6,220 research outputs found

    Curve network interpolation by C1C^1 quadratic B-spline surfaces

    Full text link
    In this paper we investigate the problem of interpolating a B-spline curve network, in order to create a surface satisfying such a constraint and defined by blending functions spanning the space of bivariate C1C^1 quadratic splines on criss-cross triangulations. We prove the existence and uniqueness of the surface, providing a constructive algorithm for its generation. We also present numerical and graphical results and comparisons with other methods.Comment: With respect to the previous version, this version of the paper is improved. The results have been reorganized and it is more general since it deals with non uniform knot partitions. Accepted for publication in Computer Aided Geometric Design, October 201

    Polynomial-based non-uniform interpolatory subdivision with features control

    Get PDF
    Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion. Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control

    Smooth quasi-developable surfaces bounded by smooth curves

    Full text link
    Computing a quasi-developable strip surface bounded by design curves finds wide industrial applications. Existing methods compute discrete surfaces composed of developable lines connecting sampling points on input curves which are not adequate for generating smooth quasi-developable surfaces. We propose the first method which is capable of exploring the full solution space of continuous input curves to compute a smooth quasi-developable ruled surface with as large developability as possible. The resulting surface is exactly bounded by the input smooth curves and is guaranteed to have no self-intersections. The main contribution is a variational approach to compute a continuous mapping of parameters of input curves by minimizing a function evaluating surface developability. Moreover, we also present an algorithm to represent a resulting surface as a B-spline surface when input curves are B-spline curves.Comment: 18 page
    • …
    corecore