information and processes them intelligently. Neurons, as activated brain cells help the brain to make instant and rough decisions. From the 1950s, researchers start attempting to understand the strategies the biological system employs, then eventually translate them into machine-based algorithms. Modern computers have been developed to meet our need to handle computational tasks which our brains are not capable of performing with precision and speed. While in these existing man-made intelligent systems, most of them are designed for specific purposes. The modern computers solve sophistic problems based on fixed representation and association formats, instead of employing versatile approaches to explore the unsolved problems. Because of the above limitations of the conventional machines, General Purpose Representation and Association Machine (GPRAM) System is proposed to focus on using a versatile approach with hierarchical representation and association structures to do a quick and rough assessment on multitasks. Through lessons learned from neuroscience, error control coding and digital communications, a prototype of GPRAM system by employing (7,4) Hamming codes and short Low-Density Parity Check (LDPC) codes is implemented. Types of learning processes are presented, which prove the capability of GPRAM for handling multitasks. Furthermore, a study of low resolution simple patterns and face images recognition using an Image Processing Unit (IPU) structure for GPRAM system is presented. IPU structure consists of a randomly constructed LDPC code, an iterative decoder, a switch and scaling, and decision devices. All the input images have been severely degraded to mimic human Visual Information Variability (VIV) experienced in human visual system. The numerical results show that 1) IPU can reliably recognize simple pattern images in different shapes and sizes; 2) IPU demonstrates an excellent multi-class recognition performance for the face images with high degradation. Our results are comparable to popular machine learning recognition methods towards images without any quality degradation; 3) A bunch of methods have been discussed for improving IPU recognition performance, e.g. designing various detection and power scaling methods, constructing specific LDPC codes with large minimum girth, etc. Finally, novel methods to optimize M-ary PSK, M-ary DPSK, and dual-ring QAM signaling with non-equal symbol probabilities over AWGN channels are presented. In digital communication systems, MPSK, MDPSK, and dual-ring QAM signaling with equiprobable symbols have been well analyzed and widely used in practice. Inspired by bio-systems, we suggest investigating signaling with non-equiprobable symbol probabilities, since in bio-systems it is highly-unlikely to follow the ideal setting and uniform construction of single type of system. The results show that the optimizing system has lower error probabilities than conventional systems and the improvements are dramatic. Even though the communication systems are used as the testing environment, clearly, our final goal is to extend current communication theory to accommodate or better understand bio-neural information processing systems

    Space Shuttle/TDRSS communication and tracking systems analysis

    Get PDF
    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed

    NASA Tech Briefs, April 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Aperture selection for ACO-OFDM in free-space optical turbulence channel

    No full text

    Theoretical Insights into the Impact of Coherent and Incoherent Crosstalk on Optical DPSK Signals

    Get PDF
    WOS:000283247600001 (Nº de Acesso Web of Science)“Prémio Científico ISCTE-IUL 2011”This paper provides new theoretical insights into the properties of direct detection differential phase-shift keying (DPSK) signals impaired by coherent and incoherent crosstalk. Coherent crosstalk is due to multiple replicas originated while a data signal is routed through an optical network, whereas the source of incoherent crosstalk resides on the interference from other DPSK signals. A special emphasize has been put on modeling the multipath coherent crosstalk, with analytical expressions being derived and presented for both the moment generating function of the decision variable and the average error probability. A rigorous analysis, capable of dealing with arbitrary filtering, is also presented, which is used afterwards to assess the accuracy of the analytical formulas. A detailed comparison with incoherent crosstalk is also performed. Using also an exact treatment for this type of crosstalk it is shown that for low OSNR penalties the coherent crosstalk leads, in some circumstances, to slightly worse results than the incoherent one, but this situation is reversed when the total crosstalk level and the number of interferers increase

    Aperture Selection for ACO-OFDM in Free-Space Optical Turbulence Channel

    Full text link

    NASA Tech Briefs, May 1989

    Get PDF
    This issue contains a special feature on the flight station of the future, discussing future enhancements to Aircraft cockpits. Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences
    corecore