4,389 research outputs found

    Grasping unknown objects in clutter by superquadric representation

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, a quick and efficient method is presented for grasping unknown objects in clutter. The grasping method relies on real-time superquadric (SQ) representation of partial view objects and incomplete object modelling, well suited for unknown symmetric objects in cluttered scenarios which is followed by optimized antipodal grasping. The incomplete object models are processed through a mirroring algorithm that assumes symmetry to first create an approximate complete model and then fit for SQ representation. The grasping algorithm is designed for maximum force balance and stability, taking advantage of the quick retrieval of dimension and surface curvature information from the SQ parameters. The pose of the SQs with respect to the direction of gravity is calculated and used together with the parameters of the SQs and specification of the gripper, to select the best direction of approach and contact points. The SQ fitting method has been tested on custom datasets containing objects in isolation as well as in clutter. The grasping algorithm is evaluated on a PR2 robot and real time results are presented. Initial results indicate that though the method is based on simplistic shape information, it outperforms other learning based grasping algorithms that also work in clutter in terms of time-efficiency and accuracy.Peer ReviewedPostprint (author's final draft

    Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds

    Full text link
    Accurate detection of 3D objects is a fundamental problem in computer vision and has an enormous impact on autonomous cars, augmented/virtual reality and many applications in robotics. In this work we present a novel fusion of neural network based state-of-the-art 3D detector and visual semantic segmentation in the context of autonomous driving. Additionally, we introduce Scale-Rotation-Translation score (SRTs), a fast and highly parameterizable evaluation metric for comparison of object detections, which speeds up our inference time up to 20\% and halves training time. On top, we apply state-of-the-art online multi target feature tracking on the object measurements to further increase accuracy and robustness utilizing temporal information. Our experiments on KITTI show that we achieve same results as state-of-the-art in all related categories, while maintaining the performance and accuracy trade-off and still run in real-time. Furthermore, our model is the first one that fuses visual semantic with 3D object detection

    Lane and Road Marking Detection with a High Resolution Automotive Radar for Automated Driving

    Get PDF
    Die Automobilindustrie erlebt gerade einen beispiellosen Wandel, und die Fahrerassistenz und das automatisierte Fahren spielen dabei eine entscheidende Rolle. Automatisiertes Fahren System umfasst haupts\"achlich drei Schritte: Wahrnehmung und Modellierung der Umgebung, Fahrtrichtungsplanung, und Fahrzeugsteuerung. Mit einer guten Wahrnehmung und Modellierung der Umgebung kann ein Fahrzeug Funktionen wie intelligenter Tempomat, Notbremsassistent, Spurwechselassistent, usw. erfolgreich durchf\"uhren. F\"ur Fahrfunktionen, die die Fahrpuren erkennen m\"ussen, werden gegenw\"artig ausnahmslos Kamerasensoren eingesetzt. Bei wechselnden Lichtverh\"altnissen, unzureichender Beleuchtung oder bei Sichtbehinderungen z.B. durch Nebel k\"onnen Videokameras aber empfindlich gest\"ort werden. Um diese Nachteile auszugleichen, wird in dieser Doktorarbeit eine \glqq Radar\textendash taugliche\grqq{} Fahrbahnmakierungerkennung entwickelt, mit der das Fahrzeug die Fahrspuren bei allen Lichtverh\"altnissen erkennen kann. Dazu k\"onnen bereits im Fahrzeug verbaute Radare eingesetzt werden. Die heutigen Fahrbahnmarkierungen k\"onnen mit Kamerasensoren sehr gut erfasst werden. Wegen unzureichender R\"uckstreueigenschaften der existierenden Fahrbahnmarkierungen f\"ur Radarwellen werden diese vom Radar nicht erkannt. Um dies zu bewerkstelligen, werden in dieser Arbeit die R\"uckstreueigenschaften von verschiedenen Reflektortypen, sowohl durch Simulationen als auch mit praktischen Messungen, untersucht und ein Reflektortyp vorgeschlagen, der zur Verarbeitung in heutige Fahrbahnmakierungen oder sogar f\"ur direkten Verbau in der Fahrbahn geeignet ist. Ein weiterer Schwerpunkt dieser Doktorarbeit ist der Einsatz von K\"unstliche Intelligenz (KI), um die Fahrspuren auch mit Radar zu detektieren und zu klassifizieren. Die aufgenommenen Radardaten werden mittels semantischer Segmentierung analysiert und Fahrspurverl\"aufe sowie Freifl\"achenerkennung detektiert. Gleichzeitig wird das Potential von KI\textendash tauglichen Umgebungverstehen mit bildgebenden Radardaten aufgezeigt

    β\beta-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment

    Get PDF
    The objective of the Karlsruhe Tritium Neutrino (KATRIN) experiment is to determine the effective electron neutrino mass m(νe)m(\nu_\text{e}) with an unprecedented sensitivity of 0.2 eV0.2\,\text{eV} (90\% C.L.) by precision electron spectroscopy close to the endpoint of the β\beta decay of tritium. We present a consistent theoretical description of the β\beta electron energy spectrum in the endpoint region, an accurate model of the apparatus response function, and the statistical approaches suited to interpret and analyze tritium β\beta decay data observed with KATRIN with the envisaged precision. In addition to providing detailed analytical expressions for all formulae used in the presented model framework with the necessary detail of derivation, we discuss and quantify the impact of theoretical and experimental corrections on the measured m(νe)m(\nu_\text{e}). Finally, we outline the statistical methods for parameter inference and the construction of confidence intervals that are appropriate for a neutrino mass measurement with KATRIN. In this context, we briefly discuss the choice of the β\beta energy analysis interval and the distribution of measuring time within that range.Comment: 27 pages, 22 figures, 2 table

    New instruments and technologies for Cultural Heritage survey: full integration between point clouds and digital photogrammetry

    Get PDF
    In the last years the Geomatic Research Group of the Politecnico di Torino faced some new research topics about new instruments for point cloud generation (e.g. Time of Flight cameras) and strong integration between multi-image matching techniques and 3D Point Cloud information in order to solve the ambiguities of the already known matching algorithms. ToF cameras can be a good low cost alternative to LiDAR instruments for the generation of precise and accurate point clouds: up to now the application range is still limited but in a near future they will be able to satisfy the most part of the Cultural Heritage metric survey requirements. On the other hand multi-image matching techniques with a correct and deep integration of the point cloud information can give the correct solution for an "intelligent" survey of the geometric object break-lines, which are the correct starting point for a complete survey. These two research topics are strictly connected to a modern Cultural Heritage 3D survey approach. In this paper after a short analysis of the achieved results, an alternative possible scenario for the development of the metric survey approach inside the wider topic of Cultural Heritage Documentation is reporte
    • …
    corecore