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Summary

In most communications, e.g., fiber-optic and wireless communications,

advanced two-dimensional carrier modulation formats, such as M -ary phase shift

keying (MPSK), M -ary quadrature amplitude modulation (M -QAM) and M -ary

amplitude phase-shift keying (M -APSK), are commonly used for higher spectral

efficiencies. Coherent detection of high order phase-modulated signals is easily

impaired by phase noise due to the imperfect transmitter and receiver local

oscillators, in addition to usual thermal, additive, white, Gaussian noise (AWGN).

Carrier phase estimation (PE) with PE algorithms is imperative, producing a noisy

phase reference which degrades the system performance. In the general situation,

a non-zero phase reference error (PRE) always exists due to the oscillator phase

noise and a finite signal-to-noise ratio (SNR) in phase estimation. However, most

engineers ignore this PRE and still use the suboptimal minimum Euclidean-distance

(MED) detector, which does not consider the PRE and results in a degraded system

performance. The design of an optimum detector taking the PRE into account is

challenging, but no complete theory has been developed for this detection problem

so far. This thesis thus studies the issues of coherent detector design and error

performance analysis with PRE considered for the phase noise channel.

We first consider the design of the optimum detector for two-dimensional

amplitude/phase modulated signals received in AWGN and a Gaussian distributed

PRE due to imperfect PE. We propose a novel approach of using the amplitude

and phase information of the received signal, based on viewing the AWGN as an

equivalent additive, observation phase noise (AOPN) whose statistics is Tikhonov.

This allows the AOPN to be combined with PRE, and the maximum a posterior
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Summary

probability/maximum-likelihood (ML) detection scheme to be readily derived in

amplitude-phase form. This amplitude-phase approach is simpler and more

convenient than the conventional method that uses the in-phase and quadrature

components of signals received in phase noise. For constellations which have

multiple rings, e.g., M -QAM and M -APSK, the conventional MED detector without

considering the PRE is actually suboptimum. The ML detector for equi-probable

signals is structurally very different from the MED detector, and it is very

computationally inefficient. Thus, simpler and closed-form approximations to the

ML detector are given, which can be easily implemented on-line. The approximate

ML decision boundaries for both 8-star QAM and rotated 8-star QAM are illustrated

as examples and shown to be not necessarily straight lines. As the variance of PRE

or the SNR or both increase, the decision boundaries between two adjacent signal

rings asymptotically become circular. This leads to a suboptimal detector which we

call an annular-sector (AS) detector. This AS detector performs amplitude detection

and phase detection separately and employs an annular sector as the decision region

for each signal point.

Using the amplitude-phase form of the received signal model in the presence

of AWGN and PRE, we provide a unified and systematic approach to predicting

the error probability of MPSK, M -QAM and M -APSK with coherent detection.

Our approach is based on that the Tikhonov probability density function (pdf)

of the AOPN can be accurately approximated by a Gaussian pdf, which leads to

an approximate Gaussian AOPN+PRE model. This facilitates the computation of

the probability of the received signal phasor falling in any sector in the complex

plane, which thus enables us to express the symbol error probability (SEP) and bit

error probability (BEP) of MPSK with the ML detector and Gray code mapping

in terms of Gaussian Q-functions. Moreover, simple, accurate and closed-form

approximations to the SEP of the AS detector are obtained for both 16QAM and

general M -APSK. All these expressions provide explicit insights into how the PRE

variance affects the performance.
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Summary

Differential detection is the special case of coherent detection, which takes only

the previous signal to form the phase reference. Due to its simplicity in practical

implementation, it is also considered here. Our amplitude-phase-form method can

be easily generalized to obtain the SEP and BEP results of Gray coded M -ary

differential phase shift keying (MDPSK) with differential detection in phase noise.

To further improve the error performance of coherent receivers with PRE, we

address the issue of optimizing signal constellations. Our newly derived SEP results

facilitate the constellation optimization in phase noise, which only requires numerical

computation and avoids extensive simulations. By minimizing the SEP of the AS

detector, we give M -APSK with optimized ring radii as examples.

All the work above provides a good example to show the importance of using

the amplitude-phase statistics for analysis in the phase noise channel. In contrast to

the in-phase and quadrature form of the received signal, the amplitude-phase-form

signal model facilitates receiver design and performance analysis in phase noise.

For wireless communications, multipath fading and shadowing inevitably cause

amplitude attenuation of the received signal. The average error performance of

coherent receivers over fading is thus analysed, and we assume perfect phase tracking

to simply illustrate our novel approach. The approach is to use the tight upper and

lower bounds on the Gaussian Q-function we derived recently, which can be easily

averaged over the general mixture gamma (MG) distribution. The MG distribution

is used to approximate the SNR distributions of a class of composite fading models,

which include the Nakagami-m, Generalized-K (KG) and Nakagami-lognormal

fading as specific examples. We thus obtain tight, simple algebraic-form bounds and

invertible expressions for the average symbol error probability (ASEP) of MPSK

in a class of composite fading channels. This approach also facilitates analysing

the effects of atmospheric turbulence and pointing errors on free space optical

communication systems where intensity modulation with direct detection is usually

employed. Especially for inter-satellite links with pointing errors only, we derive

closed-form and invertible approximations to the ASEP from which we can easily
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get the diversity gain. Furthermore, a closed-form outage probability expression for

the combined effects is obtained.
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Chapter 1

Introduction

Both fiber-optic and wireless data communications have become increasingly

vital parts of our modern daily life. Data transmission in fiber-optic channels is

prone to damage by linear impairments (e.g., laser phase noise), frequency offset

between the transmitter and local oscillator lasers, and fiber nonlinearity [1–3]. The

phase-modulated optical signals transmitted in the fiber are further distorted by

the linear effects of fiber chromatic and polarization-mode dispersion. Besides, fiber

self-phase modulation effect limits the performance of long-haul phase-modulated

transmission systems through nonlinear phase noise [4,5], which is closely related to

the power of each symbol. We will not deal with nonlinear phase noise in the thesis.

Among these impairments, laser phase noise plays a significant role in affecting

the performance of coherent receivers. We assume here that all the dispersions

and nonlinear impairments have been compensated for by optical means, and laser

phase noise is mainly considered. Moreover, for optical wireless communications,

especially with synchronous receiver with phase tracking, the laser sources for both

transmitter and local oscillators can hardly be “coherent”, which results in unknown

phase noise [6].

Signals in wireless communications also experience oscillator phase noise, which

limits the sensitivity of a coherent receiver for phase-modulated signals. The

linear phase noise is due to the phase fluctuation or incoherence of the imperfect

transmitter and receiver local oscillators [7–10]. Oscillators inherently produce high

levels of phase noise. It is known that phase noise in RF oscillators increases with

carrier frequency. Phase noise in a transmit chain will “leak” power into adjacent

channels, and there is a continuum of local oscillators that can mix with interfering
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signals [7,8]. On the other hand, due to the constructive and destructive combination

of randomly delayed, reflected, scattered, and diffracted signal components in

wireless channels, multipath fading causes an attenuation in the signal amplitude or

phase [11,12]. In the case where transmitter, receiver or objects in the environment

are moving, the signal frequency is also affected due to Doppler shift. Due to

mobility, the applicable channel statistics may change over time. There are a lot

of fading models widely used, e.g., Rayleigh fading, Rician fading and Nakagami-m

fading, each with one or more fading parameters. Therefore, for any communication

scheme, two main concerns are carrier phase noise and fading.

All the time, two fundamental research issues are receiver design and

performance analysis. The aim of receiver design is to develop an optimum receiver

structure that minimizes the probability of decision errors. Receiver design depends

on the channel model and the knowledge of the channel statistics at the receiver, and

more and more cost-effective and flexible receiver design schemes are being sought

for [2,13]. Performance analysis aims to derive error probability or outage probability

in a mathematical expression, which enables one to see the insights on how the

system parameters affect the system performance and thus to do performance

optimization efficiently [14]. Advanced two-dimensional carrier modulation formats,

such as M -ary phase-shift keying (MPSK) and differential phase-shift keying

(MDPSK), and M -ary quadrature amplitude modulation (M -QAM) and amplitude

phase-shift keying (M -APSK), are commonly used for higher spectral efficiencies

[15–19]. In wireless and mobile communication links, higher-order M -APSK are

especially popular recently [19–21]. M -APSK exhibits a near-capacity performance

under peak-power-limited channels [22], and is considered as the most preferred

modulation mechanism for nonlinear satellite transmission [22–24]. M -APSK is

already adopted by the second generation digital video broadcasting specification

for satellite (DVB-S2) and approved by the consultative committee for space data

systems (CCSDS) [24]. For 8-point star QAM (8-star QAM and rotated 8-star

QAM included), the angular distance between adjacent symbols is π/2, larger than
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that of other possible 8-ary constellations. This makes 8-point star QAM more

phase-noise-tolerant, perform well at large phase noise and have large laser linewidth

tolerance. Thus, 8-star QAM and rotated 8-star QAM are considered as promising

modulation formats in coherent optical communications [25,26].

Most times, the in-phase and quadrature statistics of the received signal is used

for analysis, which turns out to be not very simple for the phase noise channel. Here,

we want to emphasize a new perspective of using the received amplitude and phase

information in phase noise, which enables us to do receiver design and performance

analysis more intuitively and conveniently.

In this chapter, we first give an overview of receiver design in phase noise

channel and our research objective in detector design in Section 1.1. We then give

an overview of performance analysis in carrier phase noise and fading, respectively,

and our detailed research objectives in Section 1.2. In Section 1.3, we give a summary

on our main contributions in the two areas. Finally, we present the organization of

the thesis in Section 1.4.

1.1 Receiver Design

The issue of designing wireless systems to operate in the presence of oscillator

phase noise is classical in communication theory. Recently, there is renewed interest

in this problem [9,10]. One of the main reasons is the unprecedented explosion in the

number of wireless and mobile devices that are enabled for communication-intensive

and bandwidth hungry applications. The use of inexpensive, noisy oscillators in

such systems is therefore inevitable. Phase noise is also dominant in communication

systems that operate over millimeter-wave bands like 60Ghz and higher. In this

regard, more cost-effective, flexible, high speed connectivity solutions are being

sought for [9, 10].

Prior to data detection, one challenge in coherent systems is to recover

the carrier phase, which is easily perturbed, for instance, by laser phase

noise in fiber-optic communications [27, 28] or oscillator phase noise in wireless
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communications [7, 29]. In early stage of coherent receivers, a phase-locked

loop (PLL) is normally used to track the carrier phase with respect to the

local oscillator carrier. However, for optical communications, optical PLLs

operating at optical wavelengths in combination with distributed feedback lasers

are difficult to implement due to the large product of laser linewidth and loop

delay [30]. Instead of using bulky and complicated optical components, digital

signal processing (DSP) algorithms have played a vital role in compensating for

the fiber transmission impairments in digital coherent receivers recently [31]. With

the aid of high-speed analog-to-digital converters, carrier phase estimation (PE)

can be done in high-speed DSP units rather than using optical PLLs for unknown

carrier phase tracking. DSP-based PE techniques, such as Wiener filter [32, 33]

and Kalman filter [34], are demonstrated via experiments to be very effective to

recover carrier phase. The commonly-used Viterbi & Viterbi ( V&V ) Mth-power

scheme is based on a nonlinear transformation of received MPSK signals [35]. This

Mth-power scheme is further extended to M -QAM formats in [27] and modified

in [36, 37]. Although it is capable of accurately tracking, this Mth-power scheme

relies heavily on nonlinear computations, such as rectangular-to-polar or inverse

transformations, and phase unwrapping, which increase power consumption and

memory requirements [38]. To address the nonlinear computations, [15,28] introduce

a computationally-linear decision-aided maximum likelihood (DA ML) PE into

coherent optical communication systems, to eliminate the nonlinear operations while

keeping or even improving the laser linewidth tolerance. Reference [15] shows that

the optimal memory length of DA ML can be calculated when the statistics of the

additive noise and phase noise are known. Similar to the Mth-power algorithm, DA

ML is also subjected to block length effect because of the trade-off between averaging

over additive noise and phase noise [39]. Moreover, the DA ML phase estimation

scheme performs similar to the Mth-power scheme in linear phase noise, and it

outperforms the Mth-power scheme when nonlinear phase noise exists as the main

distortion [40]. In the general situation, a noisy phase reference is produced by the
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phase estimation (PE) algorithm due to laser phase noise and a finite signal-to-noise

ratio (SNR). Thus, we usually have a phase reference error (PRE) for data detection

which degrades the system performance.

After phase estimation, a robust and simple detector that is easy to implement

is imperative, as our demand on the system reliability increases. For different

channel models, different data detection techniques are considered in receiver design,

e.g., coherent detection, differential detection, sequence detection, depending on the

signal model and receiver knowledge [41–44]. Differential encoding and differential

detection is a viable alternative that does not require channel state information or

explicit carrier PE, which, however, incurs substantial performance loss compared to

coherent detection. For instance, the performance of MDPSK is about 3dB worse

than that of coherent MPSK [14]. Thus, coherent detection of phase-modulated

signals impaired by thermal, additive, white, Gaussian noise (AWGN) as well as

laser or oscillator phase noise are commonly considered [2,45–47]. The design of the

maximum likelihood (ML) (optimum) detector that takes the PRE into account is

challenging [48–50], but no complete theory has been developed for this detection

problem so far. The optimum decision regions for equi-probable signals are much

complicated [50]. Mostly, the conventional minimum Euclidean distance (MED)

detector is used [2, 26, 51], although it is optimal when only AWGN exists. A

two-stage detector consisting of a radius detector, an amplitude-dependent phase

rotation and a phase detector, is first proposed in [49] and further discussed in [52,53]

for strong nonlinear phase noise. This two-stage detector works well at high SNR,

and asymptotically becomes optimal for larger phase noise. However, all these

detectors are suboptimal in phase-noise channel, and there has been limited research

on the systematic derivation of the ML (optimum) detector in closed-form [50].

Therefore, with the efficient phase estimation algorithms applied, we aim to

introduce a novel approach in designing a robust, optimum, symbol-by-symbol

detector for communication channels with carrier phase noise. This detector should

be applicable to any two-dimensional carrier modulations.
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1.2 Performance Analysis

For communication channels where carrier phase noise exists, it is of great

interest to be able to quickly and accurately predict the symbol/bit error probability

(SEP/BEP) of higher-order phase-modulated signals with coherent detection in

the presence of AWGN and PRE [46, 54–58]. However, only limited research on

specific modulations has been done before, for instance, [59] gives the generalized

BER expressions of MPSK in the presence of phase error. No unified, analytically

tractable approach has been developed for any two-dimensional carrier modulations

so far, to derive simple, closed-form SEP expressions of the ML detector taking the

PRE into account. For MDPSK with differential detection, it is also of importance

to be able to quickly estimate the SEP/BEP in the presence of AWGN and

residual phase noise (RPN) [60–63]. Without the closed-form results, constellation

optimization for better system performance can only be carried on via extensive

simulations which cost a lot of time. Some search methods have been proposed

in [53] and the references therein to weaken the problem of efficiency. Hence, the

mathematically tractable results, which can provide explicit insights into how the

parameters affect the error performance and can be used to systematically optimize

constellations in phase noise, are highly in demand.

Similarly, many unsolved problems remain in the performance analysis of fading

channels. We want to obtain the performance metrics in simple and closed forms,

such that it is straightforward for system designers to specify required SNR to meet

a certain level of system performance. The widely used performance metrics in

fading channels are average symbol error probability (ASEP) and average bit error

probability (ABEP). They are obtained by averaging the instantaneous SEP or BEP

values over the fading distribution. The instantaneous SEP and BEP are equivalent

to the SEP and BEP of an AWGN channel with a given instantaneous fading gain or

SNR. For most modulation formats, the instantaneous SEP and BEP usually involve

the Gaussian Q-functions, or integrals of exponential functions. Thus, averaging

the instantaneous SEP or BEP over fading may not result in a closed form, and
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may involve special functions [12]. In addition, in a shadowed fading environment,

shadowing statistics need to be considered as well, which increases the complexity

of performance analysis. Hence, [64–66] address the system outage caused by the

shadowing effect. The existing results for the exact ASEP of MPSK either involve

numerical integration of moment generating functions (MGF), such as in [12, 67]

for the composite multipath/shadowing fading channels, or numerically computing

higher-order transcendental functions as in [64, 68–70] for Rayleigh/Ricean and

Nakagami-m fading. For example, for Nakagami-m fading with arbitrary m, the

ASEP and ABEP results are expressed in terms of Gauss hypergeometric function

or Lauricella function [68,69]. They are complicated in general, and do not facilitate

further analysis of error performance with respect to the system parameters. In

this way, we need to consider new mathematical approaches, such as simple, tight

and closed-form bounds to approximate the ASEP/ABEP. Actually, although the

Gaussian Q-function involved is conventionally defined as the area under the tail

of a normalized Gaussian random variable with zero mean and unit variance, it

is also expressed as a finite range integral of an exponential function in [71]. By

applying the Jensen’s inequality on the integral form, tight bounds on the Gaussian

Q-function are derived for simple forms which can be easily averaged over fading

[72–75]. Moreover, a number of composite fading models to model the effect of

multipath fading and shadowing have been developed, such as the Generalized-K

(KG), Nakagami-lognormal (NL), η−µ, κ−µ, Nakagami-q (Hoyt) and Nakagami-n

(Rician) fading [12]. For simple analysis, several composite distributions have

been proposed to approximate the distributions of these composite fading models,

including the G-distribution [76], the mixture gamma (MG) distribution [77,78], the

mixture of Gaussian distribution [79] and the H-fading model [80]. Recently, the use

of the MG distribution for capacity and error probability analysis has become very

popular [81–85], since the MG distribution is versatile and mathematically tractable.

Even moving on to free space optical (FSO) communications with frequent

use of intensity modulation and direct detection, atmospheric turbulence, geometric
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spread and pointing errors cause fluctuations in the intensity of the received signal

and degrade FSO link performance. The pointing errors are due to platform

vibrations, which cause vibrations of the transmitter telescope and, therefore,

misalignment between the transmitter and the receiver [86, 87]. Especially, long

distance inter-satellite laser communication links are highly vulnerable due to

the degrading effect of pointing errors [86–90]. Various statistical models have

been proposed over the years to describe the pointing errors [86, 88]. In these

works, the effects of misalignment on the error performance have been investigated.

However, the existing results for the ABEP involve numerical multiple integrals [86],

or numerically computing higher-order transcendental functions [87]. No simple,

closed-form expressions for the ABEP are given so far, and the diversity gain cannot

be easily derived. Therefore, by using the bounds on the Gaussian Q-function and

exploring new approximations to the SNR distributions of fading models, we aim

to find tight bounds and invertible approximations to the ASEP/ABEP for simpler

analysis.

1.3 Main Contributions

1.3.1 The Amplitude-Phase Form

We will show that using the amplitude and phase information of the received

signal is very important for the phase noise channel. In contrast to the in-phase and

quadrature form of the received signal, the amplitude-phase-form received signal

model facilitates receiver design and performance analysis in phase noise. The

received phase incorporates the AWGN and carrier phase noise together. It is based

on viewing the AWGN as an equivalent phase noise that is described by an additive,

observation phase noise (AOPN) model that we developed in [91]. The AOPN has a

conditional probability density function (pdf) which is Tikhonov, when conditioned

on knowing the received signal amplitude.
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1.3.2 Coherent Detector Design

We design a coherent receiver that works well for any high-order

amplitude/phase-modulated signals in communication channels with Brownian

motion carrier phase noise.

This thesis considers a receiver that consists of a phase estimation algorithm

preceding the data detector. To be specific, we mainly consider the use of the

DA ML phase estimator in [15, 45], which leads to a PRE. We then propose a

unified amplitude-phase-representation approach to derive the maximum a posterior

probability (MAP)/ ML detector for two-dimensional carrier modulations in the

presence of AWGN and PRE. The AOPN due to the AWGN is combined with

the PRE, and the use of the received amplitude and phase information leads to a

more convenient and simpler analysis than using the conventional method of using

the in-phase and quadrature components of the received signal. We show that for

MPSK which only has one ring of signal points, the ML detector, for any PRE

variance, performs the same as the MED detector which is derived without taking

phase noise into account. On the other hand, for multiple-ring constellations, the

ML detector is the same as the MED detector only when no PRE exists. In general,

the ML detector is very computationally inefficient for implementation in real time.

Thus, closed-form, simpler approximations of the ML detector are obtained, and

they are shown in simulations to perform almost the same as the exact one. More

importantly, when PRE exists, our approximate ML detectors perform much better

than the MED detector which is suboptimal and always leads to straight-line decision

boundaries (DB).

For large PRE or for high SNR, the approximately optimal DB resulting from

the approximate ML detectors asymptotically become circular between signal rings,

thus leading to annular sectors as decision regions. This implies that the performance

of the ML detector approaches that of what we call the annular-sector (AS) detector

here, for increasing input power or PRE variance. It is worth noting that for the

special case of an M -APSK constellation, such as 8-star QAM where each ring
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has the same number of signal points with the same phase values, our simplest

approximate ML detector further simplifies to an equivalent structure that performs

ring detection and phase detection separately, and always leads to circular decision

boundaries in the middle of two rings corresponding to the AS detector. The AS

detector does not depend on the channel parameters: AWGN spectrum density and

PRE variance. Our work here provides a unified view of all the existing suboptimal

detectors in the presence of linear phase noise.

1.3.3 Performance Analysis

The impact of carrier phase noise on the error performance of

amplitude/phase-modulated signals in communication channels will be analyzed

here in detail. Our novel approach lies in showing that for high SNR, the

Tikhonov pdf of the AOPN is well approximated by a Gaussian pdf. This AOPN

can be combined with the PRE or RPN, and the distribution of this combined

phase noise (AOPN + PRE/RPN) is approximately Gaussian. This Gaussian

AOPN+PRE/RPN model leads to a simple expression for the probability of the

received signal phasor falling in any sector in the complex plane. We illustrate

its application to the computation of the SEP/BEP of MPSK/MDPSK for

M ≥ 4 in phase-noise channels. Our SEP/BEP results are all expressed as linear

combinations of single Gaussian Q-functions. For comparison, the exact SEP/BEP

results for MDPSK (M ≥ 4) with RPN are first derived here via [92, eqs.(9)(11)].

Our unified approach is mathematically simpler and increasingly more accurate for

larger values of M . Using the suboptimum annular-sector detector, we also derive

explicit, closed-form SEP expressions for 16QAM and general M -APSK (8-point

star QAM included). It is shown that within a large range of PRE variances,

these SEP approximations agree very well with the Monte Carlo simulations for all

SNR values of interest. These results facilitate constellation optimization without

extensive simulations, and enable us to optimize by numerical computation only.

Here, we give M -APSK optimization for minimum SEP as an example in strong
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phase noise.

For performance analysis in wireless communications with fading, we mainly

analyze the ASEP of coherent receivers with perfect phase track. We focus

on the mixture gamma (MG) distribution in [77] using the Gauss-quadrature

approximations, to approximate different composite fading models. Our approach

to the error performance analysis is to obtain tight, algebraic-form bounds on

the ASEP of MPSK over the MG distributed fading. It is based on arbitrarily

tight upper and lower bounds on the Gaussian Q-function we derived recently

in [72, 73], which can be easily averaged over this general MG distribution. We

first consider higher-order MPSK (M > 2) of single diversity, based on the union

upper bound on the conditional SEP which is a single Gaussian Q-function [12].

Using our upper bound on the Gaussian Q-function, we first derive a tight upper

bound on the exact ASEP of MPSK (M > 2) for the MG distribution. This

work is easily specialized to the Nakagami-m, the KG and the NL composite fading

models whose SNR distributions are well approximated by the MG distribution

with suitable choices of parameters. These bounds can be further used as good

approximations which are invertible for high SNR, and they offer insights into how

the parameters determine system performance in fading. For the special case of

BPSK (M = 2) where the conditional SEP/BEP is exactly one Gaussian Q-function,

algebraic-form upper and lower bounds are obtained. The bounds can be arbitrarily

tight by adjusting the parameters in our bounds on the Gaussian Q-function. By

taking the average of the upper and lower bounds, we then obtain very accurate

approximations to the exact ASEP/ABEP of BPSK in all the three specific fading

models. Moreover, these approximate expressions are also invertible for reasonably

high SNR. All these results are simple, requiring no numerical integration or

numerical evaluation of higher-order transcendental functions, and involving only

simple algebraic expressions with explicit parameters, which are easy to evaluate.

The bounds and invertible results also find applications in FSO communications

with intensity modulation and direct detection damaged by atmospheric turbulence,
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geometric spread and pointing errors. More importantly, the diversity gain for

inter-satellite laser links with pointing errors only is straightforwardly obtained,

which is related to the ratio of the equivalent beam radius to the pointing error

displacement standard jitter at the receiver. We will show the explicit insights into

how the channel parameters affect the ASEP of FSO systems via numerical results.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we introduce the received signal models we use for the phase noise

channel, which are given in amplitude-phase form. Therein, we propose a new AOPN

model, which leads to the Gaussian AOPN+PRE/RPN models. Constellations

involved for coherent receivers are also introduced.

In Chapter 3, we propose optimum coherent detectors in amplitude-phase

form for communication channels with PRE after imperfect phase estimation. We

illustrate the approximate ML DB on 8-point star QAM. Simulations are done to

show the validity and superior performance of these detectors.

Chapter 4 goes into the error probability analysis of communication systems

impaired by carrier phase noise. A family of closed-form expressions for the SEP

and BEP are obtained. Numerical results are given to show the accuracy of our new

approximations.

In Chapter 5, constellation optimization for the phase noise channel is

considered. Optimization formulations which minimize the SEP are introduced.

We specifically provide M -APSK with optimized ring radii as an example.

Chapter 6 analyzes the ASEP over different fading in wireless communications,

based on the bounds on the Gaussian Q-function and using the MG distribution.

We derive tight bounds and invertible approximations to the ASEP over several

composite fading. Our approach is further extended to analyze the influence of

atmospheric turbulence and pointing errors on FSO systems using OOK modulation.

Finally, the concluding remarks are drawn in Chapter 7 and possible extensions

12



1.4 Organization of the Thesis

of the work in this thesis are recommended.
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Chapter 2

Received Signal Model with Phase
Noise

Both fiber-optic and wireless communication systems are subject to impairment

by linear phase noise due to the transmitter and receiver local oscillators, on top

of AWGN [2, 14]. For fiber-optic communications, laser phase noise significantly

affects the system performance, and all the dispersions and nonlinear impairments

are assumed to be compensated for by using optical devices [3–5]. Thus, laser

phase noise is the main issue we consider here [15, 17, 93]. Wireless communication

system design in the presence of oscillator phase noise is a classical problem [48].

Due to the unprecedented explosion in the number of wireless and mobile devices,

a renewed interest in this problem boosts in recent times. The impact of phase

noise on the performance of multiple-input multiple-output systems is also studied

in [10,94,95] and the references therein. In this thesis, we only consider a single-input

single-output phase noise channel. Phase noise in wireless communication links is

due to phase and frequency instability in the local radio frequency (RF) oscillators,

which leads to synchronization issues and degrades the system performance [96,97].

Note that phase noise in RF oscillators increases with frequency [8, 98]. The effect

of phase noise is more severe when higher order modulation schemes are used in

order to attain high spectral efficiency [50, 91]. We thus provide a general received

signal model in a phase noise channel. We assume no inter symbol interference and

no time offset.

First, the kth discrete-time, complex received signal r′(k) in the presence of

AWGN n′(k), attenuation coefficient h and unknown carrier phase noise θ(k) is
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given by [9,45,48]

r′(k) = h(k)m(k)ejθ(k) + n′(k). (2.1)

Here, m(k) is the transmitted signal, which takes on each value from the signal set

{Si = Aie
jφi , i = 0, 1, . . . ,M − 1} with probability P (Si), where Ai and φi are the

amplitude and phase of each symbol, and M is the number of signal points. Term

n′(k) is a zero-mean, circularly symmetric, complex, Gaussian random variable with

variance N0, where N0 is the one-sided spectrum of the AWGN. For fiber-optic links,

θ(k) is the laser phase noise from the transmitter and local oscillator lasers and is

modeled as a Wiener process [2]. For wireless links, θ(k) is phase noise resulting

from the imperfect and incoherent oscillators at transmitter and receiver [9,45]. The

phase of the oscillator drifts randomly and is also modeled as a Wiener process. The

random-walk model for {θ(k)} is mostly used, given by [32,60]

θ(k) = θ(k − 1) + ∆θ(k) (2.2)

which is a good approximation to the Wiener process. Since only white noise

sources are considered in the oscillator, ∆θ(k) is a sequence of independent and

identically distributed (iid) Gaussian random variables with mean zero and variance

σ2. For optical communications mainly considered here, the power spectrum of

laser linewidth ∆v has a Lorentzian line-shape, inducing a Gaussian-distributed

phase deviation with mean zero and variance [99]

σ2 = σ2
p = 2πT (∆v)

in a symbol interval T . Here, ∆v denotes the total 3-dB linewidth for both

transmitter and local oscillator lasers. Term h(k) denotes the real amplitude gain,

which is normally brought in by channel attenuation in transmission. For fiber

optical signals, the path loss in transmission can usually be measured and known,
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Figure 2.1: Receiver structure in phase noise.

i.e., h(k) = constant in (2.1) [15]. Moreover, for quasi-static fading channels

with oscillator phase noise, the coefficient h(k) is assumed to be deterministic,

time-invariant, and known to the receiver [9, 10]. Thus, we assume h(k) = 1 in

phase noise channel for simplicity.

In the following, the exact signal model used for coherent detection of any

two-dimensional carrier modulation in the presence of unknown carrier phase noise

is introduced. The high order constellations we will use throughout this thesis are

also introduced later.

2.1 The Amplitude-Phase Form for Coherent

Detection

Prior to data detection, compensation for the unknown time-varying carrier

phase using the estimate from an optical phase-locked loop (PLL) tracking or a

phase estimation (PE) algorithm is imperative. In the general situation, a noisy

phase reference is produced due to laser phase noise and a finite SNR in the PLL

or PE algorithm. Thus, as Fig. 2.1 shows, we usually have a phase reference error

(PRE) for data detection which degrades the system performance [15, 45, 46]. At

each time t = kT (T =symbol duration), we obtain an estimate θ̂(k) of the carrier

phase θ(k) using a PE algorithm. After compensation by θ̂(k), we have the received

signal r(k) given by r(k) = r′(k)e−jθ̂(k). Thus, the received signal over the kth
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Figure 2.2: Geometric representation of the received signal r of phase-modulated
signals.

symbol interval becomes [91]

r(k) = m(k)ej(θ(k)−θ̂(k)) + n′(k)e−jθ̂(k)

= m(k)ejθ̃(k) + n(k). (2.3)

Here, θ̃(k) = θ(k)− θ̂(k) denotes the PRE. Term n(k) = n′(k)e−jθ̂(k) is statistically

identical to n′(k), i.e., it is complex Gaussian distributed with n(k) ∼ CN(0, N0),

where CN denotes the complex normal (Gaussian) distribution. We use this model

(2.3) as the sufficient statistics in symbol decision.

Next, we motivate the amplitude-phase-form received signal model we will use

for the phase noise channel. Fig. 2.2 gives a geometric representation of m(k)ejθ̃(k),

n(k) and r(k) in the in-phase-and-quadrature (I-Q) coordinate complex plane. The
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received signal model (2.3) can be rewritten as

r(k) = |r(k)|ej∠r(k)

= |r(k)|ej(φi(k)+θ̃(k)+ε(k)). (2.4)

referring to Fig. 2.2, where we have

∠r(k) = φi(k) + θ̃(k) + ε(k).

Here, |r(k)| and ∠r(k) are the received signal amplitude and phase, respectively. In

the following, we drop the dependence on time k for simplicity. Term ε is the additive

observation phase noise due to n, whose statistics is derived later. We denote Es

as the average energy per symbol and γ , Es/N0 as the average SNR. We express

Ai as Ai = ρi
√
Es where ρi is the weight coefficient of the amplitude for the signal

point Si, and we have M =
∑M−1

i=0 ρ2
i due to the average energy constraint. We let

% = θ̃ + ε for short.

Now we consider the distribution of PRE θ̃. There are three popular carrier

PE methods. We let σ2
θ̃

represent the variance of θ̃, which varies with different PE

methods. The first one is the PLL tracking method [54]. The PRE θ̃ introduced by

PLL tracking has the Tikhonov pdf [46] [100],

p(θ̃) =
eα cos θ̃

2πI0(α)
, | θ̃ |< π (2.5)

where α is the SNR in the loop bandwidth, and I0(.) is the modified Bessel function

of the first kind of order zero. In most cases of practical interest, α � 1. Hence,

(2.5) can be simplified to a Gaussian pdf with σ2
θ̃
, var[θ̃] ≈ α−1:

p(θ̃) =
1√

2πα−1
e−

θ̃2

2α−1 . (2.6)

Another popular phase tracking method is decision aided maximum likelihood (DA

ML) PE [15]. The PRE θ̃ from imperfect carrier PE is due to the laser phase noise
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2.1 The Amplitude-Phase Form for Coherent Detection

and a finite SNR. In DA ML PE, θ̃ is approximately Gaussian distributed with mean

zero and variance to be

σ2
θ̃

=
2L2 + 3L+ 1

6L
σ2
p +

σ2
n′

2L
(2.7)

where L is the averaging memory length, and σ2
n′ = γ−1 [15]. This result for the

PRE variance assumes that there are no past decision errors in the DA ML PE.

Term σ2
p is given by 2πT (∆v) where ∆v is the combined transmitter and receiver

laser linewidth and T is the symbol duration. The third popular PE method is the

Mth-power scheme [35]. Even in this case, the pdf of θ̃ is approximately Gaussian.

Thus, we have θ̃ ∼ N(0, σ2
θ̃
) in the range [−π, π) for all the three methods, where N

denotes the normal (Gaussian) distribution. Note that we do the simulations later

in the ideal decision feedback case of DA ML PE, i.e., no past decision errors in the

DA ML PE, and thus θ̃ is generated as a Gaussian distributed random variable with

the variance given by σ2
θ̃

above. We only focus on examining the performance of our

detectors using the values of σ2
θ̃
.

2.1.1 The Additive Observation Phase Noise Model

This section introduces the additive observation phase noise (AOPN) model ε

in (2.4). The AOPN ε is due to the AWGN n, and ε ranges in the interval [−π, π).

First, conditioned on transmitting Si, the exact joint probability density

function (pdf) of |r| and ε and the marginal pdf of |r| are well-known and given,

respectively, by [101, Chap.4] [102, eqs.(7-8)]

p(|r|, ε | Si) =
|r|
πN0

exp

[
−|r|

2 + A2
i − 2|r|Ai cos ε

N0

]
(2.8)

and

p(|r| | Si) =
|r|
N0/2

exp

[
−|r|

2 + A2
i

N0

]
I0

(
|r|Ai
N0/2

)
. (2.9)
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2.1 The Amplitude-Phase Form for Coherent Detection

Using p (ε | |r|, Si) = p(ε,|r||Si)
p(|r||Si) , we have

p (ε | |r|, Si) =
exp

[
|r|Ai
N0/2

cos ε
]

2πI0

(
|r|Ai
N0/2

) , −π ≤ ε < π (2.10)

which is a Tikhonov pdf with mean zero, and depends on the transmitted and

received signal amplitude, Ai and |r|, and the AWGN variance N0. This result

(2.10) offers the statistical model for the AOPN ε.

For further error analysis, we need to use this Tikhonov pdf (2.10) to calculate

the probability of the event: θ0 ≤ ε < θ1, with any transmitted phase φi, that is,

P (θ0 ≤ ε < θ1 | |r|, Si) =

∫ θ1

θ0

p (ε | |r|, Si) dε,

P (θ0 ≤ ε < θ1 | Si) =

∫ ∞
0

P (θ0 ≤ ε < θ1 | |r|, Si)p(|r| | Si)d|r|.

However, this result is complex and intractable.

To simplify the analysis, we introduce the asymptotic behavior of the Tikhonov

PDF (2.10) under high SNR later, when the Tikhonov pdf can be well approximated

by the Gaussian pdf. That is the approximate Gaussian AOPN model.

2.1.2 The Gaussian AOPN+PRE Model

We first introduce the simplified distribution of ε, i.e., the approximate Gaussian

AOPN model. Then we give the Gaussian AOPN+PRE model.

For high SNR, i.e., γ � 1, we have |ε| � 1 rad with high probability, and

therefore we have: cos ε ≈ 1− 1
2
ε2. Since we have: I0 (x) ≈ exp(x)√

2πx
for large values of

x, the pdf (2.10) thus becomes Gaussian with variance N0

2|r|Ai :

p (ε | |r|, Si) ≈

√
|r|Ai
πN0

exp

[
−|r|Aiε

2

N0

]
. (2.11)

Furthermore, for high SNR, we can have |r| ≈ Ai for most times. Thus, (2.11)
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2.1 The Amplitude-Phase Form for Coherent Detection

becomes independent of |r|, i.e.,

p (ε | Si) ≈

√
A2
i

πN0

exp

[
−A

2
i ε

2

N0

]
. (2.12)

That is, we have ε ∼ N
(

0, N0

2A2
i

)
, which is the approximate Gaussian AOPN model.

The approximate Gaussian phase distribution without conditioning on |r| may

have been used by others before, e.g., Proakis [14], but our work leading to eq.(5)

establishes this Gaussian AOPN model rigorously.

Since θ̃ and ε are independent for PLL and DA ML, it thus follows that

conditioned on Si transmitted, we have

% ∼ N(0,
N0

2A2
i

+ σ2
θ̃
) (2.13)

which is the Gaussian AOPN+PRE model in the range [−π, π).

2.1.3 Constellations Involved

For coherent receivers, MPSK, M -APSK and M -QAM constellations, which

are widely used for increased spectral efficiencies, are specifically considered here as

transmitted signals for numerical illustration.

MPSK

For MPSK, the transmitted signal m(k) in (2.3) takes on each value from the

signal set {Si =
√
Ese

j 2πi
M , i = 0, 1, . . . ,M − 1}. That is, the signal points are

uniformly spaced on one ring whose radius is
√
Es. As shown in Fig. 2.3, the signal

points on each ring form a 4PSK constellation, i.e., quadrature phase shift keying

(QPSK).
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Figure 2.3: (4,4,4,4)-16APSK constellation.

M-APSK

For general M -APSK, the signal set is {Si = ake
j( 2πi

lk
+ψk)

: 1 ≤ k ≤ N, 0 ≤

i ≤ lk − 1}, where N is the number of amplitude levels or rings, ak, lk and ψk

denote the radius, the number of points and the relative phase shift corresponding

to the kth ring, respectively [23]. We have
∑N

k=1 lk = M and the radii are assumed

to be ordered such that a1 < · · · < aN . The average energy constraint is thus∑N
k=1 lka

2
k = MEs. We also define the vector l ≡ (l1, · · · , lN) and use the notation

l-MAPSK for an M -APSK constellation with N rings and lk signal points on the

kth ring, e.g., (4,4,4,4)-16APSK [53], as shown in Fig. 2.3.

M-QAM

For square M -QAM, the signal set is {Si = AI + jAQ}, where AI and AQ are

the amplitudes of the in-phase and quadrature components, respectively. And AI

and AQ are selected independently from the set {±d
2
,±3d

2
, . . . ,±(

√
M − 1)d

2
} where
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Figure 2.4: 16QAM constellation.

d denotes the Euclidean distance between any two adjacent signal points. We will

specifically use M = 16 for illustration.

For 16QAM, we have d =
√

2Es
5

for a given average energy per symbol Es,

as shown in Fig. 2.4. From the 3-ring perspective, the signal set is rewritten as

{Si = d√
2
ej(

πi
2

+π
4

) for i = 0, 1, 2, 3;
√

10d
2
e(j[ν π

2
−ν π

2
+ν π−ν ν+π − 3π

2
−ν ν+ 3π

2
2π−ν]) with

ν = arctan(1
3
) for i = 4, 5, ..., 11; and 3d√

2
ej(

π(i−12)
2

+π
4

) for i = 12, 13, 14, 15}.

2.2 The Amplitude-Phase Form for Differential

Detection

In optical fiber systems, differentially modulated signals are also used for

transmission, since the receiver is significantly simpler to implement. This is a

non-coherent scheme. This section thus introduces the received signal model for

differentially detected MDPSK in the presence of AWGN and laser phase noise.

The amplitude-phase form necessarily applies to the received signal of MDPSK
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2.2 The Amplitude-Phase Form for Differential Detection

with carrier phase noise.

For MDPSK, the kth discrete-time, complex received signal r(k) is modeled as

r(k) =
√
Ese

j(φ(k)+θ(k)) + n(k)

= |r(k)|ej(φ(k)+%̃(k)). (2.14)

Here, %̃(k) = θ(k) + ε(k). Term θ(k) is the laser phase noise, and ε(k) is the AOPN

due to AWGN n(k). Based on the random-walk model (2.2) for θ(k), the residual

phase noise (RPN) ∆θ(k) is thus zero-mean Gaussian distributed with variance

σ2
p = 2πT∆v. The symbol information is carried in the phase difference between

two adjacent received signals, i.e., ∆φ(k) = φ(k)−φ(k−1). We assume ∆φ(k) takes

on each value in
{

∆φl = 2πl
M

}M−1

l=0
with equal probability.

For differential detection, the receiver decides that ∆φ(k) = 2πm
M

, m ∈

{0, 1, . . . ,M − 1}, if we have [14]

qm(k) = max
l
{ql(k) = <[r(k)r?(k − 1)e−j∆φl ]}. (2.15)

The idea of differential detection is that by forming r(k)r?(k − 1) = |r(k)||r(k −

1)|ej(∆φ(k)+%̃(k)−%̃(k−1)), θ(k) is reduced to the RPN ∆θ(k). That is, we have

∆%̃(k) = %̃(k)− %̃(k − 1) = ∆θ(k) + ε(k)− ε(k − 1).

Since ε(k) and ε(k− 1) are iid, zero-mean, Gaussian random variables with variance

N0

2A2
i

= N0

2Es
= 0.5γ−1, ∆%̃(k) is also Gaussian distributed over [−π, π) with mean zero

and variance (γ−1 + σ2
p). That is, we have

∆%̃(k) ∼ N(0, γ−1 + σ2
p) (2.16)

which is the Gaussian AOPN+RPN model. This model provides an easier way to

derive the SEP/BEP expressions of differentially detected MDPSK with RPN. In

the following, we drop the dependence on time k for simplicity.
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2.3 Summary

2.3 Summary

For coherent detection and differential detection in the phase noise channel,

respectively, the specific amplitude-phase-form received signal models are given for

following analysis. Based on the the additive observation phase noise model, we will

design optimum detector in amplitude-phase form and do performance analysis in

phase noise.
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Chapter 3

Coherent Detectors for the Phase
Noise Channel

For communication channels with time-varying phase, engineers assume perfect

phase estimation most times and simply use the minimum Euclidean distance (MED)

detector to make decision, as Fig. 3.1(a) shows. However, this way actually leads

to a large performance loss, since a noisy phase reference is generally produced due

to laser or oscillator phase noise and a finite SNR in phase estimation. Thus, we

usually have a phase reference error (PRE) for data detection in most situations. In

this chapter, we consider the design of the optimum detector and the approximate

ones for any two-dimensional amplitude/phase modulated signals, as shown in Fig.

3.1(b). The received signal is effected by AWGN and a Gaussian distributed PRE

due to imperfect carrier phase estimation, which is given by (2.3). We also introduce

two suboptimum detectors for memoryless phase noise channels: the MED detector

and the annular-sector (AS) detector. Our work here provides a unified view of

the relationship between the optimum detector and all the suboptimal ones in the

presence of linear phase noise. Numerical results for comparison are presented.

Phase 
Estimation 

MED 
Detector No Error 

Assumed Perfect 
Received Signal  

Constant Amplitude 

Decided  
Transmit Symbol 

Phase 
Estimation Unknown PRE 

Received Signal  

Constant Amplitude 
Optimum 
Detector 

Design here 

(a) 

(b) 

Decided  
Transmit Symbol 

Signal 

Signal 

Figure 3.1: Receiver structure in phase noise: (a) in literature; and (b) considered
here.
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3.1 Detectors in Amplitude-Phase Form

In Section 3.1, the exact MAP/ML detector and the approximate ones in the

amplitude-phase form are derived. The approximate ML DB are illustrated on

8-point star QAM in Section 3.2. Section 3.3 provides numerical comparison and

parameter mismatch analysis.

3.1 Detectors in Amplitude-Phase Form

In this section, we first propose a unified amplitude-phase-representation

approach to derive the maximum a posterior probability (MAP)/maximum

likelihood (ML) detector for two-dimensional carrier modulations in the presence

of AWGN and PRE. It is based on viewing the AWGN as an equivalent phase noise

that is described by the additive observation phase noise (AOPN) model that we

developed in [91], as introduced in Chap. 2. Now, we will design the MAP/ML

(optimum) detector based on |r| and ∠r in the polar coordinates for the received

signal model (2.4).

Conventionally, the MAP/ML detector is designed in the rectangular

coordinates, where one has r = <[r] + j=[r] and the likelihood function p(r | Si) =

p(<[r],=[r] | Si). In fact, p(r | Si) can be further evaluated by transforming from

rectangular coordinates (<[r],=[r]) to polar coordinates (|r|,∠r), i.e., one has

p(r | Si) = p(|r|,∠r | Si) |r|−1 (3.1)

= p(|r| | Si)p(∠r | |r|, Si) |r|−1.

In this way, based on the basic AOPN model proposed in [102], the MAP/ML

detector will be derived in the amplitude-phase form, which turns out to be simpler

for analysis in phase noise.

First, as mentioned in Section 2.1.1, the exact joint probability density function
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3.1 Detectors in Amplitude-Phase Form

(pdf) of |r| and ε conditioned on transmitting Si is given by [101] [102, eq.(7)]

p(|r|, ε | Si) =
|r|
πN0

exp

[
−|r|

2 + A2
i − 2|r|Ai cos ε

N0

]
(3.2)

Thus, because we have: ∠r = φi+ θ̃+ε, the conditional joint pdf of |r| and ∠r given

the signal Si and the PRE θ̃ is

p(|r|,∠r | θ̃, Si) =
|r|
πN0

exp

[
−|r|

2 + A2
i − 2|r|Ai cos(∠r − φi − θ̃)

N0

]
(3.3)

Then, given a transmitted symbol Si, the exact joint pdf of |r| and ∠r is derived as

p(|r|,∠r | Si) =

∫ π

−π
p(|r|,∠r | θ̃, Si)p(θ̃)dθ̃ =∫ π

−π

|r|
πN0

exp

[
−|r|

2 + A2
i − 2|r|Ai cos(∠r − φi − θ̃)

N0

]
× 1√

2πσ2
θ̃

exp

[
− θ̃2

2σ2
θ̃

]
dθ̃

(3.4)

This joint likelihood function (3.4) leads to the exact MAP decision rule expressed

in the amplitude-phase form. We denote ŜMAP as the optimum decision on the

signal m. That is, by using (3.1) in conjunction with (3.4) and factoring out the

terms therein which only involve |r|, N0 and σ2
θ̃

and are independent of any signal

point in making a decision, we thus have

ŜMAP = arg max
i∈{0,...,M−1}

P (r | Si)P (Si)

= arg max
Si=Aiejφi

P (Si)×
∫ π

−π
exp

[
2|r|Ai cos(∠r − φi − θ̃)

N0

− θ̃2

2σ2
θ̃

− A2
i

N0

]
dθ̃.

(3.5)

From now on, we focus on the case of equi-probable transmitted signals, i.e.,

P (Si) = 1
M

for any i, and the MAP detector (3.5) will reduce to the ML detector.

Thus the exact ML (optimum) decision rule expressed in the amplitude-phase form
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3.1 Detectors in Amplitude-Phase Form

is

ŜML = arg max
Si=Aiejφi

P (|r|,∠r | Si)

= arg max
{Ai,φi}

∫ π

−π
exp

[
2|r|Ai cos(∠r − φi − θ̃)

N0

− θ̃2

2σ2
θ̃

− A2
i

N0

]
dθ̃. (3.6)

Here, ŜML is the optimum decision given by the ML detector.

We can see that (3.6) involves an integral, which is inefficient to implement

in real time. To facilitate on-line implementation, we will develop here simple and

closed-form approximations from (3.6).

3.1.1 Approximate ML Detectors

To derive simpler and closed-form approximations to the ML detector, we first

consider the term: cos ε = cos(∠r − φi − θ̃), and refer to Fig. 2.2. Since ε due to

n is approximately Gaussian distributed with mean zero and variance N0

2A2
i

= 1
2ρ2
i γ

,

we consider the high SNR region, i.e., large γ so that ε is small at most times.

Thus, we can use the approximation: cos ε ≈ 1− ε2

2
, for ε� 1. Therefore, we have:

cos(∠r − φi − θ̃) ≈ 1− (∠r−φi−θ̃)2

2
, and (3.4) is simplified to

p(|r|,∠r | Si) = p(|r| | Si)p(∠r | |r|, Si)

≈

√
|r|

πN0Ai
exp

[
−(|r| − Ai)2

N0

]
×
∫ π

−π

exp
[
− (∠r−φi−θ̃)2

N0/(|r|Ai)

]
√
πN0/(|r|Ai)

exp
[
−θ̃2

2σ2
θ̃

]
√

2πσ2
θ̃

dθ̃

=

√
|r|

πN0Ai
exp

[
−(|r| − Ai)2

N0

] exp

[
− (∠r−φi)2

2(
N0

2Ai|r|
+σ2

θ̃
)

]
√

2π( N0

2Ai|r| + σ2
θ̃
)

(3.7)
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Taking the natural logarithm of both sides of (3.7), we arrive at our first closed-form

approximation to the ML decision rule, which makes the decision ŜaML1 as

ŜaML1 = arg max
Si=Aiejφi

ln p(|r|,∠r | Si) (3.8)

= arg min
{Ai,φi}

(|r| − Ai)2

N0/2
+

(∠r − φi)2

N0

2Ai|r| + σ2
θ̃

+ ln

(
N0

2|r|2
+
Ai
|r|
σ2
θ̃

)
.

Here, ln
(

N0

2|r|2 + Ai
|r|σ

2
θ̃

)
can be replaced by ln

(
N0

2|r| + Aiσ
2
θ̃

)
because the constant

term |r| can be factored out. For any two signal points on the same amplitude

level or ring, i.e., that have the same Ai in (3.8), we can see that the decision is only

dependent on (∠r−φi)2 or |∠r−φi| for choosing the φi closest to ∠r. Hence, the DB

are always angular bisectors for the signal points on one ring. It should be noted that

although we consider high SNR for the approximation, ŜaML1 is also very accurate in

low SNR, as will be shown later. We thus obtain a simpler, approximately optimum

detector (3.8), detecting the phase ∠r from the compensated received signal and the

ring |r| to make a decision together, which is easy to implement on-line.

The approximate ML detector in (3.8) can be further simplified in two cases.

Conditioned on any Si = Aie
jφi sent, we can have |r| ≈ Ai for high SNR, for most

times. In this way, replacing |r| with Ai in the second and third items of (3.8) gives

the second suboptimum decision ŜaML2 as

ŜaML2 = arg min
{Ai,φi}

(|r| − Ai)2

N0/2
+

(∠r − φi)2

N0

2A2
i

+ σ2
θ̃

+ ln

(
N0

2A2
i

+ σ2
θ̃

)
(3.9)

On the other hand, by replacing Ai with |r| in the second and third items of (3.8),

the third suboptimum ML decision ŜaML3 is obtained as

ŜaML3 = arg min
{Ai,φi}

(|r| − Ai)2

N0/2
+

(∠r − φi)2

N0

2|r|2 + σ2
θ̃

(3.10)

since ln
(

N0

2|r|2 + σ2
θ̃

)
does not affect the decision and thus can be ignored.

Our results ŜML, ŜaML1, ŜaML2 and ŜaML3 in (3.6), (3.8), (3.9) and (3.10)
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are derived for all two-dimensional carrier modulations in linear carrier phase noise

due to the transmitter and receiver local oscillators. Although (3.9) is also derived

in [50, eq.(15)], it is only one special case of our results. Eq. (3.10) has the simplest

form. We will show later in simulations that ŜaML1, ŜaML2 and ŜaML3 have almost

the same error performance as ŜML through the whole SNR region of interest, based

on 8-star QAM, rotated 8-star QAM, 16QAM and (4,4,8)-16APSK. Besides, these

detectors can lead to the optimal irregular DB.

3.1.2 AS Detector

Here, we introduce a suboptimal detector which performs ring detection and

phase detection separately. We call it the annular-sector (AS) detector, since the

corresponding decision regions are always annular sectors.

First, for the special case of M -APSK such as 8-star QAM [26] and

(4,4,4,4)-16APSK [53] where each ring has the same number of signal points with the

same phase values, our suboptimum ML detector ŜaML3 in (3.10) further simplifies to

a structure that performs ring detection and phase detection separately. For 8-star

QAM, for instance, since the four signal points on the inner ring with radius a1 have

the same phases as those on the outer ring with radius a2, i.e., φi ∈ (0, π
2
, π, 3π

2
) as

Fig. 3.2(a) shows, ŜaML3 in (3.10) can decide on the phase φi closest to ∠r and on

the ring Ai closest to |r| separately. That is, for 8-star QAM, our detector ŜaML3

can be equivalently implemented as follows:

|r|
Â=a1

≶
Â=a2

rth =
a1 + a2

2
,

φ̂ = arg min
φi∈{Âejφi}

(∠r − φi)2. (3.11)

Here, Â and φ̂ denote the suboptimum decisions on Ai and φi, respectively. Here,

we define (3.11) as the AS detector ŜAS for any two-ring constellations, first making

the ring decision Â, and then detecting φi restricted to the signal points on that

decided ring Â, i.e., φi ∈ {Âejφi}. This AS detector leads to the circular DB in
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Figure 3.2: 8-point star QAM with PRE θ̃ and AS decision regions: (a) 8-star QAM;
and (b) rotated 8-star QAM.

the middle of two rings and graphically employs a so called annular sector as the

decision region for each signal point, as shown in Fig. 3.2. It is shown later that

for 8-star QAM and (4,4,4,4)-16APSK, the ML detector (3.6) performs almost the

same as this suboptimal detector (3.11) through the whole SNR region for any σ2
θ̃

as expected. In contrast, for rotated 8-star QAM as an example, the ŜAS in (3.11)

is not equivalent to ŜaML3 in (3.10). This is because after deciding on the φi closest

to ∠r for each ring, the decision Ai still depends on all the terms of (3.10), since

(∠r−φi)2

N0
2|r|2

+σ2
θ̃

cannot be ignored due to the different φi values.

However, for any constellation, in the limit as N0 → 0, i.e., with only phase

noise, our suboptimum ML detectors ŜaML1, ŜaML2 and ŜaML3 converge to the AS

detector ŜAS. This can be explained from ŜaML3 in (3.10), because for high SNR

or N0 → 0, the term (|r|−Ai)2

N0/2
has a much larger effect on the decision than the

other term, so that we can first detect Ai and then detect φi on that ring. We

will show later via simulations that for other constellations, e.g., rotated 8-star

QAM, the ŜAS is a good approximation to the ML detector only in high SNR or for

large σ2
θ̃
. Here, ŜAS employs one-dimensional decisions separately: first in a radius

33



3.1 Detectors in Amplitude-Phase Form

detector (first stage) whose decision threshold is the arithmetic mean of two adjacent

rings’ radii, and then in a phase detector (second stage) where we ignore the phase

rotation. That is, for any multiple-ring constellations, this suboptimal detector ŜAS

is generally formulated as

ak + ak−1

2
≤ |r| < ak + ak+1

2
⇒ Â = ak,

φ̂ = arg min
φi∈{Âejφi}

|∠r − φi|. (3.12)

Here, ak denotes the radius of the kth ring, and the radii are assumed to be ordered

such that a1 < · · · < aN where N is the number of amplitude levels or rings. We

have a0 = −a1 and aN+1 =∞ for the signal points on the innermost and outermost

rings, respectively. Here, we define (3.12) as the general AS detector ŜAS throughout

this thesis, first making the ring decision Â, and then detecting φi restricted to the

signal points on that decided ring Â, i.e., φi ∈ {Âejφi}. This AS detector (3.12)

leads to the circular DB in the middle of two rings, and the angular bisector DB for

the signal points on one ring.

It should be noted that our results here are for linear phase noise. References

[49, 52, 53] have also shown that AS decision regions can result from suboptimal

detection in the presence of strong nonlinear phase noise. We will consider the

nonlinear phase noise [51,103] in the future research.

Note that our detectors ŜML, ŜaML1, ŜaML2 and ŜaML3 require the explicit

knowledge of the channel parameters: AWGN spectrum density N0 and PRE

variance σ2
θ̃

for decision. The suboptimum detector ŜAS does not depend on N0

and σ2
θ̃
. Therefore, in practice when N0 and σ2

θ̃
may not be known exactly, one may

implement ŜAS in phase noise instead of the ML detector for simplicity. For this

reason, one would be interested in how much performance loss ŜAS has compared

with ŜML in phase noise. We will show the comparison via simulations later.
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Figure 3.3: 8-point star QAM with PRE θ̃ and straight-line DB: (a) 8-star QAM;
and (b) rotated 8-star QAM.

3.1.3 MED Detector

Another well-known, suboptimal detector is the conventional MED detector

which is derived without taking the PRE into account. The MED detector, denoted

as ŜMED, is only optimal in pure AWGN and leads to straight-line DB, as shown in

Fig. 3.3. Generally, the decision from the MED detector is

ŜMED = arg min
Si

‖r − Si‖2. (3.13)

First, for the special case of MPSK which only has one ring of signal points, i.e.,

Ai = A for all i, the ML (optimal) DB are determined only by ∠r. This is because

in deciding between any two adjacent symbols Aejφi and Aejφi+1 , one should pick φi

if |∠r − φi| is smaller than |∠r − φi+1| so that the integrand in (3.6) is maximized

for any value of θ̃. Thus, the ML DB are the angular bisectors between the signal

points, which are identical to the DB of the MED detector. That is, for MPSK, the

ML detector performs always the same as the MED detector for all values of σ2
θ̃
.
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3.2 The ML DB for 8-point Star QAM

Furthermore, one should expect that for any constellation, the ML detector

(3.6) will reduce to the MED detector ŜMED in the pure AWGN channel. Since we

have |r|Ai cos(∠r − φi − θ̃) = <
[
|r|Aiej(∠r−φi−θ̃)

]
, (3.6) thus can be rewritten as

ŜML = arg max
Si

∫ π

−π
exp

2<
[
r(Sie

jθ̃)∗
]
− A2

i

N0

− θ̃2

2σ2
θ̃

 dθ̃
where ∗ denotes the conjugate operator. When no PRE exists, i.e., θ̃ = 0, due to

the property of exp(.) and integral, ŜML above can further reduce to

ŜML|θ̃=0 = arg max
Si=Aiejφi

{2<
[
r(Sie

jθ̃)∗
]
− A2

i }|θ̃=0

= arg max
Si

2< [rS∗i ]− A2
i

= ŜMED. (3.14)

That is, if the PRE θ̃ is known to be 0, the only contribution in (3.6) would come

from 2|r|Ai cos(∠r − φi)− A2
i , which then reduces (3.6) to ŜMED in (3.13).

The suboptimum detector ŜMED in (3.13) also does not require the information

of N0 and σ2
θ̃

for detection. Therefore, in practical implementation when N0 and

σ2
θ̃

may not be known exactly, one would wonder whether ŜMED or ŜAS should be

employed instead of the ML detector. Thus, we will compare their SEP performance

to show the transition relationship later.

3.2 The ML DB for 8-point Star QAM

In this section, we will first introduce 8-point star QAM which includes 8-star

QAM and rotated 8-star QAM. Then using our approximate ML detectors, we

illustrate the irregular DB for these formats.

Figs. 3.3(a) and 3.3(b) give the constellation maps of 8-star QAM and rotated

8-star QAM, respectively. Here, a1 and a2 are the radii of the inner ring and the
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3.2 The ML DB for 8-point Star QAM

outer ring, respectively. For 8-star QAM, the signal set {Si} with M = 8 is {Aiejφi =

a1e
j(πi

2
) for i = 0, 1, 2, 3 and a2e

j(
π(i−4)

2
) for i = 4, 5, 6, 7}. For rotated 8-star QAM,

the points on the inner ring have a 45◦ phase offset compared with the points on the

outer ring, i.e., {Aiejφi = a1e
j(πi

2
+π

4
) for i = 0, 1, 2, 3 and a2e

j(
π(i−4)

2
) for i = 4, 5, 6, 7}.

Here, we assume a1 = α
√
Es and a2 = βα

√
Es, where α is the coefficient of the inner

ring and β = a2/a1 is the ring ratio. Since the mean of energies of the inner ring

and outer ring should be Es, we have

α2(β2 + 1)

2
= 1, β > 1 and 0 < α < 1. (3.15)

In the following, we fix β for both 8-point star QAM constellations. We set

β = 2.4 in 8-star QAM and β = 2 in the rotated one throughout this chapter, which

are the optimal values of β within a large range of γ (from about 8dB to about

30dB) for minimum SEP of the corresponding constellation in pure AWGN. These

can be easily checked by the exact SEP expressions (4.35) and (4.36) derived for the

pure AWGN channel in Chap. 4 Appendix. As an example, for 8-star QAM with

β = 2.4, we have α = 0.54, r1 = 0.54
√
Es, r2 = 1.3

√
Es and the radius of circular

DB is rth = r1+r2
2

= 0.92
√
Es.

By using our approximate ML detector ŜaML2 in (3.9), we can get the

approximately optimal DB as a function of SNR γ and PRE variance σ2
θ̃

in phase

noise. For instance, the DB between S0 and S4 for rotated 8-star QAM is given by

P (|r|,∠r
∣∣S0)

S0

≷
S4

P (|r|,∠r
∣∣S4),

which leads to

|r|
S0

≶
S4

a1 + a2

2
+

N0

4(a2 − a1)
ln
σ2
θ̃

+ N0

2a2
2

σ2
θ̃

+ N0

2a2
1

+
N0

4(a2 − a1)

(
∠r2

σ2
θ̃

+ N0

2a2
2

−
(∠r − π

4
)2

σ2
θ̃

+ N0

2a2
1

)
(3.16)
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3.2 The ML DB for 8-point Star QAM

since we have φ0 = π
4

and φ4 = 0. Fig. 4.1 shows the DB of rotated 8-star QAM

given by our detector ŜaML2 under different parameters. The DB given by our ŜaML3

are almost identical to those of ŜaML2. We show that the DB between the two rings

varies with γ and σ2
θ̃
, while the DB between any two signal points on the same ring

are always angular bisectors. For low SNR or for weak phase noise, the AWGN

dominates. Therefore, the DB for small γ or σ2
θ̃

are asymptotically straight-line,

approaching to those of AWGN-limited case, i.e., σ2
θ̃

= 0 in Fig. 4.1. Otherwise, we

can see that the DB for large phase noise or high SNR are asymptotically circular

between rings, since phase noise dominates for both cases. It can be seen that (3.16)

can be simplified to |r|
S0

≶
S4

a1+a2

2
when σ2

θ̃
� N0

2a2
1

or N0 → 0. This implies that for

larger γ or σ2
θ̃
, the ML detector can be replaced by the ŜAS in (3.12) in practice.

Reference [104] has also suggested that circular DB between rings are optimal for

8-point star QAM in the phase-noise-limited case where N0 → 0. We check by

multiple plots that the DB between rings becomes almost circular when γ is about

10σ−2

θ̃
or above, which just corresponds to the above fact of σ2

θ̃
� N0

2a2
1
.

For 8-star QAM, the DB of our ŜaML2 exhibits the same trend as that of

rotated 8-star QAM, and Fig. 3.5 shows the changing DB with varying σ2
θ̃

and γ,

respectively. However, the DB of our suboptimum detector ŜaML3 for 8-star QAM

is always circular in the middle irrespective of γ and σ2
θ̃
, due to the equivalence to

ŜAS in (3.11).

In nonlinear phase noise, [105] obtained the (nonlinear) optimal DB by applying

the expectation maximization algorithm to compensate for the distortion and phase

shift on the constellations. We will consider this nonlinear case in future work.
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Figure 3.4: DB of our detector ŜaML2 (or ŜaML3) for rotated 8-star QAM with β = 2:
(a) varying σ2

θ̃
with γ = 20dB; and (b) varying γ with σ2

θ̃
= 0.01rad2.
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Figure 3.5: DB of our detector ŜaML2 for 8-star QAM with β = 2.4: (a) varying σ2
θ̃

with γ = 20dB; and (b) varying γ with σ2
θ̃

= 0.01rad2.
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3.3 Numerical Results

3.3 Numerical Results

We will use Monte Carlo simulation to get the SEP results for the MED detector

(3.13), the AS detector (3.12), and all the exact and approximate ML detectors in

phase noise with different PRE variances σ2
θ̃
. Here, we generate θ̃ as a Gaussian

distributed random variable with the variance given by

σ2
θ̃

=
2L2 + 3L+ 1

6L
σ2
p +

1

2γL
. (3.17)

This thus corresponds to the simulations in the ideal decision feedback case, i.e.,

no past decision errors in the DA ML PE, which is used only for examining the

performance of our detectors.

As discussed in [15], an optimal memory length L which gives the minimum

value of σ2
θ̃

can be derived from (3.17), that is [15, eq. (17)]

Lopt =

⌊
1

4

√
1 +

24

γσ2
p

− 3

4

⌋
.

Here, bxc denotes the largest integer less than or equal to x. It is shown in [15]

that DA ML with Lopt always leads to a minimum PRE variance, thus resulting in

the optimal error performance. We can see that the choice of Lopt depends on the

knowledge of γ and σ2
p, which requires a series of accurate estimation. For simple

illustration, we do not consider Lopt here. To keep the accuracy of DA ML PE in

the SNR region of interest, we set L = 8 for 8-point star QAM, and for 16-point

constellations, we use L = 12 throughout the simulations, as mentioned in [15].

Note that a longer memory interval L will lead to less tolerance to the combined

normalized laser linewidth σ2
p = 2π(∆v)T for a given SEP performance of DA ML.

Here, 8-star QAM, rotated 8-star QAM, 16QAM and (4,4,8)-16APSK are used

as examples for numerical illustration. Figs. 3.3 and 2.4 give the constellation maps

of 8-point star QAM and 16QAM, respectively. The (4,4,8)-16APSK constellation

with uniformly-spaced ring radii, i.e., {Si = d̄
2
ej(

πi
2

+π
4

) for i = 0, 1, 2, 3; d̄ej(
π(i−4)

2
+π

4
)
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Figure 3.6: (4,4,8)-16APSK with AS decision regions.

for i = 4, 5, 6, 7; and 3d̄
2
ej(

π(i−8)
4

+π
8

) for i = 8, 9...15} with d̄ =
√

16Es
23

, is shown

in Fig. 3.6. We introduce this 3-ring 16APSK to compare with the widely used

16QAM, which can also be regarded as a 3-ring constellation, i.e., (4,8,4)-16QAM,

as shown in Fig. 2.4. It should be noted in simulations that we make ∠r in the range

[0, 2π). And for 8-star QAM, we need consider two more cases {Ai = a1, φi = 2π}

and {Ai = a2, φi = 2π} to find the minimum, since (3.8), (3.9 and (3.10) include

(∠r − φi)2. If {Ai = a1, φi = 2π} makes the minimum, we decide that S0 is sent. If

{Ai = a2, φi = 2π} leads to the minimum, S4 is decided. For (3.6), however, we do

not need to consider these cases because of the cos(.) inside. Similarly, for rotated

8-star QAM, we only add the case of {Ai = a2, φi = 2π} for the outer ring, since

φi 6= 0 on the inner ring. We decide that S4 is sent when {Ai = a2, φi = 2π} results

in the minimum value.
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Figure 3.7: Performance comparison of ŜML, ŜaML1, ŜaML2 and ŜaML3 for DA ML
PE at a data rate of 40Gbit/s: (a) as SNR γ increases; and (b) as combined laser
linewidth ∆v increases with fixed γ = 20dB.
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3.3.1 Comparison among ŜML, ŜaML1, ŜaML2 and ŜaML3

In Fig. 3.7(a), σ2
p (rad2) is set to be 4.5π × 10−4 and π × 10−4 for 8-point star

QAM and 16-point constellations, respectively, which corresponds to 3MHz and

500KHz of combined laser linewidth (∆v) at a data rate of 40Gbit/s [15]. In Fig.

3.7(b), ∆v increases from 0KHz to 5MHz, at a data rate of 40Gbit/s for a given

γ = 20dB. As Fig. 3.7 shows, the approximate ML detectors we derived have almost

the same error performance as the exact ML detector ŜML through the whole SNR

region of interest for any ∆v. Although we assume high SNR in the derivations, our

detectors also work very well in low SNR down to 3dB. It should be noted that ŜML

in (3.6) is very computationally inefficient. Therefore, in practical implementation,

one can implement any of our approximate ML detectors ŜaML1, ŜaML2 and ŜaML3

instead of ŜML for efficiency. To keep the accuracy and to reduce the computational

load, our first approximate ML detector ŜaML1 in (3.8) is used instead of ŜML in the

following simulation for the SEP of the ML detector. Moreover, Fig. 3.7(b) shows

that (4,4,8)-16APSK is much less sensitive to increased ∆v than 16QAM.

3.3.2 Comparison between ŜaML1 and ŜAS

As Fig. 3.8 and Fig. 3.9(a) show, for low SNR, our ŜaML1 in (3.8) always

performs better than ŜAS. As γ increases for a given σ2
θ̃

or σ2
p (or (∆v)T ), or as σ2

θ̃

or σ2
p increases for a fixed γ, the performance of ŜAS asymptotically approaches that

of ŜaML1. This phenomenon corresponds to the geometrical fact in Fig. 4.1 that

the approximate ML decision region for each signal point asymptotically becomes

an annular sector as σ2
θ̃

or γ increases. This implies that for larger σ2
θ̃

or γ, ŜAS can

replace ŜaML1 for simpler implementation. For rotated 8-star QAM as an example,

Fig. 3.8(a) shows that for σ2
θ̃

= 0.02rad2, the SNR penalty of ŜAS compared to

ŜaML1 is about 1dB at the SEP value of 10−3 of practical interest. As γ increases,

the performance loss becomes smaller and smaller. For 16QAM with γ = 28dB

in Fig. 3.9(a), we see that ŜAS has almost the same laser linewidth tolerance as ŜML.
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Figure 3.8: SEP comparison between ŜaML1 and ŜAS: (a) rotated 8-star QAM with
β = 2; and (b) (4,4,8)-16APSK.
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For 8-star QAM, Fig. 3.9(b) shows that the performance of ŜAS agrees with that

of ŜaML1 for any γ with σ2
p(rad2) ranging from 0 to 10−2, since ŜaML1 and ŜAS are

identical as shown earlier. Thus, our result (4.31) is also an accurate approximation

to the SEP of ŜML for 8-star QAM with any ∆v. The same observation will hold

for (4,4,4,4)-16APSK.

3.3.3 Comparison between ŜaML1 and ŜMED

For practical application with DA ML PE, Fig. 3.10 shows the SEP comparison

between ŜaML1 and ŜMED with increasing laser linewidth ∆v at a data rate of

40Gbit/s. We give rotated 8-star QAM and 16-point constellations as examples,

where we fix γ to be 15dB and 20dB, respectively. The SEP increases as ∆v

increases from 0KHz to 5MHz. As expected, ŜaML1 performs much better than

ŜMED, especially for higher-order modulations. For a given SEP value of 10−2 or

lower, ŜaML1 is shown to have a much larger laser linewidth tolerance than ŜMED.

Moreover, we can see that 16QAM is much more sensitive to increased ∆v than

(4,4,8)-16APSK.

3.3.4 Comparison between ŜAS and ŜMED

The detector ŜMED is optimal in pure AWGN, whereas ŜAS is asymptotically

optimal as σ2
θ̃

or γ increases in phase noise. Both ŜMED and ŜAS are simple and

do not need the information of σ2
θ̃

and N0 for practical implementation. Thus, we

compare their SEP performance here to show the transition from one to the other.

As Fig. 3.11 shows, for small γ, ŜMED outperforms ŜAS, conforming the fact that

the optimal DB are approximately straight lines when AWGN still dominates. As

γ increases, the SEP of ŜMED deteriorates much faster than that of ŜAS. More

importantly, we can see that ŜAS is much more robust to phase noise than ŜMED

in the reasonably high SNR region corresponding to the SEP values of 10−3 and

lower which are of practical interest. In addition, ŜMED leads to a much larger

error floor than ŜAS. As Fig. 3.12 shows for DA ML PE, ŜAS performs better than

46



3.3 Numerical Results

0 1 2 3 4 5

x 10
−3

10
−5

10
−4

10
−3

10
−2

σ2
p = 2π∆vT rad2

P
(e

s) 
of

 1
6Q

A
M

 fo
r 

D
A

 M
L
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Figure 3.9: SEP comparison between ŜaML1 and ŜAS for DA ML PE: (a) 16QAM
with L = 12; and (b) 8-star QAM with β = 2.4 and L = 8.
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(4,4,8)-16APSK, ŜMED
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Figure 3.12: SEP comparison between ŜAS and ŜMED for DA ML PE as σ2
p =

2π(∆v)T increases.

ŜMED for larger σ2
p, and thus is much more robust to increased (∆v)T . The superior

performance of ŜAS can be traced to the geometrical fact in Fig. 3.4(a) that the

circular DB shape provides the signal points with more angular distances from the

boundaries, and thus more phase-noise-tolerance than the straight-line DB does.

For 8-star QAM, Fig. 3.13 shows that the performance of ŜAS hardly differs

from that of ŜMED for any σ2
p through the whole SNR region. This echoes the

geometrical fact in Fig. 3.5 that the changed decision regions or angular distances

are small and thus hardly have effect on the performance. Thus, our result (4.31) is

also a good approximation to the SEP of ŜMED for 8-star QAM.
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Figure 3.13: SEP comparison between ŜAS and ŜMED for 8-star QAM with DA ML
PE, L = 8.

3.3.5 Parameter Mismatch Analysis

Both the suboptimal MED and AS detectors do not need to know the values

of N0 and σ2
θ̃

for detection. However, our detectors in (3.6), (3.8), (3.9) and (3.10)

require the exact information of N0 and σ2
θ̃

for accurate detection. Therefore, in

this subsection, we will show how the mismatch of N0 and σ2
θ̃

in ML detection

affects the system performance. Here, we assume the transmission environment with

N0 = 1 and σ2
θ̃

= 0.01rad2. We give two mismatched cases: (I, N0 = 2
3
, σ2

θ̃
= 0.02)

and (II, N0 = 1
2
, σ2

θ̃
= 0.05) for numerical comparison of 8-point star QAM. First,

for 8-star QAM, since ŜAS does not depend on N0 and σ2
θ̃
, the error performance

of the approximate ML detectors should thus be insensitive to the mismatch, as

Fig. 3.14(a) illustrates. However, as Fig. 3.14(b) shows, the mismatch with the

practical N0 and σ2
θ̃

leads to a poor error performance for rotated 8-star QAM.

Moreover, the two mismatched cases as examples are (I, N0 = 1, σ2
θ̃

= 0.05) and (II,

N0 = 1
2
, σ2

θ̃
= 0.05) for 16-point constellations. As Fig. 3.15(a) shows for 16QAM,

although the mismatch increases the SEP in the medium SNR region, it makes no
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difference in high SNR region corresponding to the SEP values of 10−3 and lower,

when ŜAS approaches ŜML as Fig. 3.9(a) shows. More importantly, we can see from

Fig. 3.15(b) that (4,4,8)-16APSK is very resistant to the mismatch, since ŜAS can

be almost equivalently applied instead of ŜML according to Fig. 3.8(b).

3.4 Concluding Remarks

Our AOPN model provides a unified approach for MAP/ML receiver design

in amplitude-phase form for two-dimensional carrier modulations with linear phase

noise. The closed-form, approximate ML detectors perform almost the same as the

exact one, and are much more efficient in implementation. For strong laser phase

noise or high SNR, the optimal DB asymptotically becomes circular in the middle

of two rings. Our approximate ML detectors thus approach the AS detector ŜAS,

which performs ring detection and phase detection separately. One can implement

ŜAS in phase noise, even without the knowledge of the channel parameters σ2
θ̃

and

N0. This makes the AS detector more useful in practice. It should be emphasized

that these detectors can apply to any received signal model with time-varying phase

and constant amplitude, including the signal model in the presence of oscillator

phase noise and quasi-static fading channels where the fading gain is assumed

time-invariant and known to the receiver [9, 10].

Our approximate ML detectors and AS detector can be further used to optimize

multiple-ring constellations. These results will be reported in Chap. 5. In addition,

the approximate MAP detectors can be used for iterative decoding.
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ŜaML1 , Mismatched II

(a)

5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

SNR γ (dB)

P
(e

s) 
of

 (
4,

4,
8)

−
16

A
P

S
K
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Chapter 4

Unified Error Probability Analysis
in Phase Noise

To efficiently and accurately predict the error performance of the robust

detectors impaired by unknown phase noise, this chapter provides a unified and

systematic approach to predicting the error probability of MPSK, M -QAM and

M -APSK in the presence of AWGN and phase reference error (PRE). Besides, we

generalize our systematic approach to obtain the SEP and BEP results of Gray

coded MDPSK with residual phase noise (RPN). There are very limited results

in the existing literature, where the exact results for MPSK and MDPSK involve

very complex multiple integrals and do not facilitate further analysis. Here, simple,

accurate and closed-form approximations to the SEP and BEP are derived, and all

the results are expressed in terms of Gaussian Q-function. Numerical results are

given to validate the accuracy of our derivation.

In Section 4.1, we derive the approximate SEP and BEP expressions for MPSK

with the ML detector. Section 4.2 applies our approach to obtain the SEP and

BEP approximations for MDPSK with differential detection. New SEP results

for the annular-sector (AS) detector are derived in Section 4.3 for multiple-ring

constellations, such as M -QAM and M -APSK in the presence of AWGN and PRE.

4.1 Error Probability of MPSK with ML

Detection

Based on the received signal model (2.3) with Ai =
√
Es for MPSK, we will

derive the closed-form error probability expressions of the ML detector. As given
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Figure 4.1: Geometric representation of the received signal r for MPSK.

by (2.13) in Section 2.1.2, we have % ∼ N(0, N0

2A2
i

+ σ2
θ̃
) in the range [−π, π), which

is the Gaussian AOPN+PRE model. Fig. 4.1 gives a geometric representation of
√
Ese

j(φ+θ̃), n and r in the in-phase-and-quadrature (I-Q) coordinate complex plane.

As a result, the probability of the received signal phasor r falling in any sector,

i.e., the probability of the event: θ0 ≤ % < θ1, with any transmitted phase φ, can be

easily calculated, as Fig. 1 shows. Here, we assume arbitrary angles θ0 < θ1 within

[0, π) from the new coordinate system I’-Q’, which is the I-Q-coordinate system

rotated by the angle φ. Thus, we have

P (θ0 ≤ % < θ1) = Q

 θ0√
0.5γ−1 + σ2

θ̃

−Q
 θ1√

0.5γ−1 + σ2
θ̃

 (4.1)

where we have γ = Es
N0

, and Q(x) = 1√
2π

∫ ∞
x

exp

(
−y

2

2

)
dy, x ≥ 0, is the Gaussian

Q-function.

The result (4.1) is the explicit, closed-form expression that we will use
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4.1 Error Probability of MPSK with ML Detection

throughout this section. We define es and eb as the events of symbol error and

bit error, respectively, and cs = es as the event of correct symbol decision..

4.1.1 Unified SEP Expression of MPSK with PRE

Since the analysis on the SEP of BPSK has been done before [46], we will derive

the approximate SEP expression of MPSK for M ≥ 4 with PRE via our new result

(4.1), to show the accuracy of our unified approach.

For MPSK, we assume the modulated phase φ takes on each of the values

in
{
φi = 2πi

M

}M−1

i=0
with equal probability, i.e., P (φ = φi) = 1

M
, for any i. Let

P (cs
∣∣φ = 0) represent the correct-decision probability given the signal φ = 0 is sent,

i.e., P (cs
∣∣φ = 0) = P (% ∈ [− π

M
, π
M

)
∣∣φ = 0). Noting that we have P (% ∈ [− π

M
, 0)
∣∣φ =

0) = P (% ∈ [0, π
M

)
∣∣φ = 0) by symmetry, it follows that

P (cs
∣∣φ = 0) = 1− 2Q

 π

M

1√
0.5γ−1 + σ2

θ̃

 (4.2)

from (4.1) with θ0 = 0 and θ1 = π
M

. Therefore, the new SEP expression of MPSK

with AOPN+PRE is given by

P (es) = 2Q

 π

M

1√
0.5γ−1 + σ2

θ̃

 . (4.3)

First, when σ2
θ̃

is small enough, i.e., γ−1 � 2σ2
θ̃
, (4.3) simplifies to 2Q(π

√
2γ

M
), which

corresponds to the case of no PRE. This result is accurate for M ≥ 4, since it

is the same as [14, eq.(4.3-19)]. Second, when γ � (2σ2
θ̃
)−1, (4.3) reduces to

2Q( π

M
√
σ2
θ̃

). This is the error floor term denoted as PEF for any MPSK, representing

the irreducible SEP due to PRE.

For comparison, the exact conditional SEP expressions for M ≥ 4 are derived

by the polar-coordinate method [71] for 0 < θ̃ < π, since we have P (es | θ̃, 0 < θ̃ <
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4.1 Error Probability of MPSK with ML Detection

π) = P (es | θ̃, − π < θ̃ < 0) by symmetry. We thus have

P (es | θ̃) =



π∫
π
M
−θ̃
f1(x, θ̃)dx+

− π
M
−θ̃∫

−π
f2(x, θ̃)dx,

0 < θ̃ < π
M

1−
π
M
−θ̃∫
−π

f1(x, θ̃)dx+
− π
M
−θ̃∫

−π
f2(x, θ̃)dx,

π
M
< θ̃ < π(M−1)

M

1−
π
M
−θ̃∫
−π

f1(x, θ̃)dx, π(M−1)
M

< θ̃ < π

where f1(x, θ̃) and f2(x, θ̃) are given, respectively, by

f1(x, θ̃) =
1

2π
exp

[
−

γ sin2( π
M
− θ̃)

sin2(x− π
M

+ θ̃)

]

and

f2(x, θ̃) =
1

2π
exp

[
−

γ sin2( π
M

+ θ̃)

sin2(−x− π
M
− θ̃)

]
.

Finally, the exact average SEP is given by

P (es) = 2

∫ π

0

P (es | θ̃)p(θ̃)dθ̃. (4.4)

For PLL tracking, p(θ̃) is given in (2.5). For DA ML PE, we have θ̃ ∼

N(0, 2L2+3L+1
6L

σ2
p +

σ2
n′

2L
). This expression (4.4) is used to compute the exact results

in Figs. 4.2-4.3. Moreover, the exact floor term for any MPSK is thus
∫
I
p(θ̃)dθ̃,

where I = {θ̃ : π/M < |θ̃| < π}. Numerical comparison shows that our new error

floor term PEF = 2Q( π

M
√
σ2
θ̃

) is a very good approximation to the exact one for a

wide range of σ2 for M ≥ 4, the same as MDPSK case shown later.
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4.1 Error Probability of MPSK with ML Detection

Fig. 4.3 M = 4(γ) M = 8(γ) M = 16(γ)
Eq.(4.3) 14.15 dB 19.78 dB 25.88 dB
Eq.(4.4) 14.62 dB 19.91 dB 25.91 dB

Eq.(4.4)−Eq.(4.3) 0.47 dB 0.13 dB 0.03 dB

Table 4.1: Difference in γ at the SEP of 10−6 for DA ML PE

Fig. 4.4 M = 4(γ) M = 8(γ) M = 16(γ)
Eq.(4.3) 12.04 dB 18.57 dB 27.52 dB
Eq.(4.4) 12.55 dB 18.69 dB 27.56 dB

Eq.(4.4)−Eq.(4.3) 0.51 dB 0.12 dB 0.04 dB

Table 4.2: Difference in γ at the SEP of 10−4 for PLL

4.1.2 Numerical Comparison with Exact SEP

Figs. 4.2-4.3 show the comparison between our result (4.3) and the exact one

(4.4) given in double-integral form for PLL and DA ML PE method, respectively.

For PLL, we set α = 150 for all MPSK, which corresponds to an rms phase error

of
√

var[θ̃] = 4.68◦ [46]. For DA ML, we set L = 8, and σ2
p (rad2) is set to be

4π × 10−4, 5.4π × 10−5 and 16π × 10−6 for QPSK, 8PSK and 16PSK, respectively,

which correspond to 4MHz, 360KHz and 80KHz of combined laser linewidth at

40Gbit/s [15]. As an example in Fig. 4.2, the difference in γ at a specific SEP of

10−6 for QPSK is 0.47dB, since we have γ = 14.15dB in (4.3) and γ = 14.62dB in

(4.4). For Fig. 4.3, Table 4.1 lists the differences in γ at the SEP of 10−6 between

(4.3) and (4.4). We can see that the maximum difference in γ is less than 0.5dB

and the difference decreases as M increases. The comparison shows that our unified

approach is mathematically simpler and increasingly more accurate through the

whole SNR region as M increases. Furthermore, Fig. 4.2 shows that the error floor

term PEF is very important especially for higher-order MPSK.

It should be noted that in the design of a typical PLL, the PLL SNR α needs to

be designed according to the required SNR of the system. It means that α should be

designed larger as M increases. A larger α will reduce the error floor term. In Fig.

59



4.1 Error Probability of MPSK with ML Detection

0 10 20 30

10
−6

10
−4

10
−2

10
0

γ (dB)

P
(e

s) 
of

 M
P

S
K

 w
ith

 α
=

15
0

 

 

Eq.(4.3)

Eq.(4.4)

Eq.(4.4) minus P
EF

M=16

M=4
M=8

Figure 4.2: SEP comparison for PLL with α = 150.

5 10 15 20 25 30

10
−6

10
−4

10
−2

10
0

γ (dB)

P
(e

s) 
of

 M
P

S
K

 w
ith

 D
A

 M
L 

P
E

 

 
Eq.(4.3)

Eq.(4.4)

M=4 M=8

M=16

Figure 4.3: SEP comparison for DA ML PE with L = 8.

60



4.1 Error Probability of MPSK with ML Detection

5 10 15 20 25 30

10
−6

10
−4

10
−2

10
0

γ (dB)

P
(e

s) 
of

 M
P

S
K

 fo
r 

P
LL

 

 
Eq.(4.3)

Eq.(4.4)

M=4 M=8
M=16

Figure 4.4: SEP comparison for PLL with different α.

4.2, we keep α = 150 for all values of M . Now in Fig. 4.4, we set α to be 100, 300 and

600 for QPSK, 8PSK and 16PSK, respectively, which correspond to rms phase errors

of 5.73◦, 3.31◦ and 2.34◦, respectively, to show the numerical comparison. Table 4.2

displays the differences in γ at a specific SEP of 10−4 between (4.3) and (4.4) as an

example of Fig. 4.4. It can be seen that the difference is also very small.
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Figure 4.5: Signal-space diagram for 8-PSK (Gray coded).

4.1.3 Unified BEP Expressions of MPSK with PRE

Our approach enables much easier prediction on the BEP of higher-orderMPSK

with PRE. To show this, this section gives the unified approximate BEP results of

MPSK (Gray coded) with AWGN and PRE. Specifically, the energy per bit, Eb,

equals Es
log2 M

[14].

Our unified approach combined with the method of Lee [106] or the method of

Lassing [107] is used to obtain new approximate BEP expressions for M = 4, 8 and

16. For M ≥ 32, the approach is the same. First, let Ak represent the probability

of the received signal phasor r falling into the decision region Rk of MPSK when

the signal φ = 0 is sent, i.e., Ak = P (r ∈ Rk|φ = 0), integer k ∈ [0,M − 1]. As

Figs.4.5-4.6 show, Rk corresponds to the region where θ0 = (2k−1)π
M

and θ1 = (2k+1)π
M

in (4.1).
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Figure 4.6: Signal-space diagram for 16-PSK (Gray coded).

Therefore, for any k < M
2

, we have

Ak = P
(
% ∈ [

(2k − 1)π

M
,
(2k + 1)π

M
)
∣∣φ = 0

)
(4.5)

= Q

 (2k − 1)π/M√
0.5γ−1 + σ2

θ̃

−Q
 (2k + 1)π/M√

0.5γ−1 + σ2
θ̃

 .

For the special case of k = M
2

, we have

AM
2

= 2P
(
% ∈ [

(M − 1)π

M
, π)
∣∣φ = 0

)
(4.6)

= 2Q

 (M − 1)π/M√
0.5γ−1 + σ2

θ̃

− 2Q

 π√
0.5γ−1 + σ2

θ̃

 .

Normally, π√
0.5γ−1+σ2

θ̃

is so large that Q
(

π√
0.5γ−1+σ2

θ̃

)
can be dropped. Moreover, the
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following relation holds [106]:

A0 > A1 = AM−1 > · · · > AM/2−1 = AM/2+1 > AM/2. (4.7)

QPSK Case

The BEP result of QPSK with PRE is thus derived as [106]

P (eb) = P (eb|φ = 0) =
1

2
[A1 + 2A2 + A3] = A1 + A2

≈ Q

 π/4√
0.5γ−1 + σ2

θ̃

+Q

 3π/4√
0.5γ−1 + σ2

θ̃

 . (4.8)

8PSK Case

The BEP result of 8PSK in terms of Ak’s is expressed as [106]

P (eb) = P (eb|φ = 0) =
2

3
[

6∑
k=1

Ak]. (4.9)

Based on (4.5)−(4.7), we thus have

P (eb) =
2

3
[

7∑
k=1

Ak − A7] =
2

3
[P (es)− A1]

≈ 2

3

Q
 π/8√

0.5γ−1 + σ2
θ̃

+Q

 3π/8√
0.5γ−1 + σ2

θ̃

 . (4.10)

16PSK Case

Lassing, etc [107] pointed out that the BEP with Gray mapping for M ≥ 16 is

dependent on the transmitted symbols. Here, our unified approach together with the

average distance spectrum d̄(k) [107] is used to obtain the BEP results for M ≥ 16.

Since d̄(k) and A(k) are symmetric around k = M
2

, the exact BEP expression
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of 16PSK is derived as

P (eb) =
1

4

15∑
k=1

d̄(k)A(k) =
1

2
(A1 + 2A2 + 2A3 + 2A4 + 2.5A5 + 3A6 + 2.5A7 + A8).

(4.11)

Calculating Ak’s separately via (4.5)−(4.7), we have

P (eb) ≈
1

2

Q
 π/16√

0.5γ−1 + σ2
θ̃

+Q

 3π/16√
0.5γ−1 + σ2

θ̃


+

1

2
Q

 9π/16√
0.5γ−1 + σ2

θ̃

+
1

2
Q

 11π/16√
0.5γ−1 + σ2

θ̃


−1

2
Q

 13π/16√
0.5γ−1 + σ2

θ̃

− 1

2
Q

 15π/16√
0.5γ−1 + σ2

θ̃

 . (4.12)

Similar to the case of 16PSK, the BEP results of MPSK for higher order M can also

be expressed as linear combinations of single Gaussian Q-functions, via our unified

approach. These approximate expressions allow a simple and quick estimation of

the BEP performance as functions of the different phase error variances.

4.1.4 Numerical Comparison with Exact BEPs

The exact BEP result of QPSK with PRE is given in detail by [55, eqs.(4)-(13)].

The BEP results conditioned on the PRE θ̃ for M = 8 and 16 are given by [58,

eq.(5)] and [58, eqs.(8)-(13)], respectively, where the trivial difference caused by

different transmitted symbols is ignored for M = 16. It follows that averaging

these conditional results over the distribution of θ̃ from 0 to π gives the exact BEP

results [58]. For PLL tracking, p(θ̃) is given in (2.5). For DA ML PE, we have

θ̃ ∼ N(0, 2L2+3L+1
6L

σ2
p +

σ2
n′

2L
). The details are not shown here.

Figs. 4.7-4.8 show the comparison between our results and the exact ones for

PLL and DA ML PE method, respectively. For PLL, we set α = 100 and 200, which
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Figure 4.8: BEP comparison for MPSK with DA ML: L = 6.
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Fig. 4.8 M = 4(Eb
N0

) M = 8(Eb
N0

) M = 16(Eb
N0

)

Ours 11.46 dB 15.8 dB 20.93 dB
Exact 11.8 dB 15.85 dB 20.93 dB

Difference 0.34 dB 0.05 dB 0 dB

Table 4.3: Difference in Eb/N0 at the BEP of 10−6 for DA ML PE

correspond respectively to rms phase errors of
√

var[θ̃] = 5.73◦ and
√

var[θ̃] = 4.05◦.

For DA ML, we set L = 6, and σ2
p (rad2) is set to be 4.4π × 10−4, 6π × 10−5

and 17.6π × 10−6 for QPSK, 8PSK and 16PSK, respectively, which correspond to

4.4MHz, 400KHz and 88KHz combined laser linewidth at 40Gbit/s [15]. In Fig. 4.7,

for instance, the difference in Eb/N0 at a specific BEP of 10−6 for QPSK is 0.5dB,

since Eb/N0 equals 11.5dB in (4.8) and 12dB in the exact result. For Fig. 4.8,

Table 4.3 lists the differences in Eb/N0 at the SEP of 10−6 between our approximate

results and the exact ones. We can see that although we assume high SNR for our

approach, our results are accurate throughout the whole SNR region. It is clear

that our expressions are simpler and do not involve any double-integrals, compared

with the exact BEP results. Moreover, our approximations are increasingly more

accurate as M increases.

In addition, our BEP results (4.8), (4.10) and (4.12) with σ2
θ̃

= 0 are accurate

approximations for the BEP of coherent MPSK with no PRE, i.e., θ̃(k) = 0 for any

k in (2.3).
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4.2 Error Probability of Differentially Detected

MDPSK with RPN

To further demonstrate the usefulness of our systematic approach, we derive

the approximate SEP/BEP expressions for differentially detected MDPSK via the

AOPN+RPN model, and compare them with the exact ones which are shown

concretely for the first time.

4.2.1 SEP Expressions and Numerical Comparison

Based on the signal model (2.14) in Section 2.2, we have ∆%̃(k) ∼ N(0, γ−1 +

σ2
p), which is the Gaussian AOPN+RPN model. The new approximate SEP

expression is thus derived as

P (es) = P (es
∣∣∆φ0 = 0) = 1− P

(
∆%̃ ∈ (− π

M
,
π

M
)
∣∣∆φ0 = 0

)
≈ 2Q

(
π

M

1√
γ−1 + σ2

p

)
. (4.13)

First, when σ2
p is small enough, γ−1 � σ2

p, (4.13) simplifies to 2Q(
π
√
γ

M
), which

corresponds to the case of no RPN. This result is accurate for M ≥ 4, compared

with the exact one given by [12, eq.(8.90)]. Also, a comparison between (4.13) with

σ2
p = 0 and (4.3) with σ2 = 0 gives the well-known fact that the performance of

coherent MPSK is 3dB better than that of differentially detected MDPSK. Second,

when γ � σ−2
p , (4.13) reduces to 2Q( π

M
√
σ2
p

). This is the error floor term for any

MDPSK, representing the irreducible SEP due to RPN.

The exact SEP result of 2DPSK is given by [60, eqs.(3)-(6)]. For M ≥ 4,

the exact SEP results of MDPSK with phase noise have not been derived so far.

Therefore, we will derive the exact ones based on the results [92, eqs.(9)(11)]. Here,

we assume the signal ∆φ0 = 0 is transmitted. Thus the angle between the signal

vectors r(k) and r(k−1) is ∆%̃. Let ψ1 and ψ2, with ψ1 < ψ2, be angles lying within

the particular 2π interval of interest. According to [92, eq.(9)], the probability
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4.2 Error Probability of Differentially Detected MDPSK with RPN

P (ψ1 < ∆%̃ < ψ2) can be expressed in terms of an auxiliary function F (.):

P (ψ1 < ∆%̃ < ψ2) =

 F (ψ2)− F (ψ1) + 1, ψ1 < ∆θ < ψ2

F (ψ2)− F (ψ1) , ∆θ < ψ1 or ∆θ > ψ2

(4.14)

where F (.) is given as [92, eq.(11)]

F (ψ) =
sin(∆θ − ψ)

4π

∫ π/2

−π/2

e
−Es
N0

[1−cos(∆θ−ψ) cos t]

1− cos(∆θ − ψ) cos t
dt. (4.15)

It can be seen that F (ψ) = F (ψ + 2π).

Therefore, we can have

P (es
∣∣∆θ) =

 F
(
− π
M

)
− F

(
π
M

)
, − π

M
< ∆θ < π

M

1 + F
(
− π
M

)
− F

(
π
M

)
, π

M
< |∆θ| < π

The exact SEP expression is thus obtained as

P (es) =

∫ π

−π
P (es

∣∣∆θ)p(∆θ)d∆θ (4.16)

=

∫ π

−π

[
F
(
− π

M

)
− F

( π
M

)]
p(∆θ)d∆θ +

∫
I

p(∆θ)d∆θ.

Here, I = {∆θ : π/M < |∆θ| < π}, and p(∆θ) is the Gaussian pdf with zero-mean

and variance σ2
p. Actually, [60, eqs.(3)-(6)] is the same as (4.16) for M = 2. The

exact error floor term is thus PEF =
∫
I
p(∆θ)d∆θ.

Fig. 4.9 shows that our new error floor term PEF = 2Q( π

M
√
σ2
p

) is a very good

approximation to the exact one for M ≥ 4 with any σ−2
p . The comparison between

(4.13) and (4.16) for M ≥ 4 is shown in Figs. 4.10-4.11. We can see that our

approximate results are accurate for all SNR values of interest.
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Figure 4.9: Error floor term (FT) PEF comparison for MDPSK with M ≥ 4.
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Figure 4.11: SEP comparison for MDPSK: (a) M = 4; (b) M = 8; (c) M = 16.
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4.2.2 Unified Approximate BEP Expressions

We use the approximate Gaussian AOPN+RPN model to obtain new BEP

expressions for MDPSK (Gray coded) with phase noise.

Similar to MPSK, we have Bk represent the probability of the event:

∆%̃ ∈
[ (2k−1)π

M
, (2k+1)π

M

)
when the symbol ∆φ0 = 0 is sent, i.e., Bk =

P
(

∆%̃ ∈ [ (2k−1)π
M

, (2k+1)π
M

)
∣∣∆φ0 = 0

)
. The Bk’s thus have the same expressions as

the Ak’s in (4.5)−(4.7), except that the term 0.5γ−1 is replaced by γ−1. Therefore,

for M = 4, our approach in conjunction with the method of Lee [106] leads to

P (eb) =
1

2
B1 +B2 +

1

2
B3 = B1 +B2 ≈ Q

(
π/4√
γ−1 + σ2

p

)
+Q

(
3π/4√
γ−1 + σ2

p

)
.

(4.17)

For M = 8, we have

P (eb) =
2

3
(P (es)−B1) ≈ 2

3

[
Q

(
π/8√
γ−1 + σ2

p

)
+Q

(
3π/8√
γ−1 + σ2

p

)]
. (4.18)

For M = 16, our approach in conjunction with the method of Lassing [107] gives

the BEP result

P (eb) =
1

4

15∑
k=1

d̄(k)Bk =
1

2
[P (es)−B1 + 0.5B5 +B6 + 0.5B7]

≈ 1

2

[
Q

(
π/16√
γ−1 + σ2

p

)
+Q

(
3π/16√
γ−1 + σ2

p

)]

+
1

4

[
Q

(
9π/16√
γ−1 + σ2

p

)
+Q

(
11π/16√
γ−1 + σ2

p

)]

− 1

4

[
Q

(
13π/16√
γ−1 + σ2

p

)
+Q

(
15π/16√
γ−1 + σ2

p

)]
. (4.19)

The BEP expressions above are our main results for MDPSK. For M ≥ 32, the

approach is the same. Our results are the only approximations available, even for

the case without RPN, i.e., σ2
p = 0.
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4.2.3 Exact BEP Results and Numerical Comparison

The exact BEP expressions for M ≥ 4 with Gray code mapping can be derived

based on [92, eqs.(9)(11)]. For simplicity, the signal ∆φ0 = 0 is assumed to be sent.

For QDPSK, the events that the angle between the signal vectors r(k) and

r(k− 1), i.e., ∆%̃, lies within the ranges (π/4, 3π/4), (3π/4, 5π/4) and (5π/4, 7π/4),

correspond to a 1-bit error, a 2-bit error and a 1-bit error, respectively. The

probability of each event is different for different subranges of ∆θ based on

(4.14)-(4.15). It thus follows that we have

P (eb|∆θ) =


FQPSK , |∆θ| < π

4

FQPSK + 1
2
, π

4
< |∆θ| < 3π

4

FQPSK + 1, 3π
4
< |∆θ| < π

(4.20)

where we define

FQPSK =
1

2

[
F (

7π

4
) + F (

5π

4
)− F (

3π

4
)− F (

π

4
)

]

for short. Therefore, the exact BEP result of QDPSK is derived in a double-integral

form,

P (eb) =

∫ π

−π
FQPSKp(∆θ)d∆θ +

1

2

∫
π
4
<|∆θ|< 3π

4

p(∆θ)d∆θ +

∫
3π
4
<|∆θ|<π

p(∆θ)d∆θ.

(4.21)

Using the same idea as above, the exact BEP result for 8DPSK is derived as

P (eb) =

∫ π

−π

1

3

[
F (

15π

8
) + F (

13π

8
) + F (

11π

8
)− F (

9π

8
)− F (

7π

8
) + F (

5π

8
)− F (

3π

8
)

−F (
π

8
)
]
p(∆θ)d∆θ +

1

3

(∫
π
8
<|∆θ|<π

+

∫
3π
8
<|∆θ|<π

)
p(∆θ)d∆θ. (4.22)

For 16DPSK, ignoring the trivial difference mentioned in [107] for simplicity, we
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thus obtain

P (eb) =

∫ π

−π

1

4

[
F (

31π

16
) + F (

29π

16
) + F (

27π

16
)− F (

25π

16
)

+F (
23π

16
) + F (

21π

16
)− F (

19π

16
)− F (

17π

16
)− F (

15π

16
) + F (

13π

16
) + F (

11π

16
)

−F (
9π

16
)− F (

7π

16
) + F (

5π

16
)− F (

3π

16
)− F (

π

16
)

]
p(∆θ)d∆θ

+
1

4

(∫
π
16
<|∆θ|<π

+

∫
3π
16
<|∆θ|<π

+

∫
9π
16
<|∆θ|< 13π

16

)
p(∆θ)d∆θ. (4.23)

As Figs. 4.12-4.13 show, the comparison among these results with different σ2
p

implies that our approach is accurate through the whole SNR region for a large

range of phase noise variance.

Furthermore, we can get the simple, unified BEP expressions for MDPSK

without RPN from (4.17)-(4.19) with σ2
p = 0. As Fig. 4.14 shows, these results

are also mathematically simpler and increasingly more accurate for larger values of

M , in comparison with the exact results in [12, eqs.(8.86)-(8.87)].
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Figure 4.12: BEP comparison for MDPSK: (a) M = 4; (b) M = 8; (c) M = 16.
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Figure 4.13: BEP comparison for MDPSK with σ2
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Figure 4.14: BEP comparison for MDPSK with no RPN.
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4.3 New SEP Results for the AS Detector

In this section, we will derive the approximate and closed-form SEP expression

of 8-point star QAM with the suboptimal AS detector ŜAS in (3.11) in strong phase

noise. Here, ŜAS leads to the circular DB between rings whose radius is rth = a1+a2

2

and the annular sectors as decision regions. We generalize our approach to obtain the

SEP results for higher-order modulations, such as 16QAM and (4,4,8)-16APSK using

ŜAS in (3.12). All the SEP results are expressed in terms of Gaussian Q-function

Q(.). The constellation maps for 8-point star QAM and 16QAM with ŜAS are shown

earlier in Figs. 3.2 and 3.6, respectively. Fig. 4.15 shows the 16QAM constellation

with circular DB and AS decision regions.

Conditioned on Si = Aie
jφi being sent, the simplified joint pdf (3.7) in

conjunction with (3.1) shows that the distribution of |r| and the conditional pdf
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of ∠r can be expressed, respectively, as

p(|r| | Si) ≈

√
|r|

πN0Ai
exp[−(|r| − Ai)2

N0

] (4.24)

and

p(∠r | |r|, Si) ≈
exp

[
− (∠r−φi)2

2(
N0

2Ai|r|
+σ2

θ̃
)

]
√

2π( N0

2Ai|r| + σ2
θ̃
)
. (4.25)

Here, ∠r is conditionally Gaussian distributed with mean φi and variance N0

2Ai|r|+σ
2
θ̃
,

which depends on |r|. For high SNR, i.e., γ � 1, we can have |r| ≈ Ai given Si

transmitted. Therefore, (4.24) simplifies to

p(|r| | Si) ≈
1√
N0π

exp[−(|r| − Ai)2

N0

] (4.26)

which is a Gaussian pdf with mean Ai and variance N0/2, and (4.25) reduces to

p(∠r | Si) ≈
exp

[
− (∠r−φi)2

2(
N0
2A2
i

+σ2
θ̃
)

]
√

2π( N0

2A2
i

+ σ2
θ̃
)
. (4.27)

Thus, we have ∠r ∼ N(φi,
N0

2A2
i

+ σ2
θ̃
), which leads to the Gaussian AOPN+PRE

model introduced in Chap. 2, i.e., % ∼ N(0, N0

2A2
i

+ σ2
θ̃
) which is independent of |r|.

We observe from (4.26) and (4.27) that ∠r and % become asymptotically independent

of |r| for high SNR.

4.3.1 8-star QAM and the Rotated Case

For 8-star QAM, we have P (cs|Si) = P (cs|S0) for i = 1, 2, 3, and P (cs|Si) =

P (cs|S4) for i = 5, 6, 7. Thus we only consider P (cs|S0) and P (cs|S4). As Fig.

3.2(a) shows, P (cs|S0) is the probability of the received signal phasor r falling in
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the decision region R0 given S0 is sent, i.e.,

P (cs | S0) = P (r ∈ R0 | S0) = P (0 ≤ |r| ≤ rth,−
π

4
≤ % ≤ π

4
| S0).

Similarly, we have

P (cs | S4) = P (r ∈ R4 | S4) = P (rth < |r| <∞,−
π

4
≤ % ≤ π

4
| S4).

For high SNR when circular DB between rings occurs, the event of {−π
4
≤ % ≤ π

4
} is

independent of |r|, since % and |r| are independent as shown above. It thus follows

that we have

P (cs|S0) = P (0 ≤ |r| ≤ rth | S0)P (−π
4
≤ % ≤ π

4
| S0)

and

P (cs|S4) = P (rth < |r| <∞ | S4)P (−π
4
≤ % ≤ π

4
| S4). (4.28)

Since we have % ∼ N(0, N0

2a2
1

+ σ2
θ̃
) given S0 is sent, and % ∼ N(0, N0

2a2
2

+ σ2
θ̃
) given S4

is sent, and according to (4.1), we thus have

P (−π
4
≤ % ≤ π

4
|S0) = 1− 2Q

π
4

1√
N0

2a1
2 + σ2

θ̃


and

P (−π
4
≤ % ≤ π

4
|S4) = 1− 2Q

π
4

1√
N0

2a2
2 + σ2

θ̃

 (4.29)

Similarly, using (4.26), we have

P (0 ≤ |r| ≤ rth | S0) = Q

(
−a1√
N0/2

)
−Q

(
rth − a1√
N0/2

)
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and

P (rth < |r| <∞ | S4) = Q

(
rth − a2√
N0/2

)
. (4.30)

Finally, the SEP for 8-star QAM with the AS detector is

P (es) = 1− 1

2
[P (cs|S0) + P (cs|S4)]. (4.31)

Here, (4.28) in conjunction with (4.29) and (4.30) give P (cs|S0) and P (cs|S4) as,

respectively,

P (cs|S0) ≈

1− 2Q

π
4

1√
N0

2a1
2 + σ2

θ̃

× [Q( −a1√
N0/2

)
−Q

(
rth − a1√
N0/2

)]

and

P (cs|S4) ≈

1− 2Q

π
4

1√
N0

2a2
2 + σ2

θ̃

Q(rth − a2√
N0/2

)
.

It should be noted that due to exploiting the detector ŜAS and using our

AOPN+PRE model to calculate the probability of ∠r falling in the correct decision

region, any phase offset between the signal points on two different rings does not

change the performance of the system. Thus, (4.31) is also the approximate SEP

expression for rotated 8-star QAM with AS decision regions in Fig. 3.2(b). The

result (4.31) is our new explicit, closed-form SEP expression, which provides insight

into how the parameters β, σ2
θ̃

and γ affect the SEP performance. It allows engineers

to make a quick estimation of the performance for high SNR or large σ2
θ̃
.

Using (4.31), we can predict the error floor, i.e., the irreducible SEP due to a

non-zero PRE variance σ2
θ̃
. That is, as γ � (σ2

θ̃
)−1 or N0 → 0, (4.31) reduces to

2Q( π

4
√
σ2
θ̃

) and increases as σ2
θ̃

increases. For DA ML PE, the error floor is mainly

due to the combined normalized laser linewidth (σ2
p = 2π(∆v)T ), since we have
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Figure 4.16: Optimal βAS for 8-point star QAM using ŜAS with DA ML (L = 8) as
σ2
p increases given γ = 15 and 16dB.

σ2
θ̃
|γ→∞ = 2L2+3L+1

6L
σ2
p.

Our result (4.31) allows us to plot the figure of P (es) against the ring ratio β,

and directly find the optimal ring ratio denoted as βAS for minimum SEP of ŜAS.

The value of βAS depends on two parameters: γ and σ2
θ̃
. As Fig. 4.16 shows, using

DA ML with a fixed SNR γ = 15 and 16dB, respectively, the optimum βAS varies

from 2.55 to 2.25, as σ2
p (rad2) increases from 0 to 0.01. Thus, this result can be

used to facilitate constellation optimization in the presence of laser phase noise.

4.3.2 General M-ary APSK

Due to using circular DB between rings, different values of the relative phase

shift ψk on the kth ring have no effect on the SEP result of general M -APSK. Based

on the results (4.26)-(4.31), the closed-form SEP expression of M -APSK with the
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detector ŜAS is obtained as

P (es) = 1−
N∑
k=1

lk
M
P (cs|Skth-ring) = 1−

N∑
k=1

lk
M
×

P (
ak−1 + ak

2
≤ |r| < ak+1 + ak

2
)P (−π

lk
≤ % ≤ π

lk
)

≈ 1−
N∑
k=1

lk
M

1− 2Q

π

lk

1√
N0

2ak2 + σ2
θ̃

×
[
Q

(
ak−1 − ak√

2N0

)
−Q

(
ak+1 − ak√

2N0

)]
. (4.32)

Here, P (cs|Skth-ring) represents the correct-decision probability conditioned on any

symbol on the kth ring being sent, and we have a0 = −a1 and aN+1 = ∞ for the

signal points on the innermost and outermost rings, respectively. For l1 = 1, the

point on the first ring is always placed at the origin, implying that we have a1 = 0

and P (− π
l1
≤ % ≤ π

l1
) = 1 in (4.32) here.

Noteworthily, as 8-star QAM illustrates, for the special structure of M -APSK

which has the same values of lk and θk for any k, e.g., (4,4,4,4)-16APSK, (4.32) is

also a good approximation to the exact SEP of the ML detector through the whole

SNR region of interest.

Moreover, we can easily predict the error floor for any M -APSK constellation

using the ŜAS detector. As γ � (σ2
θ̃
)−1 or N0 → 0 in (4.32), the error floor PEF is

deduced to be

PEF = lim
γ→∞

P (es) ≈ 2
N∑
k=1

lk
M
Q

π

lk

1√
σ2
θ̃

 (4.33)

which depends on l ≡ (l1, · · · , lN) and increases as σ2
θ̃

increases.

Here, a (4,4,8)-16APSK constellation with uniformly-spaced ring radii, i.e.,

{Si = d̄
2
ej(

πi
2

+π
4

) for i = 0, 1, 2, 3; d̄ej(
π(i−4)

2
+π

4
) for i = 4, 5, 6, 7; and 3d̄

2
ej(

π(i−8)
4

+π
8

)

for i = 8, 9...15} with d̄ =
√

16Es
23

, as shown in Fig. 3.6, is used as an example for

numerical illustration. For (4,4,8)-16APSK using ŜAS, the error floor above reduces
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to Q( π

4
√
σ2
θ̃

) +Q( π

8
√
σ2
θ̃

).

4.3.3 16QAM

For 16QAM, the derivation of the SEP result is very similar to that for

M -APSK, except for the middle ring where the eight points are not uniformly spaced.

For the signal points on the middle ring of 16QAM, the probability of falling in the

correct angular region should be P (−ν ≤ % ≤ π
4
− ν) instead of P (−π

4
≤ % ≤ π

4
)

in (4.32) for (4,4,8)-16APSK. Therefore, the SEP result of 16QAM using ŜAS is

obtained as

P (es) = 1−
3∑

k=1

lk
M
P (cs|Skth-ring) ≈ 1−

∑
k=1,3

1

4

1− 2Q

π
4

1√
N0

2ak2 + σ2
θ̃

×
[
Q

(
ak−1 − ak√

2N0

)
−Q

(
ak+1 − ak√

2N0

)]
−

1

2

Q
 −ν√

N0

2a2
2 + σ2

θ̃

−Q
 π

4
− ν√

N0

2a2
2 + σ2

θ̃

× [Q(a1 − a2√
2N0

)
−Q

(
a3 − a2√

2N0

)]
.

(4.34)

Here, we have a1 = −a0 = d√
2
, a2 =

√
10d
2

, a3 = 3d√
2

and a4 = ∞, respectively. As

N0 → 0 in (4.34), the error floor for ŜAS of 16QAM in phase noise is thus derived as

PEF ≈ Q

 π

4
√
σ2
θ̃

+
1

2

Q
 ν√

σ2
θ̃

+Q

π/4− ν√
σ2
θ̃

 .
4.3.4 Numerical Results

Using DA ML with L = 8, Fig. 4.17 shows numerically that PEF = 2Q( π

4
√
σ2
θ̃

)

is a good approximation to the simulation results of the error floor of ŜAS for

both 8-star QAM and rotated 8-star QAM, as σ2
p increases from 5 × 10−3 to

2.2 × 10−2(rad2). Comparing ŜMED with the ŜAS in (3.11), we can see that for

rotated 8-star QAM, the error floor of ŜMED using straight-line DB is much larger
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than that of ŜAS using circular DB between rings. Whereas, for 8-star QAM, ŜMED

and ŜAS have almost the same error floor. These can be explained from Figs. 4.1

and 3.5 where the decision regions for the circular DB of ŜAS differ much more from

those for the straight-line DB of ŜMED for the rotated case, but differ less for 8-star

QAM.

Fig. 4.18 shows numerically that the approximations to the error floor of ŜAS

for both (4,4,8)-16APSK and 16QAM are very accurate. It can be seen that for both

16-point constellations using DA ML PE with L = 12, ŜAS is much more robust

to the increased combined normalized laser linewidth than ŜMED, as σ2
p increases

from 10−3 to 5.5× 10−3(rad2). For a 40Gbit/s system, this range of σ2
p corresponds

to the combined laser linewidth ∆v ranging from 1.6MHz to 8MHz. Moreover,

(4,4,8)-16APSK has a much larger laser linewidth tolerance than 16QAM, for high

SNR.

Here, (4,4R,8)-16APSK and (4,4,4,4)-16APSK constellations with

uniformly-spaced ring radii are also included as examples for numerical illustration.

As shown in Fig. 5.1(a) in Chap. 5.2, the (4,4R,8)-16APSK signal set is

{Si = d̄
2
ej(

πi
2

+π
4

) for i = 0, 1, 2, 3; d̄ej(
π(i−4)

2
) for i = 4, 5, 6, 7; and 3d̄

2
ej(

π(i−8)
4

+π
8

) for

i = 8, 9...15} with d̄ =
√

16Es
23

. As shown in Fig. 5.1(b), the (4,4,4,4)-16APSK

signal set is {Si = d
2
ej(

πi
2

) for i = 0, 1, 2, 3; dej(
π(i−4)

2
) for i = 4, 5, 6, 7; 3d

2
ej(

π(i−8)
2

)

for i = 8, 9, 10, 11; and 2dej(
π(i−12)

2
) for i = 12, 13, 14, 15} with d =

√
8Es
15

.

For (4,4R,8)-16APSK, the error floor is PEF = Q( π

4
√
σ2

) + Q( π

8
√
σ2

). For

(4,4,4,4)-16APSK, (4.33) reduces to PEF = 2Q( π

4
√
σ2

). Fig. 4.19 shows that (4.33)

is a good approximation to the simulation results of the error floor of ŜAS for any

M -APSK with any σ2
θ̃
.

Next, we will show that (4.32) and (4.34) are very accurate results for the

SEP of our detector ŜAS. In the ideal case of no past decision errors for any

PE algorithm, the lower bound on the PRE variance σ2
θ̃

given by the Cramer-Rao

bound (CRB) is σ2
θ̃
≥ σ2

CR = 1
2γ

B
W

, where σ2
CR is the linearized variance of the ML

PE of an unmodulated carrier [45,108]. Here, we have B = (LT )−1 is the estimator
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bandwidth with L as the averaging memory length, and W = T−1 is the message

bandwidth. This CRB value corresponds to the case of no laser phase noise, i.e.,

σ2
p = 0 in DA ML PE where we thus have σ2

θ̃
= σ2

CR = 1
2γL

. This is the minimum

value of σ2
θ̃

to expect in DA ML PE, which is used here. One should know that this

CRB value is the lower bound on σ2
θ̃

for any carrier recovery scheme. As Fig. 4.20

shows, our approximate SEP results (4.31), (4.32) and (4.34) agree very well with

the simulation results for the SEP of our detector ŜAS for all SNR values of interest,

which validates their accuracy within a wide range of σ2
θ̃

in practice. Moreover,

Fig. 4.21 shows that our SEP result (4.32) agrees very well with the simulated SEP

results of ŜAS for all SNR values of interest, which validates its accuracy for any

M -APSK. Once again, Fig. 4.21 shows that ŜAS performs better than ŜMED as γ

increases.
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4.4 Concluding Remarks

Using the additive observation phase noise (AOPN) model, we converted

the AWGN into an equivalent phase noise. This conversion leads to the new

AOPN+PRE/AOPN+RPN model, which facilitates computing the SEP/BEP of

MPSK/MDPSK. The AOPN+PRE model further leads to a simple and accurate

error performance analysis for M -QAM and M -APSK with the annular-sector

detector ŜAS. All the SEP results for ŜAS are derived in terms of Gaussian

Q-function Q(.), which makes the performance analysis more straightforward.

Our new expressions offer quick and accurate predictions of the error

performance with respect to different phase noise variances or different combined

laser linewidths. Our approach can be further used to analyze the error performance

of other complex phase modulation schemes.

Appendix A

We consider perfectly coherent 8-star QAM and rotated 8-star QAM in the

pure AWGN channel, i.e., with σ2
θ̃

known to be zero. Their exact SEP expressions

can be easily derived by using the polar coordinates method in [71].

Using this approach, the exact SEP of 8-star QAM is given by

P (es) =
1

π

∫ ϑ

0

exp

[
−γ(β − 1)2

2(β2 + 1) cos2 θ

]
dθ

+
1

2π

(∫ π

ϑ

exp

[
−γ

(β2 + 1) sin2(θ − π
4
)

]
dθ +

∫ π−ϑ

π
4

exp

[−γ sin2(π
4

+ ϑ)

sin2(θ − π
4
)

]
dθ

)
(4.35)

where we have ϑ = arctan(β+1
β−1

).
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Similarly, the SEP of rotated 8-star QAM is shown to be

P (es|S0) =
1

π

∫ 2ϕ+π
4

0

e−e
2α2γdt+

1

π

∫ π

2ϕ+π
4

e−b
2α2γdt,

P (es|S4) =
1

π

∫ 3π
4
−2ϕ

π
4

e−c
2α2γdt+

1

π

∫ π

3π
4
−2ϕ

e−d
2α2γdt,

P (es) =
1

2
(P (es|S0) + P (es|S4)). (4.36)

Here, we have ϕ = arctan( 1√
2β−1

) and

e =
cosϕ√

2 sin(2ϕ) sin(π
4

+ t− ϕ)
, b =

1√
2 sin(t− π

4
)
,

c =

√
(β − 1√

2
)2 + 1

2
cos(2ϕ)

2 cos(ϕ+ π
4
) sin(t− π

4
)
, d =

√
(β − 1√

2
)2 + 1

2

2 cos(t+ ϕ)
.

By plotting P (es) against the ring ratio β using these results, we directly find

the optimal ring ratios for minimum SEP, which are denoted as βrMED and βMED

for rotated 8-star QAM and 8-star QAM, respectively. We have βrMED ≈ 2 and

βMED ≈ 2.4 within a large range of γ (from about 8dB to about 30dB). As Fig.

4.22 shows, with the optimal ring ratios βrMED and βMED, respectively, rotated 8-star

QAM outperforms 8-star QAM in pure AWGN. Our SEP expressions match with

the simulation results for the SEP of ŜaML1 with σ2
θ̃

= 0.

Appendix B

To explicitly explain when the approximations are good, we alternatively show

the comparison of relative error which is defined as | Approximation − Exact |

/Exact in [69]. Figs. 4.23(a) and 4.23(b) show the relative error for MDPSK with

σ2
p = 10−3rad2, which correspond to Figs. 4.10 and 4.13, respectively. Both figures

show that the relative error for M = 16 is the smallest for a wide range of SNR.

For high order modulations, the magnitude of relative error is below 10−1, implying

that the approximation is good.
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The approximations are increasingly more accurate as M increases, since

constellations with larger M require higher SNR to achieve the same error

probability, as Tables 4.1-4.3 have implied.
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Chapter 5

Constellation Optimization in
Phase Noise

To improve the performance of communication systems with phase reference

error (PRE), in this chapter, we address the problem of optimizing signal

constellations for the linear phase noise channel [109–111]. Two optimization

formulations are proposed by minimizing the error probability, which provide an

analytical framework for constellation design. In the first formulation, we seek to

design constellations that minimize the SEP of the approximate ML detectors we

derived in Chap.3. However, this requires extensive simulations, and thus, this is

not efficient. In the second formulation, we optimize constellations in terms of our

SEP results for the annular-sector (AS) detector given in Chap.4, which can be

achieved by numerical computation and search. These formulations can be used to

systematically optimize any multiple-ring constellations in laser phase noise. For

simplicity, M -APSK optimization is considered by using the second formulation as

an illustration example.

In Section 5.1, the two optimization formulations are introduced. Section 5.2

specifically provides M -APSK optimization, and examples of ring radii optimization

are given.

5.1 Optimization Formulations

In this section, we present the optimization formulations by minimizing the SEP

P (es), to design constellations of order M based on the received signal model (2.3).

The comparison of different constellations is based on the same average energy per

symbol Es. That is, we have one constraint given by
∑M

i=1A
2
i = MEs.
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Observe that given the signal Si = Aie
jφi transmitted, the additive observation

phase noise (AOPN) ε induced by the AWGN n has the variance N0

2A2
i
, which implies

that the AWGN has less phase rotation effect on the outer-ring signals because of

the larger Ai. Therefore, to reduce the AOPN effect in phase noise, we should

intuitively put more signal points on the outer ring compared to those on the

adjacent inner ring. Thus, in the following formulations, we will always add an

additional constraint, i.e., l1 ≤ l2 ≤ · · · ≤ lN , where N is the number of signal

rings in multiple-ring constellations and lk is the number of signal points on the kth

ring. This is a tendency that lk should increase with k, which guarantees a better

performance in phase noise. However, from this constraint, we cannot determine

how large the difference between lk and lk−1 should be for a given N . That is, as

shown later, the best value of (lk − lk−1) cannot be decided, and it depends on the

PRE variance σ2
θ̃

and the SNR per symbol γ.

5.1.1 Approximate ML Formulation

In the first formulation, we aim to design constellations that minimize the SEP

of the approximately optimum detectors (3.8), (3.9) and (3.10) proposed in Chap.3,

for a fixed average energy Es and a given PRE variance σ2
θ̃
. The optimization

problem is posed as follows:

minimize
{Si}

P (es) of Detectors Eqs. (3.8), (3.9) and (3.10) (5.1)

subject to
M∑
i=1

A2
i = MEs

1 ≤ l1 ≤ l2 ≤ · · · ≤ lN

By solving (5.1), we can get the most suitable signal set {Si, i = 0, 1, ...,M − 1}

to achieve better SEP performance of the ML detector in phase noise, for any

given combinations of (Es, σ
2
θ̃
). This added constraint avoids the unstructured

and impractical constellations proposed in [53,109,111], and thus reduces the search
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space size.

However, since no closed-form SEP results are given for these approximate ML

detectors, extensive simulations are required to solve this problem, which is thus

inefficient and costs a lot of time. Therefore, the optimization problem is simplified

as follows.

5.1.2 AS Detector Formulation

We have shown in Chap. 3 that the AS detector ŜAS is a good approximation

to the ML detector for high SNR when σ2
θ̃
6= 0. Besides, for any multiple-ring

constellations, the closed-form SEP results of the AS detector can be easily derived

by using the approach in Chap. 4. Another advantage is that the AS detector does

not require the information of N0 and σ2
θ̃

to make decision, i.e., it is practically

implementable. Therefore, we can formulate the optimization problem based on the

AS detector instead of the ML detector.

That is, by minimizing the SEP of the AS detector (3.12), we optimize any

multiple-ring constellation in strong phase noise. For a given average energy

constraint Es, the optimization problem is stated as

minimize
{Si}

P (es) of AS Detector Eq. (3.12) (5.2)

subject to
M∑
i=1

A2
i = MEs

1 ≤ l1 ≤ l2 ≤ · · · ≤ lN

By numerical search, the signal set {Si, i = 0, 1, ...,M − 1} obtained is expected to

be more suitable for reasonable high SNR in the memoryless phase noise channel.

Solving (5.2) which involves numerically computing the closed-form SEP results

is very efficient. Next, by using this formulation, we optimize M -APSK as an

example.
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5.2 M-APSK Optimization

For constellation design in strong phase noise, both [53] and [109] have found via

simulations that the optimized symbol points of the same energy level are separated

by the largest possible angular distance, which M -APSK satisfies.

Based on earlier discussion, we add an additional constraint, i.e., l1 ≤ · · · ≤ lN

where N is the number of rings, in the M -APSK optimization, compared to [53,

eqs.(14)-(18)]. With the constraint
∑N

k=1 lk = M and to keep the symmetrically

two-dimensional property, the maximum number of rings is thus M
2

, i.e., 1 ≤ N ≤ M
2

.

One of the main contributions here is to apply our SEP result (4.32) in the

M -APSK optimization. That is, conditioned on the average energy constraint Es

for a given M , the optimization problem can be formulated as:

minimize
N,ak,lk

SEP of ŜAS in Eq. (4.32) (5.3)

subject to 1 ≤ N ≤ M

2
,

N∑
k=1

lk = M

l1a
2
1 + · · ·+ lNa

2
N = MEs

0 ≤ a1 < · · · < aN

1 ≤ l1 ≤ · · · ≤ lN

The added constraint avoids the unstructured and impractical constellations, such

as (1,2,1)-APSK or (3,1)-APSK in [53], and thus reduces the search space size. This

optimization problem can be solved using the methods given in [53]. Next, examples

of ring radii optimization for M -APSK are given.

We show one simple case here where we fix N and l ≡ (l1, · · · , lN) to

optimize ak for every γ. For M = 8, we fix N = 2. Using (5.3) for different

l-8APSK, respectively, we can easily obtain the correspondingly optimized a1 and

a2 for minimum SEP. We show in Fig. 5.2 that (3,5)-8APSK with the optimized

ak performs the best and (1,7)-8APSK performs the worst. As expected, the

optimized (3,5)-8APSK outperforms the optimized (5,3)-8APSK, and (2,6)-8APSK
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Figure 5.1: 16-APSK constellations with AS decision regions.
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Figure 5.2: Comparison among 8-APSK constellations with optimized ak for every
γ and σ2

θ̃
= 0.01rad2.

outperforms (6,2)-8APSK, which validates the usefulness of the added constraint.

8PSK is also included as one special case of 8-APSK whose ring radius is
√
Es. The

SEP result of 8PSK is given by [91, eq.(10)], which is 2Q(π
8

1√
0.5γ−1+σ2

θ̃

). We can see

that 8PSK only performs better than (1,7)-8APSK in strong oscillator phase noise.

Moreover, for the SNR region of 10-20dB, (3,5)-8APSK performs better than both

(2,6)-8APSK and (4,4)-8APSK, thus implying that the best value of (lk − lk−1) for

a given N cannot be decided simply.

For M = 16, we use (4,4R,8)-16APSK and (4,4,4,4)-16APSK as examples, as

shown in Fig. 5.1. We obtain the minimum SEP with optimized ak for every γ via

(5.3) for (4,4R,8)- and (4,4,4,4)-16APSK. As Fig. 5.3 shows, the SNR gain of both

constellations with the optimized ak compared to those with the uniformly-spaced

ak given above, respectively, is about 1dB at the SEP value of 10−3 of practical

interest. Note again that different ak does not affect our error floor (4.33), as Fig. 5.3

implies for (4,4R,8)-16APSK in high SNR. Besides, we note that (4,4,4,4)-16APSK
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Figure 5.3: SEP comparison between optimized ak and uniformly-spaced ak for
16-APSK with σ2

θ̃
= 0.01rad2.

outperforms (4,4R,8)-16APSK for high SNR. As Fig. 5.4 shows for σ2
θ̃

= 0.01rad2,

(4,4,4,4)-16APSK (N = 4) performs better than (5,5,6)-16APSK (N = 3) for

γ > 25dB. This implies that more signal rings should be used for high SNR in

strong phase noise, especially for larger M ≥ 16. In addition, the performance

of (3,4,4,5)-16APSK and (4,4,4,4)-16APSK has a crosspoint, implying that for the

same N , the choice of lk actually depends on γ and σ2
θ̃
.

More further research work needs to be done, so that we can have more detailed

discussion in the future.
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5.3 Concluding Remarks

This chapter provides an analytical framework for constellation design in the

phase noise channel, by minimizing the error probability. We can efficiently design

optimized M -APSK constellations using (5.3), since ŜAS is approximately optimum

for large PRE or high SNR. The SEP results for the AS detector facilitate the

numerical search.

The signal constellations above that are optimized by minimizing the average

SEP depend on the PRE variance and the SNR. Thus, in actual applications, the

receiver has to first estimate the channel state information, including the values of

N0 and σ2
θ̃
, in order to decide on the best constellation to use. This decision can be

fed back to the transmitter in real-time with only a small number of bits, making it

possible to realize the adaptive modulation system.
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Chapter 6

Error Performance Analysis over
Fading

For wireless radio frequency (RF) communications, multipath fading and

shadowing inevitably cause amplitude attenuation of the received signal [12].

Multipath fading is due to the constructive and destructive combination of randomly

delayed, reflected, scattered, and diffracted signal components. This type of fading

is relatively fast and is therefore responsible for the short-term signal variations.

Depending on the nature of the radio propagation environment, there are different

models describing the statistical behavior of the multipath fading envelope. In

terrestrial and satellite land-mobile systems, the link quality is also affected by slow

variation of the mean signal level due to the shadowing from terrain, buildings, and

trees. A composite multipath/shadowed fading environment consists of multipath

fading superimposed on shadowing, such as, landmobile satellite systems subject to

vegetative and/or urban shadowing [12].

Free space optical (FSO) communication provides high data rate transmission

with higher security and higher flexibility compared with conventional wireless

communications. Due to the complexity of phase and frequency modulation,

intensity modulation with direct detection is used for most current FSO

communication systems [112]. The systems are exposed in environments where

background radiation and atmospheric phenomena such as rain, fog, cloud and

turbulence are both present and affect the system performance. Besides, the

geometric spread and pointing errors caused by the vibration of the upholder of

the FSO system cause additional loss and fluctuation of the optical power [6, 88].

For performance analysis, our approximate SEP/BEP results in pure AWGN,

which are expressed in terms of Gaussian Q-functions, facilitate the average
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error performance analysis in fading channels. This chapter thus illustrates a

mathematically tractable approach to deriving the average symbol error probability

(ASEP) expressions, respectively, for both wireless fading and FSO links. The

approach is to use the tight upper and lower bounds on the Gaussian Q-function we

derived recently, which can be easily averaged over the general mixture gamma (MG)

distribution. The MG distribution is used to approximate the SNR distributions

of a class of fading models, which include the Nakagami-m, Generalized-K (KG)

and Nakagami-lognormal fading as specific examples. We first focus on obtaining

tight, simple algebraic-form bounds and invertible expressions for the ASEP of

MPSK in a class of composite fading channels. This bounding approach avoids

numerical integration of moment generating functions or numerically computing

higher-order transcendental functions in the literature. Furthermore, our approach

also facilitates analysing the effects of atmospheric turbulence and pointing errors

on FSO communication systems. Especially for inter-satellite links, we derive the

closed-form invertible approximations to the ASEP from which we can easily get

the diversity gain.

Section 6.1 introduces the signal model we use here for both wireless fading and

FSO channels. In Section 6.2, we introduce the bounds on the Gaussian Q-function

and the MG distribution. In Section 6.3, we derive the bounds and invertible

approximations on the ASEP of MPSK over fading in wireless communications.

Section 6.4 analyzes the effects of turbulence and pointing errors on the ASEP of

FSO links.

6.1 Signal Model

Wireless RF communication links inevitably suffer from multipath fading and

shadowing. In this thesis, we only focus on the error performance analysis over

different fading models for the fading gain h. We assume coherent detection with

perfect phase tracking, i.e., θ in (2.1) is known and well compensated for. For FSO

communication links, atmospheric turbulence and pointing errors cause intensity
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fluctuations of the transmitted signals and impair link performance [6]. We will

focus on analysing the effect of these impairments on the error performance of FSO

systems using intensity modulation with direct detection (IM/DD). Since IM/DD

is used, the unknown phase shift due to laser propagation, i.e., θ in (2.1), does not

affect the error performance of the laser link. Therefore, we only need to consider

the influence of h in the statistical model.

In this section, we thus introduce the simplified received signal model. That is,

r(k) = h(k)m(k) + n(k). (6.1)

This is the statistical model we will use for analysis in fading. For wireless RF

channels, the transmitted data symbol m(k) takes on any value from the signal set

{Si = Aie
jφi , i = 0, 1, . . . ,M − 1} with equal probability, and Es is the average

energy per symbol. MPSK and M -QAM are normally employed, and we have

n(k) ∼ CN(0, N0). The instantaneous SNR γ in fading is defined as γ , h2Es/N0.

In this thesis, γ̄ , E[h2]Es
N0

denotes the average SNR per symbol, where E[.] denotes

the expectation operator. For FSO links, the transmitted data symbol m(k) equally

takes on any signal point in M -ary amplitude shift keying (OOK included), and we

have n(k) ∼ N(0, N0/2)..

Next, we will introduce the fading models, which are specifically used here.

6.1.1 A Class of Composite Fading Models

Radiowave propagation through wireless channels is a complicated phenomenon

characterized by various effects such as multipath fading and shadowing. A precise

mathematical description of this phenomenon is either unknown or too complex for

tractable communication system analyses. However, considerable efforts have been

devoted to the statistical modelling and characterization of these different effects.

The result is a range of relatively simple and accurate statistical models for fading

channels that depend on the particular propagation environment and the underlying
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communication scenario [11,12]. Among all the well-known statistical distributions

to model the different fading channels, we mainly introduce the Nakagami-m, the

Generalized-K (KG) and the Nakagami-lognormal (NL) fading models, respectively.

Nakagami-m Fading

The SNR distribution, i.e., the pdf of γ, for Nakagami-m fading with the fading

severity parameter m ≥ 1
2

is given by [68, eq. (2)]

pγ(γ) =
1

Γ(m)

(m
γ̄

)m
γm−1e−mγ/γ̄. (6.2)

KG Fading

The SNR distribution of the KG fading model is a Gamma-Gamma distribution

with the distribution shaping parameters l and m, given by [113, eq. (2)]

pγ(γ) =
2( lm

γ̄
)(l+m)/2γ(l+m−2)/2

Γ(m)Γ(l)
Kl−m

[
2(
lmγ

γ̄
)1/2
]
, (6.3)

where Kα(.) is the modified Bessel function of the second kind of order α.

NL Composite Fading

The SNR distribution in the NL fading is a gamma-lognormal (GL) distribution,

given as [77, eq. (5)]

pγ(γ) =

∫ ∞
0

γm−1e−
mγ
ρt

Γ(m)

(
m

ρt

)m
e−

(ln t−µ)2

2σ2

√
2πσt

dt, (6.4)

where m is the fading parameter in Nakagami-m fading, ρ is the unfaded SNR, and

µ and σ are the mean and the standard deviation of the lognormal distribution,

respectively. Eq. (6.4) becomes the Rayleigh lognormal (RL) distribution when

m = 1 [77].
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6.1.2 Atmospheric Turbulence and Pointing Errors

The transmission of laser beams through atmosphere is affected by atmospheric

turbulence, and geometric spread and pointing errors, which cause signal attenuation

and lead to fluctuations of received optical intensity [114]. In the channel model,

the channel state, i.e., the channel gain h can be formulated as [88]

h = hahp (6.5)

where ha denotes the channel gain due to atmospheric turbulence, and hp denotes

the channel gain due to geometric spread and pointing errors. In the following, ha

and hp will be introduced separately.

Atmospheric Turbulence

In [115], log-normal distribution is adopted to model ha for weak turbulence,

Gamma-Gamma distribution for moderate to strong turbulence, and the negative

exponential distribution for strong turbulence. Since in [116], it has been shown

that the Gamma-Gamma distribution can nicely fit the channel fading statistics

of all turbulence regimes, in this thesis, we only consider ha as a Gamma-Gamma

distributed random variable, and the pdf of ha is [88, eq.(6)]

pha(ha) =
2(lm)(l+m)/2h

(l+m)/2−1
a

Γ(m)Γ(l)
Kl−m

[
2(lmha)

1/2
]
, (6.6)

where Kl−m(.) is the modified Bessel function of the second kind of order (l −m).

Here, 1
m

and 1
l

are the variances of the small and large scale eddies, respectively.

Geometric Spread and Pointing Errors

To study the distribution of hp, we need to first start from the Gaussian beam,

for which, the normalized spatial distribution of the transmitted intensity at a
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propagating distance z from the transmitter is given by [117] [117]

Ibeam(‖ρ‖2;ωz) =
2

πω2
z

exp

(
−2‖ρ‖2

ω2
z

)
, (6.7)

where ρ is the radial vector from the beam center, and ωz is the beam radius at

which the intensity drops to e−2 of the axial value at the distance z. The beam

radius ωz is also referred to as the spot size, and achieves the minimum value ω0 at

z = 0, known as the beam waist. The relation between ωz and ω0 is given by [117]

ωz = ω0

√
1 +

(
zλ

πω2
0

)2

, (6.8)

where λ is the laser wave length. It should be noted that the Gaussian beam model

fails if wave fronts are tilted by over approximate 0.5 rad, which corresponds to

w0 ≤ 2λ/π [118, P. 630].

Consider a circular optical detector C with radius rc located on the received

beam plane. The distance between the center of C and the beam center is the radial

displacement caused by the pointing error, denoted as dr. Apparently, the fraction

of power that detector C can collect is hp. Since it is related to dr, rc, ω0 and z, we

denote it as hp(dr, a, ω0, z). Obviously, the value of hp(dr, a, ω0, z) can be obtained

by performing a double integral over the detector region, i.e.,

hp(dr, a, ω0, z) =

∫∫
C

Ibeam(x2 + y2;ωz)dxdy, (6.9)

where dr, rc, ωz, ω0 and λ are all non-negative parameters.

Furthermore, by modelling the elevation and the horizontal displacement as two

independent and identically zero mean Gaussian random variables, we can obtain

the pdf of hp as [88, eq. (11)]

php(hp) =
s2

As
2

0

hs
2−1
p , 0 ≤ hp ≤ A0. (6.10)
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Here, A0 is the fraction of the collected power when no pointing error occurs, and

s =
ωzeq
2σs

is the ratio between the equivalent beam radius ωzeq at the receiver and

the pointing error displacement standard jitter σs at the receiver [88]. We have

A0 = [erf(v)]2, ω2
zeq = ω2

z

√
πerf(v)/(2ve−v

2
), and v =

√
πrc/(

√
2ωz), where erf(.) is

the error function [88]. Moreover, we have

E[hp] =
A0

1 + 1
s2

(6.11)

where E[.] denotes the expectation operator.

6.2 Introduction to Bounds and the MG

Distribution

Here, we introduce the approach we aim to apply throughout this chapter,

which can provide a unified, simple average error probability analysis framework.

6.2.1 Bounds on the Gaussian Q-function

The asymptotically tight upper and lower bounds on the Gaussian Q-function

are given, respectively, by [72, eq. (9)] [73, eq. (12)]

Q(x) ≤ QUB(x) =

q∑
k=0

ak
x

exp(−bkx2) (6.12)

and

Q(x) ≥ QLB(x) =

q−1∑
k=1

ckx exp(−dkx2), (6.13)

107



6.2 Introduction to Bounds and the MG Distribution

where the adjustable constants ak, bk, ck and dk are given, respectively, by

ak =


1√
2π
, k = 0

− εk−εk−1√
2πεkεk−1

, k ≥ 1
; bk =

 1
2
, k = 0

εkεk−1

2
, k ≥ 1

ck =
εk − εk−1√

2π
, k ≥ 1; dk =

ε2k + ε2k−1 + εkεk−1

6
, k ≥ 1 (6.14)

Here, the values of εk split the integration range [x,∞] of Q(x) into q sub-ranges such

that x = ε0x < ε1x < . . . < εqx < . . .. For simplicity, we use uniform sub-ranges,

i.e., the values of (εk− εk−1) for any k are equal. In [72] and [73], these bounds have

been shown to be arbitrarily tight as the number of sub-ranges, q, increases.

In addition, a well-known pure exponential upper bound on Q(x) is given by [74,

eq.(14)]

Q(x) ≤ 1

12
exp

(
−x

2

2

)
+

1

4
exp

(
−2x2

3

)
. (6.15)

Similarly, another simple, pure exponential n-term lower bound on Q(x) is given by

[75, eqs.(5-6)], which is asymptotically tight as n increases. For simple illustration,

we choose n = 2 and this 2-term pure exponential bound is [75, eq.(9)]

Q(x) ≥ QLB−KW (x) =
1

6
exp

(
−2
√

3x2

π

)
+

1

6
exp

(
−
√

3x2

π

)
. (6.16)

This bound (6.16) has been shown to be relatively tight in [75].

6.2.2 The MG Distribution

The MG distribution is widely applied, due to its versatility and mathematical

tractability [77]. The MG probability density function (pdf) of the SNR γ is

composed of a weighted sum of gamma distributions, given by [77, eq. (1)]

pγ(γ) =
N∑
i=1

wifi(γ) =
N∑
i=1

αiγ
βi−1 exp(−ζiγ). (6.17)

108



6.3 Bounds and Invertible Approximations to ASEP over Fading

Here, fi(γ) = ζβii γ
βi−1 exp(−ζiγ)/Γ(βi) denotes the standard Gamma distribution,

wi = αiΓ(βi)/ζ
βi
i is a weight, N is the number of terms, and αi, βi and ζi are the

parameters of the ith mixture gamma component, which depend on the different

fading models we specify later. Γ(.) denotes the gamma function given by Γ(t) =∫∞
0
xt−1e−xdx. The MGF and the rth moment of the MG distribution are [77,

eqs. (3)(4)], respectively,

Mγ(s) =

∫ ∞
0

e−sγpγ(γ)dγ =
N∑
i=1

αiΓ(βi)

(s+ ζi)βi

and

mγ(r) = E[γr] =
N∑
i=1

αiΓ(βi + r)ζ
−(βi+r)
i ,

where E[.] denotes the expectation operator. The average SNR γ̄ is thus obtained

as

γ̄ = E[γ] =
N∑
i=1

αiΓ(βi + 1)ζ
−(βi+1)
i . (6.18)

The MG distribution provides a unified, simple average error probability analysis

framework, since it can be used to approximate a number of the SNR distributions

of the fading models, which include the Nakagami-m, KG and Nakagami-lognormal

(NL) fading as specific examples.

6.3 Bounds and Invertible Approximations to

ASEP over Fading

In this section, based on the received signal model (6.1) and the MG distribution

(6.56), tight, simple algebraic-form bounds and invertible expressions for the ASEP

of MPSK are derived in a class of composite fading channels.
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6.3.1 Upper Bounds and Invertible Approximations for

MPSK for M > 2

We first derive the tight upper bounds on the ASEP of MPSK (M > 2) for the

MG distribution based on the upper bound on the Gaussian Q-function. Invertible

approximations are given specifically for the Nakagami-m, the KG and the NL fading

models.

We use the union upper bound given by [12, eq. (8.26)] to approximate the SEP

of MPSK in the AWGN channel. Thus, the conditional SEP expression of MPSK

with M > 2 for a given instantaneous SNR γ in fading is approximated as

P (es|γ) ≤ 2Q

(√
2Esh2

N0

sin(π/M)

)
= 2Q(

√
g1γ), (6.19)

where g1 = 2 sin2(π/M) and γ , h2Es/N0. Here, Q(.) is the Gaussian Q-function

given by Q(x) = 1√
2π

∫∞
x

exp
(
−u2

2

)
du. The accuracy of the union bound in (6.19)

improves as M increases, which implies that all the derivations later are more

accurate for larger M . The ASEP in fading, denoted as P (γ̄) which depends on

the distribution of γ, i.e., pγ(γ), is given by

P (γ̄) ,
∫ ∞

0

P (es|γ)pγ(γ)dγ .
∫ ∞

0

2Q(
√
g1γ)pγ(γ)dγ. (6.20)

Here, γ̄ , E[h2]Es
N0

denotes the average SNR per symbol.

Now, we derive the upper bound on the ASEP P (γ̄) for M > 2, using (6.20),

(6.56) and the upper bound QUB(.) in (6.12). Substituting (6.56) and (6.12) into

(6.20), we have the upper bound given as

P (γ̄) ≤ PUB(γ̄) =

q∑
k=0

N∑
i=1

2akαi√
g1

∫ ∞
0

γβi−
3
2 exp(−(bkg1 + ζi)γ)dγ.

Then substituting t = βi − 1
2

and x = (bkg1 + ζi)γ into the gamma function Γ(t)

110



6.3 Bounds and Invertible Approximations to ASEP over Fading

defined as Γ(t) =
∫∞

0
xt−1e−xdx, we have

∫ ∞
0

γβi−
3
2 exp(−(bkg1 + ζi)γ)dγ = Γ(βi −

1

2
)(bkg1 + ζi)

−(βi− 1
2

).

Therefore, combining the two equations above, the upper bound on P (γ̄) of MPSK

(M > 2) for the MG distribution is obtained as

P (γ̄) ≤ PUB(γ̄) =

q∑
k=0

N∑
i=1

2akαiΓ(βi − 1
2
)

√
g1

(bkg1 + ζi)
−(βi− 1

2
). (6.21)

Here, αi and ζi are functions of γ̄, but βi is fixed for a specific fading model [77],

which we show later. Thus, in terms of computational complexity, Γ(βi − 1
2
) is

pre-computable and only needs to be computed once for all values of γ̄. Since ak, bk

and g1 are constants, we only need to compute αi and ζi for every γ̄. Therefore,

our result (6.21) is a purely algebraic function in terms of γ̄. This upper bound is

an explicit expression, which provides insights into how the parameters affect the

performance.

It is worth noting that by comparing with the exact ASEP, the tight bound

(6.21) turns out to be a very accurate approximation which can be inverted for high

SNR. The invertible expression is given in the form:

P (γ̄) ≈ Cγ̄−D, (6.22)

where C and D are constants independent of γ̄. Thus, to achieve a given value of

P (γ̄), one can easily specify the required value of γ̄ as

γ̄ ≈
(

C

P (γ̄)

) 1
D

. (6.23)

The diversity order of the system, denoted as Gd, is defined as [11]

Gd =
− logP (γ̄)

log γ̄
|γ̄→∞.
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We can see from (6.22) that the diversity order Gd is D here.

The exact ASEP P (γ̄) of MPSK for any M over the MG distribution is given

by [77, eq. (25)] or [12, eq. (9.15)]

P (γ̄) =
N∑
i=1

αiΓ(βi)

πζβii

∫ (M−1)π
M

0

 sin2 θ

sin2 θ +
sin2( π

M
)

ζi

βi

dθ (6.24)

which can only be computed by numerical integration for every γ̄. Besides, (6.24)

cannot explicitly show how P (γ̄) depends on γ̄, and cannot be inverted to get the

required γ̄ given P (γ̄).

The invertible ASEP expression cannot be directly obtained for the general

MG distribution, because γ̄ is contained in the parameters αi and ζi, which vary

with the different fading models used. Therefore, in the following subsections,

the tight, algebraic-form bounds and the invertible ASEP expressions are derived

specifically for the Nakagami-m, the KG and the NL composite fading channels,

whose SNR distributions are well approximated by the MG distribution. For all

these three fading models, no comparable algebraic-form bounds and approximations

are available for MPSK with M > 2 in the literature.

Nakagami-m Fading

The SNR distribution of Nakagami-m fading, given by (6.2), with the fading

severity parameter m ≥ 1
2

is one special case of the MG distribution. This SNR

distribution can be rewritten in the MG form (6.56) with parameters [77, Sect.III.G]:

N = 1, α1 =
mm

Γ(m)γ̄m
, β1 = m, ζ1 =

m

γ̄
. (6.25)

Substituting (6.25) into (6.21), we obtain the upper bound on P (γ̄) of MPSK (M >

2) for Nakagami-m fading:

P (γ̄) ≤ PUB(γ̄) =

q∑
k=0

2akm
mΓ(m− 1

2
)

√
g1γ̄mΓ(m)

(bkg1 +
m

γ̄
)−(m− 1

2
). (6.26)
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We can see that our bound (6.26) is in purely algebraic form in terms of γ̄. As

noted, Γ(m) and Γ(m− 1
2
) are pre-computable and fixed for all γ̄.

Since our upper bound (6.26) can be extremely tight by adjusting the

parameters q and (εk − εk−1), (6.26) is further used as a good approximation to

P (γ̄).

For high average SNR γ̄ such that m/γ̄ in the bracket can be ignored compared

with bkg1 in (6.26), the upper bound is simplified into the product of a constant and

γ̄−m. Therefore, this simplified bound gives the inverse ASEP expression (6.22) for

Nakagami-m fading, where D = m and C is given by

C =

q∑
k=0

2akm
mΓ(m− 1

2
)

√
g1Γ(m)

(bkg1)−(m− 1
2

).

KG Fading

The SNR distribution of the KG fading model is a Gamma-Gamma distribution

with the distribution shaping parameters l and m, given by (6.3). It also has the

integral-form expression given by [77, eq. (8)]

pγ(γ) =
( lm
γ̄

)mγm−1

Γ(m)Γ(l)

∫ ∞
0

e−tg(t)dt.

Here, we have g(t) = tl−m−1e−
lmγ
tγ̄ . The integral, I =

∫∞
0
e−tg(t)dt, can be

approximated as a Gaussian-Laguerre quadrature sum, i.e., I ≈
∑N

i=1 ωig(ti), where

ti and ωi are the abscissas and weight factors for the Gaussian-Laguerre integration

given in [119]. This integral-form expression can be rewritten in the MG form (6.56)

with the corresponding parameters [77, eq. (9)]:

αi = ψ(θi, βi, ζi), βi = m, ζi =
lm

tiγ̄
, θi =

( lm
γ̄

)mωit
l−m−1
i

Γ(m)Γ(l)
(6.27)

where ψ(θi, βi, ζi) = θi∑N
j=1 θjΓ(βj)ζ

−βj
j

, which is also used for subsequent cases.

Substituting these parameters into (6.21) leads to the following upper bound
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on the ASEP for the KG fading model:

P (γ̄) ≤ PUB(γ̄) =

q∑
k=0

N∑
i=1

2akΓ(m− 1
2
)ωit

l−1
i

√
g1Γ(m)

∑N
j=1 ωjt

l−1
j

(
γ̄ti
lm

)−m
(
bkg1 +

lm

tiγ̄

)−(m− 1
2

)
.

(6.28)

For high SNR, the term lm
tiγ̄

in the later bracket in (6.28) can be dropped to

obtain the invertible ASEP expression. It follows that our simplified bound (6.28)

gives the invertible result (6.22) with D = m and C given by

C =
2(lm)m

∑N
i=1 ωit

l−m−1
i∑N

j=1 ωjt
l−1
j

[
q∑

k=0

akΓ(m− 1
2
)

√
g1Γ(m)

(bkg1)
1
2
−m

]
.

NL Composite Fading

The SNR distribution in the NL fading is a gamma-lognormal (GL) distribution,

given as (6.4).Eq. (6.4) can be expressed as the MG pdf (6.56) with the parameters

[77, eq. (7)]:

αi = ψ(θi, βi, ζi), βi = m

ζi =
m

ρ
e−(
√

2σti+µ), θi =

(
m

ρ

)m
wie

−m(
√

2σti+µ)

√
πΓ(m)

(6.29)

where ti and wi are the abscissas and weight factors for the Gaussian-Hermite

integration [119]. Term ρ is the unfaded SNR, and µ and σ are the mean and

the standard deviation of the lognormal distribution, respectively.

Therefore, we can have the tight upper bound on the ASEP with respect to ρ

in the NL composite fading given by

P (γ̄) ≤ PUB(γ̄) =

q∑
k=0

N∑
i=1

2akΓ(m− 1
2
)wie

−m(
√

2σti+µ)

√
g1Γ(m)

∑N
j=1wj(

m

ρ

)m (
bkg1 +

m

ρ
e−(
√

2σti+µ)
)−(m− 1

2
)
. (6.30)
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Besides, substituting the parameters (6.29) into (6.18) yields

ρ = C1γ̄, (6.31)

where C1 =
∑N
j=1 wj∑N

i=1 wie
(
√

2σti+µ)
, is a constant. Thus, we have a linear relation between

ρ and γ̄.

For high average SNR γ̄ or large value of ρ, the term m
ρ
e−(
√

2σti+µ) in the later

bracket in (6.30) can be removed to obtain the invertible ASEP expression. Thus,

we have the explicit result (6.22) with D = m and

C =

∑N
i=1wie

−m(
√

2σti+µ)∑N
j=1wj

(
m

C1

)m [ q∑
k=0

2akΓ(m− 1
2
)

√
g1Γ(m)

(bkg1)−(m− 1
2

)

]
.

6.3.2 Tight Bounds and Invertible ASEP for BPSK

For BPSK (M = 2), the transmitted phase is φ ∈ {0, π}. Our bounding

approach can be easily used on coherent BPSK, since the exact SEP/BEP result of

BPSK in the pure AWGN channel is one Gaussian Q-function: P (es) = Q(
√

2Es
N0

)

[12]. Thus, the exact ASEP/ABEP P (γ̄) in fading is given by

P (γ̄) =

∫ ∞
0

Q(
√
g2γ)pγ(γ)dγ (6.32)

where g2 = g1|M=2 = 2 sin2(π/M)|M=2 = 2.

By upper bounding Q(.) in (6.32) with (6.12) and using the same procedure as

above, we can obtain the same upper bounds on P (γ̄) of BPSK as (6.21), (6.26),

(6.28) and (6.30), except that all these results have to be divided by a factor of 2.

Thus, arbitrarily tight upper bounds PUB(γ̄) on P (γ̄) in (6.32) are first obtained,

by adjusting the parameters q and (εk − εk−1).

Next, we want to derive the arbitrarily tight lower bounds on P (γ̄) in (6.32),

using the lower bound on the Gaussian Q-function given by (6.13). Substituting

(6.56) and (6.13) into (6.32), the lower bound on P (γ̄) for the MG distribution is
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derived as

P (γ̄) ≥ PLB(γ̄) =

q−1∑
k=1

N∑
i=1

ck
√
g2αiΓ(βi +

1

2
)(dkg2 + ζi)

−(βi+
1
2

). (6.33)

As noted, in terms of computational complexity, Γ(βi + 1
2
) is pre-computable and

only needs to be computed once for all values of γ̄. Since ck, dk and g2 are constants,

we only need to compute αi and ζi for every γ̄. Therefore, our result (6.33) is purely

algebraic-form in terms of γ̄.

Moreover, the average of the above upper and lower bounds gives us an accurate

approximation to the exact ASEP of BPSK, that is

P (γ̄) ≈ 1

2
(PUB(γ̄) + PLB(γ̄)), (6.34)

which also leads to invertible expressions given in the form of (6.22) for high SNR,

specifically for Nakagami-m, KG and NL composite fading shown below.

For the three fading models, our explicit upper and lower bounds are new and

there is no comparable result in the literature. Numerical results show later that

the bounds and approximations are arbitrarily tight and accurate compared to the

existing results.

Nakagami-m Fading

Substituting (6.25) into (6.33), we obtain the lower bound on P (γ̄) of BPSK

for Nakagami-m fading:

P (γ̄) ≥ PLB(γ̄) =

q−1∑
k=1

ck
√
g2m

mΓ(m+ 1
2
)

γ̄mΓ(m)
(dkg2 +

m

γ̄
)−(m+ 1

2
). (6.35)

We can see that our upper bound (6.26) with the corresponding change, i.e., without

the factor of 2 and with g1 replaced by g2 inside, and our lower bound (6.35) are

purely algebraic functions in terms of γ̄.

Subsequently, (6.34) in conjunction with (6.35) and the changed (6.26) gives a
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very good approximation for BPSK.

For large γ̄ such that m/γ̄ in the brackets can be ignored compared with bkg2 in

(6.26) or dkg2 in (6.35), both upper and lower bounds are simplified into the product

of a constant and γ̄−m. Therefore, (6.34) in conjunction with the simplified bounds

gives the inverse ASEP expression (6.22) for Nakagami-m fading, where D = m and

C is given by

C =

q∑
k=0

akm
mΓ(m− 1

2
)

2
√
g2Γ(m)

(bkg2)−(m− 1
2

) +

q−1∑
k=1

ck
√
g2m

mΓ(m+ 1
2
)

2Γ(m)
(dkg2)−(m+ 1

2
).

For this Nakagami-m fading case, an approximation to the ASEP of BPSK is

given by [65, eq. (10)]. This latter result is comparable in accuracy to our result

(6.34) as shown numerically later.

KG Fading

Substituting the parameters (6.57) into (6.33) leads to the lower bound on the

ASEP for the KG fading model:

P (γ̄) ≥ PLB(γ̄) =

q−1∑
k=1

N∑
i=1

ck
√
g2Γ(m+ 1

2
)ωit

l−1
i

Γ(m)
∑N

j=1 ωjt
l−1
j

(
γ̄ti
lm

)−m
(
dkg2 +

lm

tiγ̄

)−(m+ 1
2

)
. (6.36)

For high SNR, the term lm
tiγ̄

in the later brackets in the lower bound (6.36) and the

correspondingly changed upper bound (6.28) can be dropped to obtain the invertible

ASEP expression. It follows that our approximation (6.34) in conjunction with the

simplified (6.28) and (6.36) gives the invertible result (6.22) with D = m and C

given by

C =
(lm)m ·

∑N
i=1 ωit

l−m−1
i

2
∑N

j=1 ωjt
l−1
j

[
q∑

k=0

akΓ(m− 1
2
)

√
g2Γ(m)

(bkg2)−(m− 1
2

)

+

q−1∑
k=1

ck
√
g2Γ(m+ 1

2
)

Γ(m)
(dkg2)−(m+ 1

2
)

]
.
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NL Composite Fading

Similarly, we can have the tight lower bound on the ASEP with respect to ρ in

the NL composite fading given by

P (γ̄) ≥ PLB(γ̄) =

q−1∑
k=1

N∑
i=1

ck
√
g2Γ(m+ 1

2
)wie

−m(
√

2σti+µ)

Γ(m)
∑N

j=1wj(
m

ρ

)m (
dkg2 +

m

ρ
e−(
√

2σti+µ)
)−(m+ 1

2
)
. (6.37)

Eq (6.31) shows the linear relation between ρ and γ̄.

For high average SNR γ̄ or large value of ρ, the term m
ρ
e−(
√

2σti+µ) in the

later brackets in (6.30) and (6.37) can be removed to obtain the invertible ASEP

expression. That is, by taking the average of the simplified (6.30) and (6.37), we

thus have the explicit result (6.22) with D = m and

C =

∑N
i=1wie

−m(
√

2σti+µ)

2
∑N

j=1wj

[
q∑

k=0

akΓ(m− 1
2
)

√
g2Γ(m)

(bkg2)−(m− 1
2

)

+

q−1∑
k=1

ck
√
g2Γ(m+ 1

2
)

Γ(m)
(dkg2)−(m+ 1

2
)

](
m

C1

)m
.

Furthermore, as mentioned in [77], there are other fading models whose SNR

distributions can be accurately approximated by the MG distribution, such as η−µ,

κ−µ, Nakagami-q and Nakagami-n fading. We can directly obtain arbitrarily tight

bounds and accurate approximations for these models by using (6.21), (6.33) and

(6.34). However, it should be noted that invertible expressions cannot be derived

since βi in these models is not a constant, but varies with i [77].

6.3.3 Numerical Results and Comparisons

To check the accuracy of our bounds and approximations, the exact ASEP

expressions for any MPSK are obtained by substituting (6.25), (6.57) and (6.29)
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into (6.24), respectively. That is, for Nakagami-m fading, we have

P (γ̄) =
1

π

∫ (M−1)π
M

0

(
sin2 θ

sin2 θ +
γ̄ sin2( π

M
)

m

)m

dθ. (6.38)

For KG fading, the exact ASEP of MPSK is

P (γ̄) =
N∑
i=1

ωit
l−1
i

π
∑N

j=1 ωjt
l−1
j

∫ (M−1)π
M

0

(
sin2 θ

sin2 θ +
sin2( π

M
)tiγ̄

lm

)m

dθ. (6.39)

For NL composite fading, the exact ASEP result is given by

P (γ̄) =
N∑
i=1

wi

π
∑N

j=1wj

∫ (M−1)π
M

0

 sin2 θ

sin2 θ +
sin2( π

M
)ρ

me−(
√

2σti+µ)

m

dθ. (6.40)

These can also be obtained using the MGF based approach given in [12,67].

We compare our invertible result (6.22) with [120, eq. (24)], which is also an

invertible approximation to the ASEP of MPSK:

P (γ̄) ≈

[
b

π

∫ (M−1)π
M

0

(
sin2 θ

sin2( π
M

)

)d
dθ

]
γ̄−d. (6.41)

It can easily be shown that we have b =
∑N

i=1 αiΓ(βi) and d = βi for the general

MG distribution, according to the analysis in [121]. By substituting (6.25), (6.57)

and (6.29) into (6.41), we thus have the invertible results for the three models,

respectively. For Nakagami-m fading only, another comparable invertible ASEP

result for BPSK is given by [65, eq. (11)].

To compare with the exact ASEP results (6.38), (6.39) and (6.40), and the

invertible one (6.41), M = 2, 4, 8 and 16 are considered for Nakagami-m fading. Only

the cases of M = 2 and 4 are shown as examples for the KG and the NL fading for

simplicity. For the Nakagami-m fading model, we have m = 2.7 here [77]. For the

KG and the NL composite fading, the parameters are chosen as (m, l,N) = (2, 5, 6)

and (m,σ, µ,N) = (2, 1, 0.25, 9), respectively [77]. We set q = 8 and (εk−εk−1) = 0.5
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Figure 6.1: ASEP comparison of MPSK for Nakagami-m Fading: (a) M = 4, (b)
M = 8 and 16.
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Figure 6.2: ASEP comparison of QPSK: (a) KG fading, (b) NL composite fading.
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here, which are sufficient for the accuracy of our results.

For M > 2, as Figs. 6.1-6.2 show, our upper bounds (6.26), (6.28) and (6.30)

are tight throughout the whole SNR region of practical interest. Our new invertible

approximations (6.22) are accurate and comparable with (6.41) in the SNR region

of interest. They can become more tight and accurate by adjusting the parameters

q and εk in (6.14).

For BPSK, the numerical comparison among the above results is shown in Fig.

6.3. It can be seen that the corresponding upper bound (6.21) and lower bound

(6.33), and the approximation (6.34) are accurate for all SNR values of interest in

all the three cases. They can be arbitrarily tight and accurate by adjusting the

parameters q and (εk − εk−1) in (6.14). One way to improve the accuracy is by

increasing the number of partition sub-ranges, q. The other way here is to fix q

and shift the partition points εk, making the values of (εk − εk−1) smaller to tighten

the bounds (6.12) and (6.13). Besides, as Fig. 6.3(a) shows, our approximation

and [65, eq. (10)] provide very similar asymptotic behavior to the exact ASEP.

Furthermore, our invertible ASEP expressions (6.22) are very accurate in the SNR

region corresponding to the ASEP values of 10−3 and lower, which are of practical

interest. Thus, (6.22) is comparable in accuracy with the result (6.41) in all three

cases. Our invertible results are yet adjustable and can be more accurate. This

shows the flexibility of our unified approach combined with the Gaussian Q-function

bounds (6.12) and (6.13) in different fading channels.
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Figure 6.3: ASEP comparison of BPSK: (a) for Nakagami-m fading m = 2.7, (b)
for KG fading (m, l,N) = (2, 5, 6), (c) for NL composite fading (m,σ, µ,N) =
(2, 1, 0.25, 9).
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6.4 Influence of Turbulence and Pointing Errors

on FSO Systems

In this section, we extend the use of our bounds with the MG approximation

to analyze the influence of turbulence and pointing errors on FSO systems with the

received signal model given by (6.1). We only consider on-off keying (OOK) here,

and the transmitted data symbol m(k) takes on any value from set {0, A} with equal

probability. The AWGN n(k) has mean zero and variance N0/2, where N0 is the

one-sided power spectrum density. We have A = 2
√
TsRPt, where Pt is the transmit

power, and R is the photodetector responsivity [122]. We have Ts = 1/Rdata where

Rdata is the system data rate, and R = ηe
hν

= ληe
hc

where λ = 1.55µm is the optical

carrier wavelength, η = 1 is the quantum efficiency, h is the Planks constant, e is

the elementary charge and c is the light speed in vacuum.

6.4.1 ASEP for Inter-Satellite Laser Communications

Long distance inter-satellite laser communication links are highly vulnerable

due to the degrading effect of pointing errors [86–90]. The pointing errors are

due to platform vibrations, which cause vibrations of the transmitter telescope

and, therefore, misalignment between the transmitter and the receiver [86, 87].

Various statistical models have been proposed over the years to describe the pointing

errors [86,88]. In these works, the effects of misalignment on the error performance

have been investigated. However, the existing results for the average bit error

probability (ABEP) involve numerical multiple integration [86], or numerically

computing higher-order transcendental functions [87], which do not facilitate further

analysis. No simple, closed-form expressions for the ABEP are given so far, and the

diversity gain cannot be easily derived.

Here, we analyze the effect of pointing errors on the error performance of an

inter-satellite laser link. Our approach is to obtain tight, algebraic-form upper and

lower bounds on the ABEP, by using the tight bounds on the Gaussian Q-function
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derived in [72–75]. For large transmit power, all the bounds can simplify to invertible

expressions, which turn out to be accurate approximations corresponding to the

ABEP values of 10−3 and lower, which are of practical interest. More importantly,

the diversity gain is straightforwardly obtained, which is related to the ratio of the

equivalent beam radius to the pointing error displacement standard jitter at the

receiver. We will show the explicit insights into how the channel parameters affect

the ABEP via simulations.

Bounds on the ABEP

For OOK, the conditional BEP for a given value of hp is given as [122, eq. (17)]

P (e|hp) = Q(hp
√
γ) = Q

hp
√

2Ts(RPt)2

N0

 . (6.42)

Here, we have γ = 2Ts(RPt)
2/N0. Thus, the ABEP P (e) can be obtained by

P (e) =

∫ ∞
0

P (e|hp)php(hp)dhp, (6.43)

with php(hp) given in (6.10). This exact result involves double integral and does not

provide explicit insights on how the parameters affect the error performance.

Using the upper bound (6.12) on (6.42) in conjunction with (6.10) and (6.43),

we can derive the upper bound on the ABEP given as

P (e) ≤ PUB(e) =

q∑
k=0

aks
2

2A0
s2√γ

(
bkγ
) 1−s2

2 Γ

(
s2 − 1

2
, bkγA0

2

)
, (6.44)

since we have Γ(α, x) =
∫ x

0
e−ttα−1dt, [Re α > 0], where Γ(·, ·) denotes the lower

incomplete gamma function. Moreover, the lower bound (6.13) in conjunction with

(6.10)-(6.43) leads to the lower bound on the exact ABEP derived as

P (e) ≥ PLB(e) =

q−1∑
k=1

cks
2√γ

2A0
s2

(dkγ)−
s2+1

2 Γ

(
s2 + 1

2
, dkγA0

2

)
. (6.45)
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Both bounds (6.44) and (6.45) are explicit, closed-form expressions, which provide

explicit insights into how the performance depends on the system parameters. We

will show later that these bounds are extremely tight and mathematically tractable

for any system parameters.

Moreover, the pure exponential upper bound on Q(x) given by (6.15) in

conjunction with (6.10)-(6.43) gives a simple upper bound on P (e), that is,

P (e) ≤ PUB−C(e) =
s2

24As
2

0

(γ
2

)− s2
2

Γ

(
s2

2
,
γA0

2

2

)
+

s2

8As
2

0

(
2γ

3

)− s2
2

Γ

(
s2

2
,
2γA0

2

3

)
.

(6.46)

Similarly, the pure exponential lower bound (6.16) can lead to a tight lower bound

on P (e) as

P (e) ≥ PLB−KW (e) =
s2

12As
2

0

(√
3γ

π

)− s2
2

[
(
√

2)−s
2

Γ

(
s2

2
,
2
√

3γA0
2

π

)
+ Γ

(
s2

2
,

√
3γA0

2

π

)]
. (6.47)

Since (6.46) and (6.47) have fewer terms, as we will show, they are not as tight as

the bounds given in (6.44) and (6.45). We can see that all of these bounds have

similar forms.

Invertible Approximations and Diversity Gain

Here, we will show that for a large value of Pt, i.e., large γ, all of these bounds

can reduce to invertible expressions, given in the form:

P (e) ≈ Cγ−
s2

2 = DP−s
2

t . (6.48)
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Here, C is a constant, and we have D = C
(

2TsR2

N0

)− s2
2

. For a given value of P (e),

one can easily obtain the required value of Pt,

Pt ≈
(

D

P (e)

)s−2

. (6.49)

It is shown later via simulations that (6.48) turns out to be an accurate

approximation to the exact ABEP (6.43).

The diversity order i.e., the diversity gain of the inter-satellite laser link with

respective to Pt, denoted as Gd, is defined as [11]

Gd =
− logP (e)

logPt
|Pt→∞.

Thus, from (6.48), the diversity order Gd is

Gd = s2. (6.50)

Note that Gd depends on the ratio s. More importantly, we cannot easily get the

value of Gd from the exact ABEP expression (6.43).

Next, we show the values of C in (6.48), respectively, for different bounds. For

the upper bound in (6.44), as γ increases, Γ
(
s2−1

2
, bkγA0

2
)

can reduce to Γ
(
s2−1

2

)
,

since Γ(.) is the gamma function defined as Γ(α) =
∫∞

0
e−ttα−1dt. Thus, (6.44)

reduces to

P (e) ≤ PUB(e) ≈
q∑

k=0

aks
2Γ
(
s2−1

2

)
2A0

s2
b

1−s2
2

k γ−
s2

2 , (6.51)

which is show to be a good approximation later. It thus follows that we obtain C

in (6.48) as

C =

q∑
k=0

aks
2Γ
(
s2−1

2

)
2A0

s2
b

1−s2
2

k . (6.52)
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Similarly, as γ increases, the lower bound in (6.45) can be well approximated as

(6.48) with C given by

C =

q−1∑
k=1

cks
2Γ
(
s2+1

2

)
2A0

s2
d
− 1+s2

2
k . (6.53)

For large γ, the bounds (6.46) and (6.47) can simplify to (6.48) with C, respectively,

given as

C =
s2Γ

(
s2

2

)
8As

2

0

(
(
√

2)s
2

3
+ (
√

1.5)s
2

)
(6.54)

and

C =
s2Γ

(
s2

2

)
12As

2

0

(√
3

π

)− s2
2 (

(
√

2)−s
2

+ 1
)
. (6.55)

We can see that all the C above are constants related to A0 and s.

Numerical Results

The system parameters used for numerical illustrations are given as follows:

Rdata = 1 Gbps, z = 1000 km, rc = 0.125 m, and N0 = 2.2 × 10−26 A2/Hz (−174

dBm/Hz thermal noise passing through 179700 Ω load resistor [123]).

We set q = 10 and (εk − εk−1) = 0.1 here, which are sufficient for the accuracy

of our results. The comparison with the exact ABEP in (6.43) in Fig. 6.4 shows

that the bounds (6.44), (6.45), (6.46) and (6.47) are extremely tight in the whole

transmit power region of interest. Eqs. (6.44) and (6.45) can be made arbitrarily

tight by adjusting the parameters q and εk in (6.14), i.e., by increasing the number

of sub-ranges, q, or shifting the partition points εk to make the values of (εk − εk−1)

smaller.

Fig. 6.5 shows that for σs = 50m, the performance of all the invertible

approximations (6.48) with different values of C asymptotically approaches to that
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Figure 6.6: ABEP as a function of wz for different Pt and σs.

of the exact ABEP (6.43). As σs increases, e.g., σs = 75m and 100m, (6.48) performs

almost the same as (6.43) in the region of Pt corresponding to the ABEP values of

10−3 and lower, which are of practical interest. From Fig. 6.5, with the ABEP

value of 10−7, compared to the case of σs = 50m, the power penalties are 3.5dB and

9.5dB, respectively, for the cases of σs = 75m and 100m.

Furthermore, we explicitly show the effect of the beam radius wz on the ABEP.

We find that the transmit power Pt and standard jitter σs jointly decide the optimum

value of wz, the adjustment of which can be done by adjusting the transmitter

beam waist according to (6.8). As shown in Fig. 6.6, the optimum values of wz are

585m, 640m and 820m, respectively, for (σs, Pt) combinations to be (75m, 25dBm),

(100m, 25dBm) and (100m, 28dBm). In some literatures, e.g., [86], there are wrong

impressions that the ratio of wz and σs, i.e., wz
σs

, can be optimized to a fixed value

given a certain value of Pt. We hope to emphasize that this is not true from our

observation. As given in our example, at Pt = 25dBm, the corresponding values

of wz
σs

are 7.8 and 6.4, respectively, for σs = 75m and 100m, which are obviously

130



6.4 Influence of Turbulence and Pointing Errors on FSO Systems

non-identical.

6.4.2 Outage in Turbulent Channel with Pointing Errors

Similar to the case of KG fading in Section 6.3.1, we show that the

Gamma-Gamma distribution can be well approximated by the MG distribution [77].

Thus, the pdf of ha in (6.6) can be rewritten in the form of the MG distribution,

which is composed of a weighted sum of gamma distributions, given by

pha(ha) =
N∑
i=1

αiha
βi−1 exp(−ζiha). (6.56)

Here, N is the number of terms, and the parameters of the ith mixture gamma

component αi, βi and ζi are given by [77, eq.(9)]:

αi =
θi∑N

j=1 θjΓ(βj)ζ
−βj
j

, βi = m, ζi =
lm

ti
, θi =

(lm)mωit
l−m−1
i

Γ(m)Γ(l)
(6.57)

where ti and ωi are the abscissas and weight factors for the Gaussian-Laguerre

integration given in [119].

For a turbulent channel with pointing errors, the channel gain is denoted as

h = hahp. Thus, its pdf can be derived as

ph(h) =

∫ ∞
h
A0

1

a
pha(a)php

(
h

a

)
da, h > 0 (6.58)

Substituting (6.10) and (6.56) into (6.58), we have

ph(h) =
s2hs

2−1

As
2

0

N∑
i=1

αi

∫ ∞
h
A0

aβi−s
2−1e−ζiada

=
s2hs

2−1

As
2

0

N∑
i=1

αiζ
−βi+s2
i Γ(βi − s2, ζi

h

A0

) (6.59)

since we have Γ(α, x) =
∫∞
x
e−ttα−1dt, where Γ(·, ·) denotes the upper incomplete

gamma function. This result (6.59) is an analytical and mathematically tractable
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model for the channel gain.

The outage probability is defined as

Pout = P (h < I) =

∫ I

0

Ph(h)dh (6.60)

where I denotes the threshold for outage. Based on
∫
xb−1Γ(α, x)dx =

1
b

[
xbΓ(α, x)− Γ(α + b, x)

]
with b = s2, α = βi − s2 and x = ζi

h
A0

, and substituting

(6.59) in (6.60), Pout is thus derived as

Pout =
N∑
i=1

αiζ
−βi
i

[(
ζiC

A0

)s2
Γ(βi − s2,

ζiC

A0

)− Γ(βi,
ζiC

A0

) + Γ(βi, 0)

]
(6.61)

where we have Γ(βi, 0) = Γ(βi). This outage probability result (6.61) is a novel,

closed-form expression, compared with that in [88] for the strong turbulence case

which is a very complex double integral.

The ASEP of this combined effect is also analyzed in [87]. Using this new model

(6.59) for h, we can get the new ASEP result. For more details and numerical results,

one can refer to [124].

6.5 Concluding Remarks

For wireless fading and FSO channels, models for different channel attenuation

therein are introduced in detail, and we will mainly analyze the error performance.

In summary, tight, simple algebraic-form bounds and invertible expressions for

the ASEP of MPSK are derived in a class of composite fading channels using the MG

distribution. Our work can be extended straightforward to obtain the ABEP results

for general MPSK, MDPSK or M -QAM, since all the conditional BEP results are

approximated as linear combinations of single Gaussian Q-functions [125]. Our

approach is more versatile with tight bounds and invertible expressions with no

integral involved, and can be made arbitrarily accurate by adjusting the parameters

q and εk. Our invertible results above with all D = m in (6.22) shows that for
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the Nakagami-m, KG and NL composite fading models, the ASEP P (γ̄) exhibits an

asymptotic m-order diversity behaviour as a function of γ̄.

Tight bounds on the ABEP are also derived for the inter-satellite link with

pointing errors. These bounds can reduce to invertible approximations, and the

diversity gain is straightforwardly obtained. We have studied the effect of the beam

radius on the system ABEP. We also observe that with a fixed transmit power, the

ratio of the beam waist and the standard jitter cannot be optimized to a fixed value.

This bounding approach and the MG distribution can be further used to analyze

the combined effects of atmospheric turbulence and pointing errors for terrestrial

laser links, and to achieve analysable expression of outage probability.
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Chapter 7

Summary of Contributions and
Future Work

7.1 Summary of Contributions

In order to design a robust receiver for communication channels with Brownian

motion carrier phase noise, we first apply the decision aided maximum likelihood

(DA ML) phase estimation, and assume that the phase reference error (PRE) due to

imperfect phase estimation is Gaussian distributed. We then consider the optimum

detector design for two-dimensional carrier modulations received in AWGN and

PRE. By viewing the AWGN as an equivalent additive observation phase noise

(AOPN) model whose statistics is Tikhonov, we arrive at a unified received signal

model in amplitude-phase form where the received phase incorporates the PRE

and the AOPN. Using the amplitude and phase information of the received signal,

the MAP/ML detection scheme is thus derived in amplitude-phase form. For

one-ring constellations, the ML detector performs the same as the conventional MED

detector which does not consider PRE. For multiple-ring constellations, simpler

and closed-form approximations to the ML detector are given, which are shown

in simulations to perform almost the same as the exact one. The approximately

optimal decision regions can be easily determined using these detection rules. More

importantly, when PRE exists, our approximate ML detectors perform much better

than the suboptimal MED detector. For high SNR or large PRE variance, the

ML detector asymptotically reduces to the suboptimal annular-sector (AS) detector

which employs ring and phase detection separately. One can implement the AS

detector in practice, even without the knowledge of the channel parameters: AWGN

spectrum density and PRE variance. Our work provides a unified view of all the
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existing suboptimal detectors in the presence of linear phase noise. Moreover, the

SEP performance of all the detectors are compared to show the transition from one

to the others. The amplitude-phase form facilitates error performance analysis and

constellation optimization in phase noise.

For performance analysis in phase noise channel, we start on deriving the

error probability of MPSK with coherent receiver using the ML detector. Then

we generalize to differentially detected MDPSK with residual phase noise (RPN).

The approach is that for high SNR, the Tikhonov pdf of the AOPN reduces to be

approximately Gaussian. This AOPN can be combined with the PRE/RPN, and we

obtain the Gaussian AOPN+PRE and AOPN+RPN models. Thus, the closed-form

approximations to the error probability of MPSK and MDPSK are expressed as

linear combinations of single Gaussian Q-functions. It is shown that our Gaussian

AOPN+PRE/RPN model provides a simpler and quicker way to accurately estimate

the error performance as a function of the phase error variance. Our unified

approach is increasingly more accurate as M increases. Moreover, simple, accurate

and closed-form approximations to the SEP of the AS detector are obtained for

both 8-star QAM and the rotated case, 16QAM and even general M -APSK.

These expressions provide explicit insight into how the PRE variance affects the

performance. Within a wide range of PRE variances, our SEP approximations

agree very well with the Monte Carlo simulations for all SNR values of interest.

Besides, we can easily predict the error floor using these results. The closed-form

results also facilitate the constellation optimization in phase noise, e.g., M -APSK

optimization, where we should put more signal points on the outer ring to reduce

the AOPN effect.

For performance analysis over fading, the bounds on the Gaussian Q-function

we employ can be easily averaged over fading. Applying these bounds combined with

the MG distribution which is used to approximate different fading models, we derive

tight bounds and invertible average error probability expressions over composite

fading channels. The tightness of the bounds can be improved by increasing the
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number of summation terms or adjusting the coefficients. Our general expressions of

ASEP are more efficient than the existing results in literature, for providing insights

into how different channel parameters affect the performance. The results find

applications in both wireless and optical communications. This bounding approach

combined with the MG distribution further facilitates analysing the atmospheric

turbulence and pointing error effects on FSO systems. Especially for inter-satellite

links with pointing errors only, we derive the closed-form invertible approximations

to the ASEP where we can easily get the diversity gain. Furthermore, a closed-form

outage probability expression for the combined effects is obtained. We conclude that

this approach is a very powerful tool in performance analysis, and it is applicable

to a wider class of fading characteristics.

7.2 Future Work

7.2.1 The Nonlinear Phase Noise Channel

It should be noted that our results in this thesis are for linear phase noise. In

coherent fiber-optical transmission systems using inline amplifiers, the interaction

of a signal and amplifier noise through the Kerr effect leads to nonlinear phase

noise that can impair the detection of phase-modulated signals [49]. In nonlinear

phase noise, references [49, 51–53] have considered receiver-based detection or

compensation techniques, the impact of fiber nonlinearities on system performance,

and the optimization of APSK constellations. Besides, [105] obtained the (nonlinear)

optimal DB by applying the expectation maximization algorithm to compensate for

the distortion and phase shift on the constellations.

In the nonlinear phase noise channel, imperfect phase estimation algorithms

are also used to track the nonlinear phase, which leads to a phase estimation

error. We thus want to see how the use of the amplitude and phase information

of the received signal facilitates the receiver design and performance analysis with

the phase estimation error. Combining our amplitude-phase approach with the
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statistical model for the nonlinear phase noise proposed in [103], we will first

arrive at an optimum amplitude-phase-form receiver structure, and then do error

probability analysis in the presence of nonlinear phase noise in the future. One

should expect that the error probability results with tractable forms can make

constellation optimization much more efficiently.

7.2.2 Differential Amplitude/Phase Modulation

In practical cases where transmission over fading channels has to be performed

without having channel state information and/or reliable carrier phase estimation

at the receiver, differential encoding at the transmitter and non-coherent reception

are proved to be advantageous. Moreover, to achieve higher spectrum efficiencies,

mixed phase and amplitude modulation can be used. A straightforward extension of

classical DPSK is to transmit information both in phase and in amplitude changes.

This scheme is known as differential amplitude and phase-shift keying (DAPSK)

[126–129].

For low receiver complexity, we may first consider detector design in

amplitude-phase form, by using only two consecutively received signals with

taking the previous signal as the reference to do differential detection [130].

Differential encoding rules given in [131–133] are considered. We will use the

amplitude-phase-form approach to do performance analysis and optimization for

differential amplitude/phase modulated signals with linear phase noise. The analysis

can be extended to the nonlinear phase noise channel [61,62].

7.2.3 Subcarrier FSO Systems

Subcarrier FSO systems become popular recently, since such a system can

employ a variety of modulation schemes (coherent or noncoherent or differentially

coherent modulation) at the electrical modulator [134–136]. The channel is affected

by both unknown phase noise and fading. Therefore, we may consider receiver design

and performance analysis with the combined effects.
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As shown in Chap. 4, the new SEP results for MPSK, M -QAM and M -APSK

with PRE, and for MDPSK with RPN are all expressed in terms of Gaussian

Q-functions. Therefore, using the MG distribution to approximate the fading model

here and combining with our bounding approach, the average error probability of

subcarrier systems with carrier phase noise in turbulence channels can be directly

analyzed. The results may provide better insights into how the channel parameters

affect the system performance.

7.2.4 Fading Channels with Oscillator Phase Noise

Due to the unprecedented explosion in the number of wireless and mobile

devices, there is renewed interest in the issue of oscillator phase noise in recent

times. Performance monitoring or channel estimation in the presence of oscillator

phase noise has become a hot issue. The impact of oscillator phase noise on the

performance of multiple-input multiple-output systems is an important problem,

and yet a big challenge. More and more researchers would like to analyze the effect

of phase noise on receiver performance. However, recent references [10,94,95] and

those therein usually assume quasi-static fading channels, where the coefficient h(k)

is assumed to be deterministic, time-invariant, and known to the receiver, as we do

in the main thesis.

In practice, it is common that both time-varying fading and oscillator phase

noise occur and impair the system performance together. Studying the combined

effects is a challenge for the future, and yet no good solution is currently available.
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