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Abstract

The automotive industry is currently undergoing an unprecedented revoluti-
on, and the advanced driver assistance and automated driving technologies
are the most influencing factors that are pushing this transformation forward.
Automated driving system consists mainly of three steps: environmental per-
ception, route planning, and driving action. As the first stage of the whole
system, the perception step that extracts relevant information from the driving
environment, plays an essential role for the subsequent stages and the whole
system performance. With a good perception, the vehicle is able to accomplish
functions like Adaptive Cruise Control, Automatic Emergency Braking, Lane
Change Assist, etc. For the lane-related functions, the video camera sensors
are mainly employed in most of the production vehicles nowadays. However,
such sensor works reliably only under optimal lighting conditions. When the
vehicle encounters a scenario with a sudden change of the lighting strength, a
low illuminated environment, or limited visibility, such video sensors may be
blinded. To complement the shortcomings of the video camera sensors, this
dissertation tries to find out the feasibility of lane detection with automotive
radar sensor–a sensor that is not influenced by any lighting conditions and is
already massively equipped in production vehicles. To detect the lanes, the
road marking painted with color is an important component for video camera
sensors. However, such road markings are not able to provide sufficient reflec-
tion power to the radar sensors, indicating that an appropriate modification of
such road marking is necessary in order to be able to detect them with radar
sensors. To accomplish this task, this dissertation aims to analyze the scatte-
ring properties of various radar reflectors, both with simulation and on–road
measurements, and to propose the most suitable reflector type that can be
integrated into the road marking or the road. As machine learning enables the
vehicle to understand the environment with image–like data collected by video
camera sensors, this dissertation proves the capability and potential of such
methods for radar data, especially for radar–based lane determination.
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Zusammenfassung

Die Automobilindustrie erlebt gerade einen beispiellosen Wandel, und die
Fahrerassistenz und das automatisierte Fahren spielen dabei eine entscheiden-
de Rolle. Automatisiertes Fahren System umfasst hauptsächlich drei Schrit-
te: Wahrnehmung und Modellierung der Umgebung, Fahrtrichtungsplanung,
und Fahrzeugsteuerung. Mit einer guten Wahrnehmung und Modellierung
der Umgebung kann ein Fahrzeug Funktionen wie intelligenter Tempomat,
Notbremsassistent, Spurwechselassistent, usw. erfolgreich durchführen. Für
Fahrfunktionen, die die Fahrpuren erkennen müssen, werden gegenwärtig aus-
nahmslos Kamerasensoren eingesetzt. Bei wechselnden Lichtverhältnissen,
unzureichender Beleuchtung oder bei Sichtbehinderungen z.B. durch Nebel
können Videokameras aber empfindlich gestört werden. Um diese Nachteile
auszugleichen, wird in dieser Doktorarbeit eine „Radar–taugliche“ Fahrbahn-
makierungerkennung entwickelt, mit der das Fahrzeug die Fahrspuren bei
allen Lichtverhältnissen erkennen kann. Dazu können bereits im Fahrzeug ver-
baute Radare eingesetzt werden. Die heutigen Fahrbahnmarkierungen können
mit Kamerasensoren sehr gut erfasst werden. Wegen unzureichender Rück-
streueigenschaften der existierenden Fahrbahnmarkierungen für Radarwellen
werden diese vom Radar nicht erkannt. Um dies zu bewerkstelligen, werden in
dieser Arbeit die Rückstreueigenschaften von verschiedenen Reflektortypen,
sowohl durch Simulationen als auch mit praktischen Messungen, untersucht
und ein Reflektortyp vorgeschlagen, der zur Verarbeitung in heutige Fahr-
bahnmakierungen oder sogar für direkten Verbau in der Fahrbahn geeignet ist.
Ein weiterer Schwerpunkt dieser Doktorarbeit ist der Einsatz von Künstliche
Intelligenz (KI), um die Fahrspuren auch mit Radar zu detektieren und zu
klassifizieren. Die aufgenommenen Radardaten werden mittels semantischer
Segmentierung analysiert und Fahrspurverläufe sowie Freiflächenerkennung
detektiert. Gleichzeitig wird das Potential von KI–tauglichen Umgebungver-
stehen mit bildgebenden Radardaten aufgezeigt.
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1 Introduction

1.1 Motivation

Autonomous vehicles and the vehicles equipped with driver assistance systems
are significantly shaping the automotive industry, the transportation system,
and our daily life. An autonomous driving system is mainly comprised of
three parts: environmental perception, planning and decision-making, vehicle
control and action. Thus the environmental perception is a prerequisite for
the following two parts. Within this part, the lane detection function, which
provides the vehicle the drivable path information, is especially important.
This is currently only implemented with camera sensors mounted behind the
vehicle’s windscreen by analyzing the pixel information of the collected image
data. However, a lane detection system solely implemented with camera sen-
sors is rather unreliable, for example, when the vehicle encounters adverse
environmental conditions like oncoming traffic with dazzling head light, or in
dense fog, or when the sun is low in the sky, or when the illumination strength
changes suddenly at the entrance or exit of a tunnel, etc. In order to improve the
robustness of the system, other redundant sensor technologies shall be added
to complement such shortcomings of the camera sensors.

The automotive radar sensors, which are currently massively equipped in ve-
hicles and are capable of detecting objects like poles and guard rails at the
road side, can be such a solution. However, for a road with multiple lanes,
it is not possible to detect the current road markings between the lanes with
radar sensors since they are not color sensitive. So in order to make the la-
nes also detectable by radar sensors, the structure and material of the current
road markings shall be appropriately adapted. Corresponding clustering and
classification algorithms also need to be developed.
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1 Introduction

1.2 State of the Art Technology

By detecting the road markings painted in contrasting colors, camera sensors
mounted behind the windscreens of the vehicles are widely employed for lane
detection [SAC05], [dPJ13]. Functions like Lane Change Assist (LCA), Lane
Departure Warning (LDW), and Lane Keeping System (LKS), etc. can be
realized with such video sensors.

A few researches focus also on lane detection with Light Detection and Ran-
ging (LiDAR) device. Ref. [ITS+09] uses high reflective lane markings for
detection with LiDAR and proves that such high reflective lane markings can
be successfully detected by LiDAR. Furthermore, [OT06] states that the detec-
tion range of the road marking with LiDAR is up to about 20 m. These research
papers also provide corresponding clustering and curve fitting algorithms. The
short, micrometer–scale wavelength of the laser (normally 905 nm or 1550 nm
for automotive LiDAR) enables it to detect the objects very precisely, which
however oppositely restricts its detection robustness when encountering airbor-
ne particles (like the atmospheric particles, dust, fly ash etc.) whose diameters
are larger than its wavelength. Table 1.1 lists and compares the wavelength of
the automotive LiDAR, the 77 GHz Radar and the sizes of normal encountered
particles. Table 1.2 summarizes the performance of various sensor types under
adverse environmental conditions. Concluding from these comparisons, the
radar is found to be a good complement and “orthogonal“ sensor type to cope
with adverse environmental conditions. Additionally, the price of LiDAR is
still more expensive than a radar. So it can be concluded that it is advantage-
ous if the lane detection function can also be realized with automotive radar
sensors.

Table 1.1: Compare wavelength of automotive LiDAR and 77GHz automotive Radar with particle
sizes.

LiDAR Radar Mist Atmospheric dust
λ / particle size (µm) ~1–10 ~3900 70–350 0.001–40

Auto emission Cement dust Fog
λ / particle size (µm) 1–150 3–100 10–15

2



1.2 State of the Art Technology

Table 1.2: Performance comparison between various sensor types under adverse environmental
conditions [NU17].

Environmental condition Camera LiDAR Radar
Rain - - 0
Fog or haze - - - 0
Sunset or sunrise - - - +
Sudden illumination change - - + + + +
Night 0 + +

With the state–of–the–art automotive radar sensors on the market, driver as-
sistance functions like Adaptive Cruise Control (ACC), Forward Collision
Warning (FCW), and Autonomous Emergency Breaking (AEB) can be rea-
lized. With the recently achieved resolution improvement, objects like pe-
destrians and cyclists can also be detected and recognized with radar sen-
sors by analyzing their specific Range–Doppler characteristics. Relevant rese-
arch [GLM+01] proposes the combination of various sensor types for coopera-
tive collision avoidance, where macroscopic corner reflectors with a dimension
between 10 cm and 20 cm are arranged in distinctive patterns to identify various
obstacles using radar sensor. These corners are placed with certain intervals,
or in other words, the distances between them are “coded“ to make the identi-
fication of various obstacles possible. Similar ideas are also in [VHJW] where
the distance coding is exploited to help the Global Navigation Satellite System
(GNSS) for the precise location of the vehicle. However, because of their rela-
tive large size, it is not possible to place such radar corner reflectors as part of
the radar road markings on the road.

Besides the above mentioned sensor types, some further novel ideas for ve-
hicle guidance, even without road markings are proposed. For example, the
ones in [TMBP09], [KP17] realize that task with a high resolution map or
navigation system. However, since such a system requires real–time and robust
connection between vehicles and satellites or base transceiver stations under
all circumstances, its reliability is lower than an “on–board“ device like a radar.
Totally different, patents [MWS16], [Bog12] try to integrate Radio-Frequency
Identification (RFID) tags into the roads or road markings to deliver the road
information to the vehicles. No practical test is however implemented to ve-
rify this idea and no information about the sensing range of such RFID tags

3



1 Introduction

is specified. Patent [oT14] utilizes a Ground Penetrating Radar (GPR) whose
wavelength is much larger that of a 77GHz automotive radar to extract the
structural features in the soil and compares that with pre-stored feature maps
to determine the precise location of the vehicles. This idea is based on the
assumption that the structural feature underground of every location is unique,
like the fingerprints of a human. Ref. [CT03], [HK03] insert magnetic markers
into the road after drilling holes in it. By analyzing the magnetic field distri-
bution characteristics, the vehicle location can be determined. All these ideas
are very interesting but they have a common disadvantage when compared
with the massively equipped automotive radar sensors: new sensors need to be
installed into the vehicles.

Deep Learning (DL) with Neural Networks (NN) is nowadays widely used
for object–and pixel–level classification or semantic segmentation with optical
sensors like video cameras or LiDAR sensors. Object–level NNs include con-
ventional Convolutional Neural Networks (CNNs) and other variants based on
it, like Region–based CNN (R–CNN) [GDDM14], Fast R–CNN [Gir15], Fas-
ter–RCNN [RHG17], and You Look Only Once (YOLO) [RDGF16], [JA17],
etc. Pixel–level semantic segmentation NNs include CNN–based fully con-
volutional networks (FCN) [SLD16] and SegNet [BKC17], etc. Limited by
its resolution, environmental perception, especially lane detection with au-
tomotive radar sensors using DL is still lacking research interest and focus.
Ref. [CSSW17] implements semantic segmentation with NNs for lane seg-
mentation based on the data of LiDAR sensors.

1.3 Goal and Methodology

Since color information can not be recognized by radar sensors, in order to
differentiate adjacent lanes with radar sensors, the currently employed road
markings shall be adapted both from the aspect of structure and material. For
radar sensors, one very important object characteristic parameter to describe
the detection performance is the so–called Radar Cross Section (RCS). The
higher the RCS is, the easier the object can be detected. So objects, which are
suitable to be integrated between adjacent lanes or into the roadmarkings, shall
be analyzed w.r.t. their RCS values. Besides providing enough RCS in wide
azimuth angle range, the shapes of these objects shall also be optimized: their
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1.4 Summary of the Goals of this Thesis

height shall not be too large in order not to impede the driving comfort and
the safety of the vehicles running over them during their lane change actions.
So in this dissertation, the RCS of various types of reflectors is evaluated and
compared over a wide angular and range geometry both by simulations and
on–road tests. The simulation results are evaluated with respect to the view
angle from the vehicle to the reflector and a best appropriate radar reflector
suitable for the new type of radar road markings is proposed. For the on–road
tests, clustering and classification algorithms are introduced, too. Furthermo-
re, with the radar–detectable road markings, the determination of the lateral
position of the vehicle with the help of Range–Doppler characteristics is also
presented.

With a high–resolution prototype radar developed in the advanced department
of the Robert Bosch GmbH, environmental perception, especially lane detec-
tion using DL or NNs are presented in this dissertation. Ref. [LLMHW17]
utilizes FCN for parking space semantic segmentation with integrated radar
detection points. In this dissertation instead, single–shot radar detection points
are used for lane detection with the help of guard rails at the road side and
the new type of radar road markings. The NNs are accordingly adjusted and
tweaked for radar data as input and the output results are compared, analyzed
and discussed.

1.4 Summary of the Goals of this Thesis

In order to increase the robustness of the lane detection function, automotive
radar sensors can be used to complement the shortcomings of the video camera
sensors. If the lane can be detected by several distinct sensor types, sensor data
fusion can then be applied to increase the robustness and performance of the
overall system. The main goals of this dissertation are:

• to find out and to verify the feasibility of lane and roadmarking detection
with automotive radar sensors by appropriately adjusting the current road
markings, i.e. to elaborate an optimal structure of the radar road marking
with low height but enough RCS in a wide azimuth angle range, while
using a simple fabrication process to keep the deployment cost still
moderate;
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• to prove and to validate the RCS of various promising reflector typeswith
both simulation and practical on-road tests, to simulate and to measure
how the size of its structure influences the RCS values. To propose a new
type of radar road marking based on the above verified optimal structure;

• to develop the corresponding clustering algorithms, with the focus on
DL algorithms for lane classification and semantic segmentation based
on the single–shot radar reflection points of the radar road markings and
the guard rails on the highway.
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2 FMCW Radar

FMCW radar is used in this thesis for detecting objects. So this chapter sum-
marizes briefly the working principle of the FMCW radar, including its signal
processing procedure. In principle, this chapter is not novel but serves only for
understanding how a FMCW radar works.

2.1 Concept of FMCW Radar

FMCW is the abbreviation for Frequency Modulated Continuous Wave and
is a modulation approach of the radar signal where the information is carried
in its frequency. Figure 2.1 (a) shows briefly the hardware architecture of
a FMCW radar. Tx and Rx are abbreviations for transmitter and receiver
separately and fT is the frequency of the transmitted signal. As digital signal
processors can not handle continuous signals, they need to be sampled with
ADCs (Analog–to–Digital Converters) for further processing. Figure 2.1 (b)
shows a corresponding front-end board developed in the advanced development
department of the Robert Bosch GmbH in Leonberg. Figure 2.2 presents the
corresponding signal model scheme–a sawtooth FMCW modulation that will
be discussed in details in the following sections where f denotes the frequency
of the signal, B the bandwidth, f0 the middle of the bandwidth, T the period
of a ramp signal, and TRMP the time duration of a single ramp signal. In this
figure, the ramp in blue color denotes the transmitted signal and the ramp in
black is the corresponding received signal at the receiver side reflected by a
certain target. After every cycle the signal is transmitted, a break is needed
before another cycle to transmit the signal starts and ∆ f is the signal frequency
difference between transmitted and received signals that can be obtained from
the signal after the mixer and filter.
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2 FMCW Radar

Figure 2.1: (a) Architecture of a FMCW radar hardware prototype. (b) A FMCW radar front-end
board.

2.2 Raw Data Processing

This section is arranged according to the processing sequence of the radar
signal: the first step is to determine the range of the targets; then the velocity
is evaluated followed by the CFAR (Constant False Alarm Rate) algorithm to
get the individual radar reflection points; at last the angle estimation algorithm
is conducted.
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2.2 Raw Data Processing

Figure 2.2: An example of a sawtooth FMCW modulation scheme.

2.2.1 Range of the Target

Like shown in Figure 2.2, the signal is transmitted from Tx, scattered back by
a target and then received by the Rx and the range of the target is proportional
to the time delay ∆t of the transmitted and received signals. FMCW maps
∆t into the frequency domain: the ramp signal with linear increment makes
the signal frequency difference between transmitted and received signals ∆ f
proportional to ∆t. Assume the target is located at a range of r , then r can be
represented by:

r = c0∆t/2 (2.1)

with c0 denoting the propagation velocity of the electromagnetic wave in the air.
This equation assumes that the target is located at a range that is much larger
than the distance between Tx and Rx so that the propagation path lengths
between Tx, Rx and the radar are both equal to r . From Figure 2.2, it can be
seen that ∆t can be represented by ∆ f according to:
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2 FMCW Radar

∆t =
TRMP∆ f

B
. (2.2)

Combine both equations (2.1) and (2.2), the relation between r and ∆ f can be
expressed as follows:

r =
TRMP∆ f c0

2B
. (2.3)

So by knowing ∆ f , the range of the target can be very easily calculated
according to equation (2.3). A critical component to get ∆ f is the mixer which
multiplies the signal from the receiver with the signal from the transmitter.
Assume the received signal sr(t) at time t with f (t) is (assume unit amplitude
and zero initial phase for simplicity):

sr(t) = cos( f (t)t), (2.4)

and the signal of the transmitter st(t) at time t is:

st(t) = cos( f (t + ∆t)t). (2.5)

Then after the mixer, the signal with the frequency ∆ f = fIF = f (t +∆t)− f (t)
can be derived after filtering out other signal partswithmuch higher frequencies
according to:

sr(t) × st(t) = cos(( f (t + ∆t) + f (t))t) + cos(( f (t + ∆t) − f (t))t). (2.6)

In short, the range information of the target is contained in the frequency of
the output signal of the mixer. However, in order to be able to process this
analog signal in a digital processor or computer, it needs to be converted into
the digital signal. So the following section will introduce this part briefly.

If an analog signal of frequency fa is sampled with a sampling frequency fs, a
corresponding digital frequency (normalized frequency) fd can be represented
by:

fd =
fa
fs
. (2.7)
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In DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform) –a faster
and more efficient algorithm to calculate the DFT, if NFFT points are sampled,
then the digital frequency fd can be expressed by:

fd(k) =
k

NFFT
, (2.8)

where k is the FFT bin index from 0 to NFFT − 1. So combine equations (2.3),
(2.7), and (2.8) with fa = ∆ f , the range r calculated from the FFT is:

r(k) =
TRMPk fsc0
2BNFFT_R

(k = 0,1, ...,NFFT_R − 1). (2.9)

This is a discrete value, and errors from FFT (i.e. spectrum leakage) can be
introduced into these results. The distance rbin between two range bins then is:

rbin =
TRMP fsc0
2BNFFT_R

. (2.10)

When the condition fsTRMP = NFFT_R is fulfilled (which is the typical case as
long as the sampling process goes through the whole ramp signal duration),
equation (2.9) can then be simplified to r(k) = kc0

2B . Under this condition, it is
obvious that the range bin is no longer related to the sampling frequency any
more, but is only inverse proportional to the bandwidth of the signal.

Range Resolution

Resolution describes the ability to distinguish two adjacent objects and equals
normally to the width between the two half–power points of the main lobe of
the signal spectrum. With various windowing functions, such resolution may
change significantly. For example, Table 2.1 presents three such examples with
various windowing functions. Normally, with a smaller (better) resolution, the
side lobes become oppositely larger, indicating a trade–off between these two
parameters. In order to improve the detection resolution with a defined win-
dowing function, a higher bandwidth is required according to equation (2.10).
Notice that with zero padding, the rbin can be smaller, however, the resolution
remains unchanged.
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Table 2.1: Range resolution of the radar with various windowing functions (no zero padding).

Window function First side lobe (dB) Width of main lobe (m) Resolution r res(m)
No window (rectangle) -13 2rbin 0.89rbin
Hann -32 4rbin 1.44rbin
Hamming -43 4rbin 1.30rbin

Figure 2.3 (a) shows one range detection example with several reflectors (which
will be introduced in details in chapters 3 and 4) placed in front of the radar. The
windowing function employed here is a Chebyshev window with 111 dB side
lobe attenuation. Unlike the windowing functions in Table 2.1, the resolution
of the Chebyshev window can manually be changed by varying its side lobe
attenuation. All the related parameters of this example are summarized in
Table 2.2.

Figure 2.3: Signal processing of the FMCW radar. (a) Range from 1D FFT. (b) Range-Doppler
from 2D FFT.

Table 2.2: Range detection parameters in Figure 2.3 (a).

B (GHz) rbin (m) r res (m) NFFT_R f s (MHz)
2.46 0.035with 2 times zero pad-

ding
0.14 (about 2rbin without
zero padding)

2048 62.5
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Maximum Detection Range

According to the Nyquist Theorem, the sampling frequency fs shall be at least
half of the signal frequency fa, together with equation (2.3), the maximum
detection range rmax can then be expressed by:

rmax =
TRMP fsc0

4B
. (2.11)

If a target is located at a range larger than rmax, then its calculated range r
from the FFT is not correct and folded back. In order to increase the rmax, a
higher sampling frequency fs is required according to equation (2.11). Insert
the parameters in Table 2.2 into this equation with fsTRMP = NFFT_R, the
resulting rmax is 62.4 m.

2.2.2 Velocity of the Target

In the previous section to calculate the range of the target, a single Tx, Rx,
and one signal ramp are required. To estimate the velocity of the object after
estimating r by employing the first FFT–the 1D range FFT, multiple signal
ramps are required through the second FFT processing–the 2DFFT. Remember
in Figure 2.2 that the period of the ramp signal is T . Figure 2.4 (a) illustrates in
principle how the velocity is determined. A blue brick in solid blue rectangle
in Figure 2.4 (a) moves with various velocities directly to a static vehicle
equipped with a radar at its front and the dashed blue rectangles show the
positions of the brick after every time duration T . Because of this movement
of the brick, the phase of the received signal at the receiver side of the radar
also changes correspondingly. In the examples, when the object stays static,
after every time interval T , the received phase of the signal stays unchanged
and a signal with such a constant phase has a frequency fv of 0 Hz. When
the object moves λ/16 (λ is the wavelength of the signal) meters closer to the
radar after every time slice T instead, the received phase changes 45° (λ/16
corresponds to 22.5°, it needs to be multiplied by a factor of 2 in consideration
of the two way propagation: for- and backwards to the object from the radar),
resulting in a fv of 1

8T . Similarly, when the brick moves two times faster, the
fv becomes also two times higher: 1

4T . These examples illustrate in principle
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how a FMCW radar works for velocity determination and it can be concluded
from the illustration that the velocity information is also contained in the signal
frequency. So similar to the range determination, the FFT algorithm can also
be used for the velocity determination.

Figure 2.4: (a) Principle of velocity determination with FMCW radar. (b) Movement velocity of
the object and its measured radial velocity.

Equation 2.12 describes the relation between the object velocity v and the
corresponding signal frequency fv:

fv =
2v
λ
. (2.12)

The explanation to calculate the velocity above also shows that the measured
velocity v depends on the distance between the object and the radar, indicating
that the v is a relative velocity of the object to the radar and if an object moves
not directly to the radar, only the projection of the moved distance on the radar
direction can be taken into account. In other words, the v of the object is the
radial projection component of its real movement velocity on the direction to
the radar (i.e. radial velocity). Figure 2.4 (b) illustrates such an example with
a movement velocity vobj and its detected velocity v–the projection of vobj.
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Similar to equation (2.10), the FFT bin of velocity v is:

vbin =
c0

2T f0NFFT_V
, (2.13)

with fs = 1/T , fa = fv, and NFFT_V the number of the signal ramps. The
calculation of the resolution vres and the maximum detection velocity vmax in
equation (2.14) is similar to that in section 2.2.1 and is not repeated here.

|vmax | =
c0

4T f0
(2.14)

Figure 2.3 (b) presents such an examplewith the vehiclemoving towards several
static radar reflectors and the color in the plot indicates the FFT magnitudes.
Since such result contains both range and velocity of the objects, it is also called
the Range–Velocity or Range–Doppler plot. Its corresponding parameters can
be seen in Table 2.3.

Table 2.3: Velocity detection parameters in Figure 2.3 (b).

NFFT_V f 0
(GHz)

T
(µs)

vbin (m/s) vres (m/s) vmax
(m/s)

2048 77 48 0.02 without
zero padding

About 0.045 (2.25vbin with aChebyshevwin-
dow of 141.5 side lobe attenuation)

20.3

2.2.3 CFAR Processing

After calculating the range and velocity spectra with FFT processing, the
relevant reflection peaks need to be extracted. These peaks stem not only from
the target reflections, but may also come from the noise. To distinguish them, a
threshold level needs to be defined and the reflection values above this threshold
are thought to be the reflections of the targets. If a constant threshold level is
defined, the noise above the threshold may be wrongly detected as targets when
the threshold is set too low and the real targets may not be correctly detected
if the threshold is set too high. Notice that the reflection power decreases
(free space loss) and the filters like low pass filter in the radar can also lead
to reflection magnitude variation with respect to r , indicating that a constant
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threshold over the whole spectrum is not optimal. To cope with this challenge,
a CFAR algorithm can be employed.

False alarm describes the false detection of a target that does not exist in reality
and the CFAR algorithm can keep the corresponding false alarm rate constant
by adjusting the threshold level accordingly–a non–constant adaptive threshold
level. CFAR divides the cells (imagine them as the power of the reflections
in the FFT bins) into three parts: the cell under test (CUT), the guard cells
leading and lagging the CUT, and the remaining training cells. Figure 2.5
(a) illustrates such an example where the noise power Pnoise of the CUT is
calculated based on the training cells and the corresponding threshold power
PTH is proportional to this noise level by a scaling factor η which depends on
the required false alarm rate:

PTH = ηPnoise. (2.15)

Various methods to calculate the noise power Pnoise of the CUT lead to various
CFAR algorithms: if the average power of the cells at the left and right side
of the CUT is separately calculated and the larger one is chosen as Pnoise, then
it is CAGO–CFAR (Cell Averaging Greatest Of–CFAR); if the smaller one is
chosen as Pnoise, then it is CASO–CFAR (Cell Averaging Smallest Of–CFAR);
if Pnoise equals to the average value of the power over all the training cells, then
it is a CA–CFAR (Cell Averaging–CFAR); if all the training cells are firstly
sorted in ascending power sequence and only the k th rank element is selected
as the Pnoise, it is called OS–CFAR (Ordered Statistic–CFAR).

Figure 2.5 (b) presents an example of CFAR thresholding of the data in Fi-
gure 2.3 with its magnitude replaced by its power (through squaring). Pnoise
and PTH of both CA–CFAR and OS–CFAR are plotted with 10 guard cells
and 100 training cells. The false alarm rate for CA–CFAR is set to be 0.1 and
the rank k of OS–CFAR is set to be 50. By comparing the results, it can be
found that there are always two high plateaus at the two sides of the signal
with CA–CFAR, whereas with OS–CFAR, this does not exist and its threshold
level also fluctuates much less. So CA–CFAR is very sensitive when multiple
targets simultaneously exist, especially when they are very close to each other.
For example, the right plateau of the object at 6 m almost covers the object at
the range of about 8 m in Figure 2.5 (b). From the perspective of this point,
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Figure 2.5: (a) CFAR: various operations employed to the training cells to estimate the noise level
of the CUT (Cell Under Test). Guard cells are needed to avoid the influence of the signal
on the estimation of the noise level. (b) Range from 1D FFT and the corresponding
noise and threshold level from CA- and OS-CFAR. (c) Range-Doppler from 2D FFT
and the corresponding threshold level (black layer) estimated from OS-CFAR.

OS–CFAR is preferred to CA–CFAR. Figure 2.5 (c) presents also the threshold
of the Range–Doppler results with OS–CFAR.

After calculating the threshold with CFAR, the points with their power larger
than this threshold are extracted to be the reflection points collected by the
radar. The last information of these points–the angular information will be
calculated in the following section.
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2.2.4 Direction of Arrival (DOA): Maximum Likelihood
Estimation

To calculate the range of a target, single Tx, Rx and one signal ramp are
required. To determine the velocity of a target, single Tx, Rx, and multiple
signal ramps are necessary. And to get the angle of a target in this section,
a single Tx and multiple Rx are needed while additional Tx can be added to
increase the angle detection resolution by utilizing the MIMO (Multiple-Input
and Multiple-Output) concept.

Similar to the previous sections where the range and velocity of the targets can
be calculated through the signal frequency, their angles can also be determined
in a similar way. Refer to Figure 2.6 (a) where a target is located at an angle
β of the Rx array which contains multiple horizontally equidistant arranged
receiver antennas with a spacing of darray, the phase difference ∆ψ between the
signals received by these Rx is:

∆ψ =
2πc0darray sin β

f0
, (2.16)

and this phase difference corresponds to a sampling frequency fs:

fs =
2π f0
∆ψ

. (2.17)

Combine equations (2.7), (2.8), (2.16), and (2.17), the angle β after FFT
processing equals to:

β(k) = arcsin(
k f0

darrayc0NFFT_A
), (k = 0,1, ...,NFFT_A − 1) (2.18)

where NFFT_A is the number of Rx channels. If darray = λ/2, equation (2.18)
deduces to:

β(k) = arcsin(
2k

NFFT_A
). (2.19)

λ/2 is the maximum allowed darray between the Rx antennas since under this
condition, the sampling frequency fs is exactly two times the signal frequency
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f0 when β = 90°. A larger darray violates the Nyquist Theorem and a smaller
darray makes the angle resolution worse.

Figure 2.6: (a) Angle determination of the object from the phase difference across multiple re-
ceivers. (b) Radar sensor calibration. (c) Ambiguity matrix of a prototype automotive
radar used in this dissertation.

However, the above description is only correct when ∆ψ comes from the length
difference of the signal propagation path in the free air and when the r of the
object is much larger than darray (i.e. far field). In practice, this condition
is not always fulfilled, both when the object is very close to the radar (i.e.
near field) or when additional phase difference is introduced by the trace
length difference of the radar signals and sampling clock signals in the radar
board, etc [FKMW16]. One simple way to handle this is to cover all these
phase differences by practical calibration and compare the phase difference of
unknown βwith the ones measured during the calibration. In this way, the most
similar phase difference to the measured one indicates the angle of arrival of
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the object. Figure 2.6 (b) illustrates such a calibration process: a target like a
corner reflector moves around the radar, and the phase differences between all
the Rx channels when the target is located at each β are recorded. Equivalently,
instead of moving the target, the radar can be rotated along its origin point
while keeping the object stationary. Assume the signal phase corresponding to
the ith Rx channel is ψi , then the signal phases of all the Rx channels when the
object is at β can be expressed by (we ignore amplitude for simplicity):

Scal(β) = [e−jψ1e−jψ2 ...e−jψNFFT_A ]. (2.20)

Assume the signal phases of the Rx during tests are similarly expressed by
Stest, then the angle β which makes |StestS∗cal(β)| the maximum value among
all calibrated β is the angle of the target, where S∗cal is the conjugate number
of Scal. An ambiguity matrix comprised of |Scal(β1)S∗cal(β2)| can be used to
describe similarity of the phase differences across all Rx channels when the
target is located at various β. The larger this value is when β1 = β2 and the
smaller this value is when β1 , β2, the better the radar is to determine the
angle of the target. Figure 2.6 (c) plots such a matrix of the prototype radar
used in this dissertation.

If the antenna array of Rx is also geometrically arranged in the vertical direc-
tion, then an elevation angle of the target can also be determined [SWM+18]
in addition to the azimuth angle.
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2.3 Summary

Figure 2.7: Signal processing of a FMCW radar to get the range r , velocity v, and angle β of the
object.

This chapter presents briefly the signal processing procedure of a FMCW radar
with fast chirp-sequence modulation. In summary, the range r , velocity v, and
angle β can be determined by the 3D FFT like the one shown in Figure 2.7: the
1st FFT determines r , the 2nd FFT calculates the v, and the 3rd FFT evaluates
the azimuth angle β. Because of the additional phase shifts, the last FFT to
calculate the angle values is usually replaced by other algorithms e.g. the
maximum likelihood estimation algorithm. The CFAR algorithm is employed
to calculate an adaptive threshold level from the FFT spectrum to extract the
reflection points.This chapter is not novel but serves only for understanding
how a FMCW radar works.
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3 Radar Cross Section and Radar
Reflectors

A very basic and generic indicator to describe how easily an object can be
detected by a radar is the Radar Cross Section (RCS). An object with a larger
RCS is more likely to be detected by the radar than that with a smaller RCS.
In this chapter, the basic concept of RCS will be introduced firstly. Then,
the minimum required RCS of an object that needs to be detected by the
radar is evaluated. After that, RCS values of several typical reflectors will be
presented. RCS simulation results of the proposed reflector variants that can be
used as radar–detectable road markings / markers will be given. Afterwards,
the influence of the mounting position of the radar and the road curvature
on the detection performance will be analyzed. At last, with such reflectors
integrated on the road, a method to determine the movement status of a vehicle
based on the Range–Doppler results will be discussed.

3.1 Radar Cross Section

3.1.1 Definition

Radar cross section, normally represented by σ, describes the scattering cha-
racteristic of an object. On the one hand, this value depends not only on the
material, the physical shape and size of an object, but also on the incident
and reflected angle, the polarization and wavelength of the signal, etc. On
the other hand, RCS is the property of an object that does not depend on the
distance between the radar and the object. Normally, this value in not equal
to the physical cross section (i.e. the projected area orthogonal to the incident
wavefront) of the object. If the transmitter and receiver antennas are located
at the same position, it is also called the monostatic RCS, otherwise it is the
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bistatic RCS. For an automotive radar to detect the road markings, the antennas
are very close to each other compared to the distance between the radar and
the reflectors, so if not otherwise specified, the RCS in this dissertation always
refers to the monostatic RCS.

The definition of σ can be seen in equation (3.1) where | ®E s | is the electric field
scattered back from the object, and | ®E i | is the incident electric field hitting the
object. Both fields have two polarization directions: horizontal and vertical,
leading to a [®σ] including four combinations like in equation (3.2) [WR87]
whereσvh indicates a horizontal reflected and vertical incident polarized signal.
As the radar used in this dissertation employs vertical–vertical polarization,σvv
is simply represented by σ in the following sections if not otherwise specified.

σ = lim
r→∞

4πr2 | ®E
s |2

| ®E i |2
(3.1)

[
®σ
]
=

[
σhh σhv

σvh σvv

]
(3.2)

3.1.2 Minimum Required Radar Cross Section

To evaluate the minimum required radar cross section σmin, a reference corner
reflector (corner S, length of the edge is 0.10 m, maximum σ in boresight
direction is about 14.4 dBsm) standing in front of a FMCW radar operating in
the bandwidth from 77 GHz to 81 GHz [MSK15], [MSK17] is used. During
the measurements, the radar is mounted at a height h of 0.15 m in the front of
a test vehicle. The standing corner S that points directly to the direction of the
radar and the driving direction of the test vehicle has a 0.35 m height above
the ground. Three distinct tests are carried out with the vehicle driving directly
towards corner S (azimuth angle β = 0°). Together with the reflection from the
ground and the system noise level, the reflection magnitudes of corner S during
the movement of the test vehicle to the reflector are recorded and plotted in
Figure 3.1.

Because of the multi–path reflection effect, the signal reflected from the corner
S can both be constructive or destructive superimposed, resulting in a ma-
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Figure 3.1: Estimation of σmin with respect to longitudinal distance y (x = 0 m). (a) Reflection
magnitudes of a reference corner S in three separate tests and the corresponding
magnitude of ground clutter and noise. (b) To estimate the reflection magnitude of
the standing reference corner S from its fluctuant magnitudes caused by multi-path
propagation effect, three curves are plotted: curve fit 1 fits the peaks of the magnitudes,
curve fit 2 fits the troughs of the magnitudes, and curve fit 3 plots the mean value of
curve fit 1 and 2 to represent the reflection magnitude of corner S without multi-path
propagation. (c) Estimated σmin with respect to y.

gnitude fluctuation shown in Figure 3.1 (a). In order to estimate the reflection
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magnitude without the multi-path effect, two curves are created to fit their
peaks and troughs, like curve fit 1 and 2 in Figure 3.1 (b). Then, the average
value of these two curves–the curve fit 3 is calculated as the reflection magnitu-
de Mr of the corner S without multi–path reflection. Curves 1 and 2 are fitted
according to equation (3.3) and for curve 1 and curve 2: q1 = 1.62, q2 = 14.8,
and q1 = 4.18, q2 = 21.06 respectively.

Reflection magnitude M = 20 log10 (1/yq1 ) + q2. (3.3)

Assume the magnitude of ground clutter is Mg and the noise level is Mn (in dB
scale), then the σmin with respect to y can be calculated by:

σmin(y,SNR) = σcorner S(y) − (Mr −max(Mg,Mn + SNR)) +Comp_V, (3.4)

where SNR stands for signal to noise ratio, andComp_V is used to compensate
the antenna gain difference between the standing reference corner S and the
object located at the same position but is placed directly on the ground surface
(like radar road marker or markings) because of their various elevation angle
α. The corresponding relative antenna gain difference in elevation direction is
shown in Figure 3.2 (b) and the calculated σmin is plotted in Figure 3.1 (c).
This plot indicates that if one object laid on the ground needs to be detected by
this radar at a distance of 30 m, it shall have at least a RCS of about -15 dBsm.

With the antenna gain difference in the azimuth β direction shown in Figure 3.2
(a), the above calculation can also be extended into 2D space:

σmin(r,SNR) = σmin(y,SNR) + Comp_A(r), (3.5)

where Comp_A is needed to compensate the azimuth antenna gain difference
with respect to β = 0°. The calculation result is plotted in Figure 3.3 and in
this plot, the minimum required RCS σmin at any arbitrary position can easily
be determined. However, this plot depends also on many other parameters,
meaning if e.g. the mounting position of the radar, the antenna gain, the number
of FFT bins during signal processing (processing gain), etc. are changed, the
results in this plot will also change accordingly. In chapter 3.4, the influence
of the mounting position of the radar will be analyzed more in details.

26



3.1 Radar Cross Section

Figure 3.2: Relative antenna gain of a prototype FMCW automotive radar (a) in azimuth direction,
(b) in elevation direction, and (c) in both azimuth and elevation directions.
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Figure 3.3: Estimated σmin with respect to x and y (h = 0.15 m, NFFT_A = NFFT_V = 1024).

3.2 Radar Cross Section Dependencies:
Influences, Effects, and Comparison of
Typical and Relevant Targets

In this chapter, a commercial software CST MICROWAVE STUDIO® is em-
ployed to speed up the RCS analysis procedure. The basic setup of the simula-
tion environment can be seen in Table 3.1 where SBR is the abbreviation for
Shooting-and-Bouncing-Rays.

3.2.1 Spheres

It is possible to add metallic balls to the current road markings to increase their
σ [PKK+15], like the sample shown in Figure 3.4. For a single metallic ball,
by changing its radius R, its scattering can be located in three distinct regions:
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Relevant Targets

Table 3.1: CST MICROWAVE STUDIO ® 2016 simulation environment setup.

Solver Asymptotic solver (SBR Raytubes)
Signal frequency 77 GHz
Angle sweep step 0.1°
Polarization Vertical –Vertical if not otherwise specified
Material Aluminum (electric conductivity: 3.56 × 107 S/m)

Rayleigh region when R is much smaller than the signal wavelength λ; MIE
region when R is comparable to λ; optical region when R is much larger than
λ. In the Rayleigh region, σ/πR2 increases linearly with respect to its radius
R; in the MIE region, this value fluctuates between peaks and troughs and a
maximum σ = 4πr2 appears when its circumference is equal to λ because of
the constructive interference; in the optical region, the σ/πR2 is always equal
to 1 [Ruc70].

To estimate the total RCS of the metallic balls integrated in a road marking
sample with a size of 0.15 m × 2 m shown in Figure 3.4, a straightforward
summation of all the single RCS values can be seen as an initial upper bound
estimation since according to [Ric05], their total backscatter can be incoher-
ently integrated if the balls are randomly distributed and are fully illuminated
by the radar signal. The corresponding results are listed in Table 3.2 where
the balls with resonance radii present a maximum result: −0.3 dBsm. If we
compare this with the σmin plotted in Figure 3.1 (c), it can be inferred that this
road marking can be detected at a range r larger than 30 m. However, during
the practical tests, its maximum detection range is much smaller than that and
the reasons can be analyzed from the following two aspects:

• assume the radar mounting height h = 0 m, then the balls that can in-
tercept the transmitted signal are only the ones that are closest to the
radar, and the other balls standing behind are shielded by them. This
indicates that the total area of the road marking are not appropriate for
calculating the total RCS, instead, a projection area of that on the direc-
tion of the incident beam shall be utilized by multiplying the previous
results with a factor sinα = sin(arctan(h/d))) where d is the ground
range from radar to the road marking (d is much larger than the length of
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3 Radar Cross Section and Radar Reflectors

Figure 3.4: Reflection power of the spheres on a road marking are not located at the identical FFT
bin, therefore their total RCS can be much smaller than the simple summation of their
individual RCS values.

the road marking). With this correction, the maximum detection range
(β = 0°, h = 0.15 m) decreases to about 22 m according to Figure 3.5;

• furthermore, the reflection power of all the balls are not located in a
single FFT bin, but distributed across multiple bins. Refer to Figure 3.4
where five balls specified with various colors are located at different d,
only part of their FFT magnitudes contribute to the total magnitude if
d is not exactly at the discrete FFT bin positions. In this example, only
the black ball contributes its total reflection power, while the other balls
contribute only part of that instead. Additionally, as has been mentioned
in section 2.2.1, this result depends also on the type of the employed
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windowing function since various windowing functions have various
lobe shapes.

Table 3.2: Estimation of the incoherent RCS summation of all the balls integrated in a roadmarking
with a dimension of 0.15 m × 2 m.

R (mm) Region RCS (dBsm) Number of balls Total RCS (dBsm)
0.10

Rayleigh
-98.2 7.5 × 106 -29.4

0.20 -80.2 1.9 × 106 -17.5
0.40 -62.1 9.4 × 105 -2.4
0.62 MIE maximum -53.2 2.0 × 105 -0.3
6.20 Optical -39.2 1950 -6.3

Figure 3.5: The total RCS of the metallic balls on a road marking and its corresponding maximum
detection range at the intersection point with σmin (h = 0.15 m).

However, adding metallic spheres has also advantages. For example, its height
(diameter) is very small (only about 1.24mm in this example); its reflection can
be seen as azimuth angle independent; the fabrication is not so complicated–just
add metallic balls into the road markings.
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3.2.2 Cylinder, Dihedral, and Symmetrical Trihedral

Figure 3.6 (a) sketches the integration of dihedral and cylinder reflectors into the
roadmaking. The sketch shows the case where a maximumRCS of the dihedral
(width of each plate: 6 mm) and cylinder (diameter: 6 mm) is achieved with
the incident direction of the signal perpendicular to them and the polarization
direction of the signal parallel to their geometric height direction (height is
0.15 m). Their corresponding RCS simulation results are plotted in Figure 3.6
(b) where the fluctuation of RCS can be observed when the incident signal
moves away from the perpendicular direction (i.e. rotates in the propagation
direction–electric field plane). For comparison, a conventional regular trihedral
reflector is placed on the road marking with its hypotenuse length equal to
0.15 m.

The simulation results show that the cylinder and the dihedral present large
RCS only when the incident wave is perpendicular to them, otherwise, the
RCS decreases dramatically even with very small incident angle deviation. For
instance, with an incident angle deviation of 10°, the RCS is already more
than 30 dB smaller, indicating that when such reflectors are integrated into the
road markings, a very exact incident signal direction is required. This is not
feasible since the vehicle can be from any direction. It is possible to place such
reflectors with all possible orientations and at any time, any one of them is
perpendicular to the incident direction. However, such solution increases the
fabrication complexity and requires higher fabrication precision, which also
means higher cost.

Since it is not appropriate to place an up–standing trihedral between lanes, in
the following sections, its bottom plate is always placed directly on the ground
surface. In contrast to the dihedral and cylinder, even for a perpendicular
incident angle, a trihedral presents a larger RCS than the other two. More
important, with the variation of the incident angle, its RCS goes down to
about 0 dBsm with an angle deviation of 40° ( 40 dB decrease within 40°
deviation; the simulation goes up until to 45°, since above 45°, no trihedral
exists any longer), which is comparable to the maximum RCS of the dihedral
and the cylinder. However, the profile height of this trihedral is still too large:
normally, in order not to affect the driving comfort and road safety, the height
of a raised rib marking on the road is required to be between 8 mm to 11
mm on motorways and 5 mm to 8 mm on all–purpose roads [MH96]. If a
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Figure 3.6: (a) Bird view: integration of dihedral, cylinder, and trihedral reflectors into road mar-
kings for radar detection. (b) Their corresponding RCS simulation results.

symmetrical trihedral with an edge length of 8 mm is employed, its maximum
RCS is only about -29 dBsm. So a conventional symmetrical trihedral is also
not appropriate to be used as radar road marking/marker. Fortunately, it can
be seen in the following sections that with slight adjustments, a large RCS can
also be achieved with a low–profile compressed trihedral.
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3.2.3 Other Promising Technologies

A Van Atta Reflector contains an array of antennas (can be passive or active)
that are interconnected to reradiate the received signal back in the incident
direction. Ref. [Yau13] shows the simulated and measured RCS of a general
planar Van Atta array with 16 and 64 elements. It can be seen from the results
that for the α around 89°, which is most of the case (h � d), their RCS is
about −15 dBsm to −20 dBsm. It can be seen later in section 3.3 that this RCS
is smaller than that of the proposed reflector whose structure is even simpler.

The Capped Luneburg Lens is a specially fabricated spherical lens with a layer
at its back spot made of radar reflective material. The incident radar beam
will focus exactly on this layer and be reflected back in the parallel opposite
direction of the input direction. However, this kind of reflector is expensive
because of its fabrication complexity.

3.3 In-depth Reflector Analysis for Lane
Detection with Automotive Radar

This section focuses on analyzing the proposed reflector in the last section–the
trihedral reflector with small ingenious modifications to make it appropriate to
be integrated into the road or road markings.

3.3.1 Particularity of Elevation Angle α with an Automotive
Radar for Road Marking Detection

When a radar mounted at a height h is used to detect the road markings on the
road surface with a ground range of d (or range r), h is much smaller than d
or r at most of the time. A plot describing this can be seen in Figure 3.7 where
the maximum mounting height h of the radar is assumed to be 1 m. The result
proves that the focused elevation angle range for radar road marking detection
is located in an elevation angle region that is close to zero degree (angle of
interest) and the RCS property of the object in larger elevation angle regions
can be neglected.

34



3.3 In-depth Reflector Analysis for Lane Detection with Automotive Radar

Figure 3.7: Particularity of road marking detection with automotive radar: small elevation angles
dominate.

3.3.2 Symmetrical and Asymmetrical Trihedral (Type 1)

Figure 3.8 summarizes the important notations that will be frequently used
in the following sections. For the reflector, its azimuth angle β denotes the
azimuth angle from the symmetry axis of the bottomplate of the reflector and its
elevation angle α denotes the elevation angle from its ground plate. The ground
longitudinal distance from the radar to the object is dr, the corresponding lateral
distance is da, and their hypotenuse length–the ground range is d. For the radar
sensor coordinate system, the β and α are the azimuth and elevation angles to
its symmetry axis, respectively.

As been mentioned above, the height of the reflector is strictly constrained.
However, its bottom area can be increased without limitation in this specific
application. With the change of the ratio of the size of the standing plates to the
size of the bottom plate, the angle of the maximum RCS of the trihedral in the
elevation direction (denoted as αLP, exclude the RCS of α at 0° and 90°) is also
expected to change which will be verified in the following simulations. As an
example, Figure 3.8 (b) shows such an asymmetrical trihedral with an enlarged
bottom plate and minimized standing plates where the angle γ denotes whether
its standing plates are perpendicular to its bottom plate, i.e. if γ = 0°, they
are mutually perpendicular. This condition is always fulfilled in the following
description if not otherwise specified.
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Figure 3.8: Width W , height H of the symmetrical trihedral and slant angle γ of the standing
plates and length L of the extended bottom plate of the asymmetrical trihedral, azimuth
angle β and elevation angle α of the incident signal. (a) Symmetrical trihedral. (b)
Compressed asymmetrical trihedral. (c) Lateral distance da and longitudinal distance
dr between the reflectors and the radar (ground range d2 = dr2 + da2).

Figure 3.9 presents the RCS values of an asymmetrical trihedral by changing
its height H with respect to the elevation angle α. The RCS of a conventional
regular symmetrical trihedral with an identical bottom plate is also plotted for
comparison. The results show that with reducing the size of the standing plates
of the symmetrical reflector, its αLP moves from about 35° to the direction of
0°. This phenomenon can also be found among the asymmetrical reflectors,
for example, the one with the smallest standing plates (H = 4 mm) has a αLP
closest to 0°. Recall the results in Figure 3.7 where small α dominates (angle
of interest), compare them with the results in Figure 3.9, it can be found that
this angle of interest region is located exactly at the trough RCS region of
the symmetrical trihedral but at the peak RCS region of the asymmetrical
trihedral, making a trihedral with smaller standing plates still have comparable
or even better RCS values than the one with much larger standing plates.
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This indicates that if these asymmetrical reflectors with much smaller standing
plates are integrated into the road markings, they can still provide comparable
RCS values compared to those with identical bottom plate but much larger
standing plates. Similar conclusions can be also found in Figure 3.10 (a) and
(b) where L and W are varied. Of course, the shapes of the standing plates can
be further modified to fulfill specific application requirements.

Figure 3.9: RCS of a symmetrical trihedral (W = 160 mm) and asymmetrical trihedrals with
various H (W = 160 mm and L = 0 mm) when γ = β = 0°. The plot at the right side
zooms in the area with α < 10° of the plot at the left side.

3.3.3 Influence of Signal Polarization on RCS

In order to figure out which signal polarization is optimal to detect the proposed
reflectors, the RCS of the asymmetrical reflector (W = 160 mm, H = 4 mm,
L = 0 mm, γ = 0°, h = 0.15 m) under various signal polarization directions are
simulated and the results are converted into dr–da plots presented in Figure 3.11.
From the plots, it can be concluded that the reflector posesmaximumRCSwhen
the polarization is vertical, minimum RCS when the polarization is horizontal,
and values between them when the polarization direction is 45°.
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(a)

(b)

Figure 3.10: RCS of a symmetrical trihedral with various (a) L (H = 4 mm,W = 160 cm) and (b)
W (H = 4 mm, L = 0 mm) when γ = β = 0°.
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Figure 3.11: RCS comparison of an asymmetrical reflector (W = 160 mm, H = 4 mm, L = 0
mm, γ = 0°) with various signal polarization directions (h = 0.15 m): (a) Horizontal
polarization; (b) vertical polarization; (c) 45° polarization.

3.3.4 Asymmetrical Trihedral with Slanted Plates (Type 2)

Besides changing the shape of the standing plates, they can be also slanted (γ ,
0°). To observe how the RCS changes with various γ, corresponding simulation
results are presented in Figure 3.12 with the highlighted red contours labelled
with RCS values. It can be concluded from the results that the maximum RCS
appears always when the three plates are mutually perpendicular and even with
a small γ variation, the RCS decreases dramatically (like in the plot of γ = 0°,
RCS values larger than 10 dBsm dominate while in the plot of γ = ±5°, RCS
values smaller than -20 dBsm dominate). This is a very important information
since these reflectors are integrated in the road markings between the lanes and
they are frequently run over and pressed by the tires. From this conclusion, in
order to get the optimal RCS, these reflectors are required to be fabricated as
rigid as possible to avoid any structural deformation.
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3 Radar Cross Section and Radar Reflectors

Figure 3.12: Influence of slanted standing plates on RCS with respect to da and dr (W = 160 mm,
L = 0 mm, H = 4 mm, h = 0.15 m).
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3.3.5 Comparison Between Asymmetrical Reflector and
Other Reflectors

In this section, the RCS of the metallic ball group (Type 3) that occupies
the same bottom area as that of the asymmetrical trihedral (W = 160 mm,
H = 4 mm, L = 0 mm) is calculated and represented in Figure 3.13 (b),
whereas that of the asymmetrical trihedral is shown in Figure 3.13 (a). The
total RCS of the spheres with their radii equal to 0.62 mm (maximum RCS in
the MIE region) are calculated according to section 3.2 without considering
spectrum leakage effect. Even so, its RCS in the plot is much smaller than that
of the proposed asymmetrical trihedral.

Another reflectorwith the standing plates of Type 1 replaced by curved standing
plate (Type 4) is also evaluated and presented in Figure 3.13 and its structure
is illustrated in Figure 3.13 (f) with the curved standing plate created by
intersecting a circle of radius R with the bottom plate. For the presented
results, their height H, widthW , and the total bottom length are identical to the
reflector in Figure 3.13 (a). The corresponding RCS with R equal to 100 mm,
500 mm, and 1000 mm are given in Figure 3.13 (c), (d), and (e). By observing
these results, it can be concluded that with a larger R, its maximum RCS at
da = 0 m (β = 0°) increases, however, its scattering beam width becomes
smaller (RCS decreases faster at da , 0 m with larger R). This conclusion
makes sense since if R is infinite, the standing plate can be seen as a flat and
rectangular plate. So if both maximum RCS and wide backscattering beam
width are required, the asymmetrical reflector (Type 1) is a better choice.

3.4 Mounting Position of Automotive Radar for
Lane Detection

In this section, the influence of radar mounting position is analyzed and the
reflector of Type 1 (W = 160 mm, H = 4 mm, L = 0 mm) is used.
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Figure 3.13: RCS comparison of various reflectors that are appropriate to be integrated into road
markings for radar detection (h = 0.15 m). (a) Asymmetrical trihedral (W = 160 mm,
L = 0 mm, H = 4 mm) (Type 1). (b) Metallic spheres with their occupied area equal
to the bottom area of Type 1 (Type 3). (c) (d) (e) Reflector with the standing plates of
Type 1 replaced by curved plates (Type 4) whose structure can be seen in (f), their R
equal to 100 mm (c), 500 mm (d), and 1000 mm (e).

3.4.1 Radar Mounting Height

Figure 3.3 shows the σmin when the radar mounting height h is 0.15 m. As
the antenna gain of the radar depends on α according to Figure 3.2 (b), while
changing the mounting height h, the σmin also changes. Figure 3.14 (a), (b),
and (c) present the σmin with larger h up to 5 m (which is actually not possible
for the mounting height of an automotive radar). Figure 3.14 (d) observes
the minimum required RCS at the position x = 0 m and y = 30 m when the
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mounting height h is swept from 0 m to 8 m. It can be concluded from these
results that with a higher mounting position, the σmin tends to become larger.

Figure 3.14: Minimum required RCS with respect to radar mounting height h. (a) h = 0.15 m. (b)
h = 1 m. (c) h = 5 m. (d) h is swept from 0 m to 8 m (x = 0 m, y = 30 m).

Not only σmin depends on the mounting height h because of the antenna gain
in vertical direction, but also the RCS of the reflector viewed from the radar
depends on h. This is because the RCS of a trihedral depends on the incident
angle and with various h, the elevation angle α at the identical position also
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Figure 3.15: RCS of the reflector with respect to the radar mounting height h: (a) h = 0.15 m. (b)
h = 1 m. (c) h = 5 m. (d) h is swept from 0 m to 8 m (x = 0 m, y = 30 m). The σmin
(black curve) is also plotted in (d), its intersection point at h = 2.8 m indicates the
maximum allowed radar mounting height if the reflector at x = 0 m and y = 30 m
needs to be detected.

varies from the view point of the radar. Figure 3.15 (a), (b), and (c) present
the RCS values that the reflector can provide to the radar with h equal to
0.15 m, 1 m, and 5 m respectively. Similar to the example above, the RCS of
the reflector at the position x = 0 m and y = 30 m is plotted in Figure 3.15 (d)
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in red curve. Opposite to the σmin which tends to become larger with larger h,
the RCS tends to become smaller, indicating that a smaller h is always better
than a larger h. Combining the σmin in black curve and the RCS of the reflector
in red curve in Figure 3.15 (d), the maximum allowed h can be calculated from
their intersection point, meaning that if such a reflector at this position needs
to be detected by this radar, the mounting height of the radar shall be smaller
than this limit, i.e., about 2.8 m in this example.

3.4.2 Radar Mounting Orientation

This section focuses on the influence of radar orientation on the σmin. Figu-
re 3.16 depicts the orientation variation of the radar in both elevation (α′) and
azimuth (β′) directions.

Figure 3.16: Change of the radar orientation both in elevation (α′) and azimuth direction (β′).

Figure 3.17 (a) to (e) present the σmin when α′ equals to −80°, −30°, 0°,
30° and 80° respectively. Figure 3.17 (f) shows the same result but with the α′
sweeping from −89° to 90° together with the RCS that the reflector can provide
at the position x = 0 m and y = 30 m. The results indicate that no matter the
radar is orientated to top or bottom, the σmin always tends to increase. For
a reflector (Type 1, W = 160 mm, H = 4 mm, L = 0 mm) at the position x
= 0 m and y = 30 m, the maximum allowed orientation variation in elevation
direction is about ±7°.
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Figure 3.17: Influence of α′ on σmin: (a) α′ = −80°; (b) α′ = −30°; (c) α′ = 0°; (d) α′ = 30°;
(e) α′ = 80°. (f) σmin (black curve) and the RCS of the reflector (blue curve) at the
position of x = 0 m and y = 30 m with respect to α′ (h = 0.15 m).

Restricted by its smaller antenna gain in larger azimuth angle, σmin with larger
β also gets larger. To solve this problem, multiple radar sensors can be simul-
taneously mounted into the car and when the radar road marking is detected
by any of these mounted radars, it is recognized to be detected, meaning in
the overlapped area of the individual σmin of all these radar sensors, their mi-
nimum one is the actual σmin. Figure 3.18 (a) shows a vehicle of 2 m width
equipped with three radar sensors: one front radar mounted in the middle of the
front bumper and two corner radar sensors mounted at two sides of the vehicle
bumper with a distance of 2 m and the azimuth orientation β′ of 40°. With this
configuration, the radar road marking can be detected in a wider azimuth angle
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range. Figure 3.18 (b) plots the corresponding σmin considering the individual
σmin of all the three sensors.

Figure 3.18: Combine three radar sensors for road marking detection: (a) two corner radar sensors
with β′ = ±40° and a front radar sensor with β′ = 0°; (b) its consequent σmin.

3.5 Influence of Road Curve on RCS

3.5.1 Vertical Road Curve

Preceding sections consider only the vehicles and the reflectors on a flat surface.
However, in reality, the vehicle can encounter roads with vertical curved profile
like the one illustrated in Figure 3.19 (a). Normally, the road vertical profile
can be described by the following equation:

Height = g1y +
(g2 − g1)y

2

2Lc
(3.6)

where g1 and g2 are the initial and end grades of the curved road and Lc the
length of the curve. When the curve tends to be flat, its behavior is close to
that of a flat road that has been discussed previously. In the following part,
another extreme case–the maximum curvature will be evaluated, like the one
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Figure 3.19: (a) Illustration of a vehicle and radar road marking on a road with vertical curved
profile. (b) Corresponding σmin and the RCS of the reflector at a view distance of
30 m to the radar when the vehicle is located at different positions in (a). This result
indicates that between points A and B, a reflector at a view distance of 30 m to the
radar is not able to be detected.

in Figure 3.19 (a) where Lc = K |g1 − g2 | with K = 10, g1 = −15%, and
g2 = 15% [oSHO04], [FOTb], [FOTa]. A position in front of the radar with
the view distance of 30 m (β = 0°) is selected to be observed. The calculation
result of the RCS of the reflector (solid red curve) and the σmin (dashed red
curve) are plotted in Figure 3.19 (b) correspondingly, which indicates that in
this extreme situation, i.e. when the vehicle moves to the trough region, the
σmin increases whereas the RCS of the reflector decreases, leading the reflector
not to be capable of being detected. Figure 3.19 (b) shows that the radar can
not detect the reflector at a view distance of 30 m between the positions A
and B. Consequently, the detection of the radar road marking can be restricted
under certain road structure conditions and it is always necessary to calculate
to check its feasibility when they are built.
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3.5.2 Horizontal Road Curve

Figure 3.20: (a) Illustration of a vehicle and radar road marking on a road with horizontal curved
profile. (b) Corresponding σmin and the RCS of the reflector at a view distance of
30 m to the radar with respect to the radius of the road. The result shows that when
the radius of the road is smaller than 40 m, the reflector at a view distance of 30 m to
the radar is not able to be detected.

The vehicle can also frequently encounter horizontal road curves like the one
shown in Figure 3.20 (a). In this example, the horizontal road curve is modeled
with a circle defined by its radius. The orientations of the reflector and the
radar are both tangential to this circle. Similarly, the detection of the reflector
at the view distance of 30 m is observed with changing the radius of the circle
from 22 m to 100 m. The corresponding β (both for radar and reflector),
RCS of the reflector (solid red curve), and the σmin (dashed red curve) are
calculated and plotted in Figure 3.20 (b). It is obvious that a horizontal road
curve with smaller radius will make the reflector undetectable by the radar.
This is influenced by two factors: with smaller radius, the β of the radar and
the reflector both get larger, which indicates a smaller horizontal antenna gain
and a smaller reflector RCS. In this example, if the radar wants to detect the
reflector at its view distance of 30 m, the radius of the circle shall be at least
larger than 40 m (intersection points between solid and dashed red curves). To
make the detection more robust, as has been mentioned in section 3.4.2, several
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radars with various orientations can simultaneously be mounted into the car,
and the orientation of the reflectors located at the horizontal road curve can
also be adjusted i.e. to combine several reflectors with various orientations,
this will be introduced more in details in section 4.3.3.

3.6 Dynamic Simulation of Radar-detectable
Road Markings

Figure 3.21: (a) Parameter definition: offset distance doff from the central line of the lane and ori-
entation deviation βoff from the lane direction. (b) Range-Doppler plot with doff = 0m
and βoff = 0°. (c) Range-Doppler plot with doff = 1.5m and βoff = 0° (lane width: 3m).

Figure 3.21 (b), (c) present the measurement results when the vehicle equipped
with a radar at its front drives along the lane defined by the reflectors positioned
at both lane borders (lane width: 3 m) with doff = 0 m, βoff = 0° and doff =
1.5 m, βoff = 0° (doff is the offset distance from the central line of the lane
and βoff is the orientation deviation of the vehicle from the lane direction as
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illustrated in Figure 3.21 (a)). Two curves are formed by their reflection points
in the Range–Doppler plots: in Figure 3.21 (b), the two curves overlap with
each other; in Figure 3.21 (c), the two curves diverge from each other. This
characteristic can be exploited to indicate whether the vehicle departs from the
lane and will be discussed more in details with the help of the simulation data
in the following part.

3.6.1 Lateral Localization of the Vehicle

Figure 3.22 shows a vehicle driving along the lane direction (βoff = 0°) with
a velocity of 10 m/s and two different doff: one with doff = 0 m in Figure 3.22
(b), (c) and the other with doff = 1 m in Figure 3.22 (d), (e). The radial velocity
of the reflectors and their Range–Doppler plots are both presented. Since the
results of Range–Doppler and radial velocity results match with each other
(it makes sense since the velocity measured by the radar is actually the radial
velocity), in the following section, only the radial velocity plots will be used. It
can be easily concluded from these results that with a certain driving velocity,
the separation of the curves with larger doff is also larger. When the vehicle
drives perfectly along the middle line of the lane (radar is mounted in middle
of the front bumper), these curves overlap perfectly with each other. This can
be very useful for functions like LDW, LKS, etc. to determine whether the
vehicle is running exactly in the middle of the lane or not. Besides, in order
to know to which side of the lane the vehicle is closer to, the intervals of the
reflectors at both sides of the lane can be set differently (the side corresponding
to the curve with higher velocity in the Range–Doppler plot indicates the side
that the vehicle is closer to).
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Figure 3.22: (a) Movement animation with doff = 1 m and βoff = 0°. Radial velocity of every
reflector (b) with doff = 0 m and βoff = 0°, (d) with doff = 1 m and βoff = 0°, and (c)
(e) their corresponding Range-Doppler results from signal processing. The circles in
(b) and (d) come from the reflectors behind the radar.
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3.6.2 Determination of the Vehicle’s Orientation

When the vehicle does not drive along the lane direction (βoff , 0°), the
curves in the Range–Doppler plot behave differently: a peak coming from the
reflector that is directly located at the driving direction appears in the curve, and
with changing βoff, the position of this peak changes accordingly. Figure 3.23
presents the results with βoff = 30°, 45°, and 60°. The peak, which has the
same velocity as the vehicle moves to the direction of smaller r with larger
βoff. Besides, the curve slope at the peak also gets larger with a larger βoff. So
by observing the shape of this curve, the driving orientation of the vehicle can
also be inferred.

Figure 3.23: Radial velocity of the reflectors with respect to βoff: (a) 30°, (b) 45°, and (c) 60°. The
circles in the plots come from the reflectors behind the radar.

3.6.3 Oncoming Horizontal Road Curve

The Range–Doppler characteristics can additionally also be used to indicate
the oncoming road curve and its curvature. Figure 3.24 shows the plots when
the vehicle is approaching a horizontal road curve with various radii. Different
to a straight lane where the curves in the Range–Doppler plot tend to converge
as r increases, an approaching road curve makes them to diverge oppositely.
Furthermore, the divergence of the curves depends on the road curvature itself
if the velocity and the lane width are already known. This can be used to
indicate the oncoming road curve and to estimate the radius of the road curve,
which is a very important information for velocity and steering adjustment of
a vehicle before approaching a road curve.
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3 Radar Cross Section and Radar Reflectors

Figure 3.24: (a) The vehiclewith a radarmounted at its front drives towards the roadwith horizontal
curvature and the influence of the radius of the road on the radial velocity characteristic
of the reflectors. The radii are (b) 5 m, (c) 15 m, and (d) 30 m.

3.6.4 Summary

It is not possible to list all possible scenarios and their corresponding Ran-
ge–Doppler characteristics, but even themost complex ones can be decomposed
into several simpler ones. Tools like pattern recognition or neural network can
be employed to determine the vehicle lateral position, orientation or oncoming
road curve by utilizing the Range–Doppler results as their input.
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4 Radar Road Marking Reflection
Measurements on Test Tracks

The preceding chapter presents the minimum required RCS of the radar and
the simulated RCS values of various reflectors. In this chapter instead, corre-
sponding on–road measurement results are presented.

4.1 Measurement Setup and General
Considerations

4.1.1 Samples under Measurement

According to the results of the analysis in chapter 3, the preferred reflector type
in this chapter is focused on Type 1. Such a specimen for on–road measurement
can be seen in Figure 4.1 (a) whose surface is made of 0.2 mm thick aluminum
foil and is glued on styrofoam as the carrier. Specimens of various dimensions
of Type 1 are measured in order to evaluate the influence of H, W , and L
on the reflection magnitude. In order to make the following description more
compact, these specimens are divided into 3 groups and are represented by
GH(N), GW(N), and GL(N) where N is used to denote their variations in
height (i.e. GH), width (i.e. GW), and length (i.e. GL) correspondingly. An
additional group G(N) including specimens with identical dimension is used
to verify the repeatability of the measurements. Table 4.1 summarizes all the
dimensions of these specimens and as an example, a specimen represented
with GW3 has a height H of 4.3 mm, W of 140 mm and L of 117 mm.

Figure 4.1 (b) shows one specimen of Type 3 whose area of the bottom plate
is identical to that of the specimen G(N), but with its aluminum foil and
standing plate replaced by aluminum balls. Figure 4.1 (c) shows one specimen
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4 Radar Road Marking Reflection Measurements on Test Tracks

Figure 4.1: Specimens for on-road measurements: (a) Type 1, (b) Type 3, (c) Type 4, and (d) Type 1
with its corner region covered by gravel.

Table 4.1: Dimension of the specimens (Type 1) under on-road measurements.

Sample H (mm) W (mm) L (mm)
GH(N ) N 160 117
GW(N ) 4.3 100+20(N -1) 117
GL(N ) 4.3 160 20(N -1)
G(N ) 4.3 160 117

of Type 4 with the standing plates of Type 1 replaced by curved standing plate
with an identical height. In practice, the road markings can also be covered by
other materials like water, gravel, and leaves, etc. In order to investigate this
influence, specimens of Type 1 covered by various materials are measured and
Figure 4.1 (d) shows such a specimen with its corner region fully covered by
gravel with the diameter between 0.7 mm and 1.2 mm.

4.1.2 Measurement Setup and Procedure

During the measurements, the specimens are placed in a line on a flat ground
one after the other and oriented towards the driving direction of the test vehicle.
The test vehicle is equipped with a radar at its front (h = 0.15 m) and drives
towards the specimens with da = 0 m (thus, d = dr). To measure the orientation
influence of the specimens on the reflection power, they are rotated by an angle
β away from the driving direction of the vehicle like shown in Figure 4.2.
The reflection magnitudes of all the specimens are extracted from the Ran-
ge–Doppler results. The corner S of Figure 3.1 and its reflection magnitude
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4.2 Evaluation of Measurement Results

Mcorner S are reused. With all the above information, the RCS of the specimens
under measurement can be calculated according to:

σs(d, β) = σcorner S − (Mcorner S(d) − Ms(d, β)) + Comp_V(d) (4.1)

whereσcorner S is the RCS of the reference corner S, Mcorner S(d) is the reflection
magnitude of corner S with respect to d after eliminating multi–path reflection
(curve fit 3 in Figure 3.1 (b)), and Comp_V is used to compensate the antenna
gain difference between the standing reference corner S and the measured
specimen placed directly on the ground surface at the distance d according to
Figure 3.2.

Figure 4.2: Top view of the measurement setup.

4.2 Evaluation of Measurement Results

In this section, the repeatability of the measurements is verified at first. Based
on this, themeasurement results of Type 1, 3, 4, etc and the influence of external
coverings will then be presented and discussed. The last part summarizes the
SNR and maximum detection range of the reflectors during the measurements.

4.2.1 Repeatability of the Measurements

In order to verify the repeatability of themeasurements, four separate tests of the
specimens in group G(N) with identical dimension and orientation (β = 0°)
are conducted. Their reflection magnitudes and the corresponding averaged
one over all these measurements and specimens are plotted in Figure 4.3. For
the same specimen under separate and repeated measurements, the amplitude
variation is below 3 dB. However, the reflection magnitude difference between
different specimens, even with identical dimensions, can be up to 6 dB. This
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4 Radar Road Marking Reflection Measurements on Test Tracks

difference can be caused by the specimens themselves since it can not be
guaranteed that all these specimens are perfectly identical because errors can
be introduced during the handcrafted fabrication process. When calculating
their RCS, their averaged reflection magnitude (black curve in Figure 4.3) is
used. Together with the reflection magnitude of the reference corner S, the
estimated RCS of specimen G(N) is plotted in Figure 4.4 in red solid curve.
Simultaneously, its simulated RCS is also plotted in red dashed curve for
comparison.

Figure 4.3: Reflection magnitudes of specimens G(N ) under various tests and their corresponding
average magnitude.

In Figure 4.4, the simulated and measured RCS are very close to each other
although small discrepancy is still visible. Such discrepancy can be caused
by the following reasons: 1) the large ground of the test field shall be seen
as part of the bottom plate of the reflector, regardless of its much smaller
permittivity when compared with that of the aluminum foil. This effect is
however not considered in the simulation; 2) in an on–road measurement,
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4.2 Evaluation of Measurement Results

Figure 4.4: Estimated RCS of specimen G(N ) from the on-road measurement and its simulated
RCS.

it can not be guaranteed that the ground is perfectly flat and small elevation
angle deviations can be introduced to the tested specimens at various positions,
because their RCS is very elevation angle sensitive, this may also contribute
to the discrepancy between estimated and simulated values. To summarize,
except such small discrepancies, all the results match very well with each other
and with the simulation results (the theoretic results), so the measurements can
be seen both reliable and repeatable.

4.2.2 Type 1

Different to chapter 3.3 where the influences of H, L, and W on the RCS are
simulated, in this section, the corresponding results from the on–road measu-
rements are presented in Figure 4.5 and Figure 4.6. W in the measurements are
set to be larger than 100 mm which is normally the minimum width of a road
marking. All the results are normalized with respect to the maximum reflec-
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4 Radar Road Marking Reflection Measurements on Test Tracks

tion magnitude in its group, i.e., that with maximum H, L, W (Figure 4.5), and
β = 0° (Figure 4.6) is set to be 0 dB.

Figure 4.5: On-road measurement results: influence of the dimension of Type 1 on the reflection
magnitude with various (a) H , (b) L and (c)W .

For the specimens in group GH(N), with H increasing from 1 mm up to 10 mm
(Figure 4.5 (a)), the reflection magnitude increases about 35 dB. However, the
rate of the increment gets smaller with larger H, for example, the magnitude
increases about 15 dB when H changes from 1 mm to 2 mm, but only 1 dB
when H changes from 9 mm to 10 mm. It can be expected that with further
increased H, its reflection performance will not really become better. The
reflection dependency of these specimens on β in Figure 4.6 (a) indicate that
with a β smaller than 20° and 30°, the decrease of the reflection magnitude
is smaller than 3 dB and 9 dB, respectively. A simulation of the influence of
β on the reflection magnitude of G(N) is also plotted in the black curve for
comparison with its elevation angle α being swept from 0° to 5° with a step
size of 0.1° (the plotted curve is the averaged value across all the α).

Figure 4.5 (b), (c) present the influences of L andW on the reflectionmagnitude.
Different to that of H in (a), the magnitude difference with larger L and W
is relative small: 5 dB either when L changes from 20 mm to 200 mm or
when W changes from 100 mm to 200 mm. So for the reflector of Type 1,
since its standing plates are much smaller than its bottom plate (W � H even
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4.2 Evaluation of Measurement Results

Figure 4.6: On-road measurement results: azimuth angle dependency of the reflection magnitude
of (a) G(N ), (b) GL(N ) and (c) GW(N ). Simulation results in black curves are plotted
for comparison.

when L = 0 mm), H has the largest impact on its reflection magnitude when
compared with L and W and such impact also gets smaller when H increases.
In contrast, changing the signal incident angle β of all these specimens result
in a similar reflection magnitude decrement that is not so dramatic, which also
proves the advantage of such kind of reflector for radar–based lane detection.

4.2.3 Type 1 and Type 3

Figure 4.7 shows the reflection magnitude of specimen G(N) of Type 1 and
specimen of Type 3 shown in Figure 4.1 (b) with the identical bottom plate
of G(N) occupied fully with aluminum balls (1.3 mm diameter). The plotted
results show that the reflection magnitude of G(N) is about 15 dB larger than
that of Type 3. As mentioned previously, one advantage of Type 3 comes
from its isotropic reflection characteristic, by taking the results of Figure 4.6
into account, a reflection magnitude decrease of 15 dB corresponding to an
incident angle β up to 40° shall be considered. So this advantage of Type 3
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4 Radar Road Marking Reflection Measurements on Test Tracks

over Type 1 is not so obvious any more whereas the reflection of Type 1 can
be much larger than that of Type 3. Another advantage of Type 3 is its smaller
height (diameter of one single ball): when the height of Type 1 gets smaller,
its reflection magnitude is also smaller. However, the RCS of the balls have
already reached their maximum value according to Table 3.2 whereas that of
Type 1 can be even higher with a larger H.

Figure 4.7: Reflection magnitude difference between Type 1 and Type 3. Four separate testes are
carried out (β = 0°).

4.2.4 Type 1 and Type 4

Figure 4.8 presents three measurement results of specimen 1 of Type 1 (a),
specimen 2 of Type 4 with R = 100 mm (b), and specimen 3 of Type 4 with
R = 500 mm (c) and all these specimens have identical height H = 4.3 mm,
width W = 160 mm and bottom length L +W/2 = 197 mm.

It can be seen from these measurement results that with β = 0°, the reflection
magnitude of specimen 2 is about 10 dB smaller than that of specimen 3,
whose reflection magnitude is close to that of specimen 1. However, as β
gets larger, the reflection magnitude of specimen 2 keeps nearly unchanged
whereas that of specimen 3 presents a dramatic decrease of about 20 dB. This
decrease with respect to β exists also for specimen 1 which is however more
moderate. This moderate decrease makes the reflection magnitude of specimen
1 close to that of specimen 2 at β = 20° and for even larger β, the reflection
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4.2 Evaluation of Measurement Results

Figure 4.8: Reflection magnitude difference between (a) specimen 1 (Type 1), (b) specimen 2
(Type 4 with R = 100 mm), and (c) specimen 3 (Type 4 with R = 500 mm). All these
specimens have identical height H = 4.3 mm, widthW = 160 mm and bottom length
L +W/2 = 197 mm.

magnitude of specimen 2 is larger than that of specimen 1. Both results in
Figure 3.13 and the measurement results in Figure 4.8 indicate that with a
larger curvature, the maximum RCS of Type 4 gets smaller but its reflection
angle range gets large and with smaller curvature, its maximumRCS gets larger
but its reflection angle range becomes very small. So it is possible to integrate
Type 4 with an appropriate curved standing plate into road markings for radar
detection. However, from the perspective of fabrication process, a curved plate
is more complex than a straight plate since its curvature needs to be precisely
controlled. And it can be seen later that by combining two specimens of Type
1 with opposite orientations, four reflectors are created, whereas for Type 4,
only two reflectors are created which is less efficient from the perspective of
material usage.

4.2.5 Reflector with Covering

When the road marking is integrated on the road surface, it is possible that
it is covered by certain materials like water, graves, leaves, etc. Table 4.2
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4 Radar Road Marking Reflection Measurements on Test Tracks

presents the measurement results of the specimens G(N) that are covered by
these materials and all the results are normalized to the one without covering.
To measure the influence of water coverage, three specimens with identical
dimensions are employed with the first one without covering, the second one
covered with a dry sponge in the corner region, and the last one covered with
a sponge containing water, like shown in the illustration of Figure 4.9. From
the measurements, the reflection magnitude from the empty reflector and the
one with dry sponge present nearly no difference, and for the one covered
with sponge including 20 g and 30 g water, the reflection magnitude decreases
about 23 dB and 25 dB, respectively. This is not desirable and can be avoided
by raising the corner side of the reflector with a small angle αraise to prevent
water accumulating in the corner region like the one shown in Figure 4.10 (a).
Figure 4.10 (b), (c), and (d) give the corresponding RCS of the same reflector
when αraise equals to 0°, 1°, and 2°. It can be seen from the results that with
this small raise, the reflector still delivers very similar RCS values compared to
the one without raise. Other coverings like gravel and leaves also cause large
reflection magnitude decrease according to Table 4.2, for which a good and
feasible solution is still needed.

Figure 4.9: Water coverage measurement setup. (a) Reflector with its corner region covered by dry
sponge as reference. (b) Reflector with its corner region covered by sponge containing
water.

Table 4.2: Influence of coverings on reflection magnitude.

Sample Relative reflection (dB) Sample Relative reflection (dB)
No covering 0 + 54 g Water -30
+ 50 g Gravels -27 + 8 g Leaves -27
+ 20 g Water -23 + 16 g Leaves -32
+ 30 g Water -25
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4.2 Evaluation of Measurement Results

Figure 4.10: (a) Raise the corner side of the reflector with a small angle αraise to prevent water
accumulating and its corresponding RCS with αraise equal to (b) 0°, (c) 1°, and (d)
2°.

4.2.6 Other Types

In addition to all the specimens presented in the previous sections, more types
are measured. Figure 4.11 shows 6 such types. Figure 4.11 (a) is comprised
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of parallel metallic stripes with their width and interval equal to half of the
wavelength of the radar signal (λ/2) in order to create a resonance structure.
This however provides very narrow reflection angle range: one reason is that
the single stripes behave like cylinders whose reflection depends strongly on
the incident angle like the one shown in Figure 3.6; the other reason is that
the resonance structure is also incident direction dependent, meaning with
changing the incident direction, the interval projection of the stripes on the
signal propagation path will change and could be different from λ/2. Similarly,
an improved version of (a) with the stripes integrated both in two orthogonal
directions in (b) does not improve the reflection performance obviously.

Figure 4.11: Other measured reflector types. (a) Metallic stripes with their width and interval
equal to λ/2. (b) Metallic stripes with their width and interval equal to λ/2 in both
two orthogonal directions. (c) Modified Type 1 with the standing plates divided into
multiple steps. (d) Chaff with the length of single metallic wire equal to λ/2. (e)
Metallic mesh. (f) Metallic wave-shaped reflector.

Figure 4.11 (c) divides the standing plate of Type 1 into multiple smaller
steps with the length of each step equal to integer times of λ/2 to create
resonance structure. From both measurement and simulation results, with all
other conditions unchanged, such reflectors with smaller steps present always
smaller reflection magnitude or RCS than the specimen with only one step,
i.e. the Type 1 (notice that the corner reflector of Type 1 itself is a resonant
structure with the single propagation path difference equal to zero). It also can
be found that with more and more steps (thus with the height of the signal
smaller steps becoming smaller and smaller), the reflection magnitude also
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4.2 Evaluation of Measurement Results

becomes smaller and smaller. So the Type 1 with only one single step is the
best reflector.

Figure 4.11 (d) presents the chaff specimen. Chaffs are very thin, small metallic
(sometimes also include other materials like thin glass fiber) wires with their
length equal to λ/2. By deploying them extensively in the air, they are frequent-
ly used in electronic radar warfare countermeasures of air combat fighters to
create large reflection magnitude without the existence of real objects to mis-
lead or confuse the opponents. Figure 4.11 (e) and (f) are metallic mesh and
wave–shaped reflectors. All these specimens provide very small RCS when
they are integrated on the road surface compared with Type 1.

4.2.7 Summary

With knowing the reflection magnitude of the specimens and the noise floor
with respect to d, their SNR and maximum detection range can be estimated.
For example, Figure 4.12 shows that for the specimens in group GH(N) with
β = 0°, the SNR of the specimens decreases almost linearly (about 2 dB/m)
with respect to d and the curves of various specimens are nearly in parallel.
The decrease of the SNR stems from the free space loss of the signal, the
change of the antenna gain and RCS of the specimens in elevation direction.
The specimens with larger H have larger RCS and thus also larger SNR and
can be detected in a larger range. However, this increment becomes smaller
as H increases. For the specimen G10, the maximum detection range can be
up to 40 m. If a larger FFT size is used during the signal processing, a higher
detection range can be expected due to the improved SNR obtained from the
FFT processing gain. However, this also increases the required processing
power of the processing unit. Similarly, the maximum detection range of other
specimens with various β are summarized in Table 4.3.
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Figure 4.12: (a) Reflection magnitude of GH(N ) with respect to d and the noise floor (β = 0°). (b)
SNR of GH(N ) with respect to d (β = 0°).
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4.2 Evaluation of Measurement Results

Table 4.3: Maximum detection range (m) of the specimens according to the measurement results.

Type
PPPPPPSample

β 0° 10° 20° 30°

1

GH1 13 11 11 10
GH5 33 31 29 25
GH10 42 41 37 34
GL2 23 24 23 20
GL6 28 26 24 21
GL10 29 28 26 22
GW1 27 27 24 20
GW4 28 28 24 20
GW9 30 30 26 22

3 Aluminum spheres 18

4 R = 100 mm 19 21 21 20
R = 500 mm 25 13 13 9

1 with covering

G(N ) 29

/

G(N ) + 50g Gravel 16
G(N ) + 100g Gravel 15
G(N ) + 150g Gravel 15
G(N ) + 20g Water 16
G(N ) + 30g Water 15
G(N ) + 54g Water 11

Table 4.4 summarizes the advantages and disadvantages of the main reflectors
discussed in this chapter. Table 4.5 summarizes the main advantages of radar
versus camera in road marking and lane detection and indicates the necessity
to combine radar and camera data for the function like lane detection. Since
the reflectors of Type 1 are the most appropriate specimens among all the
reflectors, the reflectors used in the following chapters are all of Type 1 if not
otherwise specified.
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Table 4.4: Comparison of various reflector types as radar road markings.

Type Description Pros Cons
1 Low-profile

asymmetri-
cal trihedral

1) It can provide good RCS
in a large azimuth angle
range with a small height.
2) The structure is simple to fa-
bricate, which reduces the ma-
nufacturing cost.

1) Its profile is low, howe-
ver, it is still not flat.
2) Its detection gets worse with
external coverings like water, etc.

2 Type 1 with
slanted stan-
ding plates

/ It provides much smaller RCS than
Type 1.

3 Metallic
balls

1) It provides isotropic reflec-
tion in azimuth angle direction.
2) Easy for deployment.

It provides much smaller RCS than
Type 1.

4 Type 1 with
its standing
plates repla-
ced by cur-
ved ones

The maximum reflection ma-
gnitude at β = 0° can be very
large with a large R.

1) Its azimuth angle range of reflec-
tion depends strongly on R. Drama-
tic decrease happens with large R.
2) With certain R, its reflection ma-
gnitude can be close to that of Type
1, but its fabrication is not as simple
as Type 1.

Table 4.5: Advantages of radar versus camera in road marking / lane detection.

Situation Radar VS. Camera
Fog and haze Radar can help camera to determine

lane boundary to increase the
detection reliability since camera may
be shortly blinded.

Sunset / sunrise / glaring sunlight
Poor illumination condition including low
light conditions and sudden change of the
light, e.g. night, headlight from oncoming
traffic, at tunnel entrance or exit, etc.
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4.3 Deployment of Dedicated Radar Reflectors on the Road

4.3 Deployment of Dedicated Radar Reflectors
on the Road

4.3.1 Single Shot Measurements

A test field as shown in Figure 4.13 is integrated with the reflectors of Type 1 to
form a lane containing a right angle turning, a semicircle with an inner radius
of 10 m, and two straight lanes with the width of 7 m and 3.5 m, respectively.
The photo is taken by a drone and the light yellow dashes are the employed
reflectors (radar road markers/markings) with H = 6 mm, L = 0 mm, and
W = 100 mm. The reflectors are fabricated according to Figure 4.15 (c) so that
they can be detected from all directions. Four separate single shot detection
results when the radar is at position 1, 7, 2, and 3 in Figure 4.13 are presented
in Figure 4.14. Besides the reflection points of the reflectors, other reflection
points come mainly from ground clutter, grass, fence, etc. at the side of the
test field, and some of the points also come from the electrical noise or clock
interference in the radar hardware itself.

Figure 4.13: Bird view of the test environment taken by a drone.
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Figure 4.14: Single shot measurement results when the test vehicle is at the position (a) 1, (b) 7,
(c) 2, and (d) 3 in Figure 4.13. Test vehicle equipped with radar at its front is at the
position of x = 0 m and y = 0 m.
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Figure 4.15: A new type of road marking integrated with low profile reflectors for radar detection.
(a) Reflectors of Type 1 filled with radar signal transparent material in order to
minimize the influence of their height on over-running vehicles by embedding them
partly or fully underneath the road surface. (b) Reflectors of Type 1 that are still
appropriate for camera detection as normal road marking by painting it with white
stripe painting material. (c) Fabrication of the new type of road marking.

4.3.2 Radar Road Signature - a Radar Based Map for
Accurate Localization

Figure 4.16 presents two examples of a radar point map by accumulating all
the static radar reflection points across all measurement cycles when the test
vehicle drives along the trajectory plotted in the black curve. Creating such a
map requires the relative movement of the radar during themeasurement cycles
and this can be accomplished by using a device like ADMA or calculate them
through an algorithm like SLAM (Simultaneous Localization and Mapping).

After obtaining the map, it can be stored and used for further accurate vehicle
localization after obtaining the rough localization data fromGNSS bymatching
the real time single shot measurement points with the stored map. The way
how the points are distributed can be seen as the footprint of the location–a
signature of the road. During such a process, the non–static points shall firstly
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be filtered out with the help of the detected radial velocity of the points and the
velocity of the vehicle itself (vEGO).

Figure 4.16: Reflection points collected by the radar that can be utilized as radar road signature
for accurate vehicle localization. Black curve describes the driving trajectory of the
test vehicle.

4.3.3 Roadside Construction Considerations

Although the profile of the reflector is low, to further decrease the influence
of its height on the over–running vehicles, the reflector can be partly or totally
embedded into the road or underneath the road surface after filling it with low
permittivity material like in Figure 4.15 (a). Besides, the reflectors can be still
painted with stripe painting materials, in order to make them also appropriate
for camera detection, like the one shown in Figure 4.15 (b). According to
the measurements, the reflection magnitude of the reflector in Figure 4.15 (b)
decreases about 2.5 dB when compared with those without painting. To make
the reflectors also detectable from other directions, two such reflectors with
opposite orientations can be merged into one reflector like the steps from (1) to
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(2) in Figure 4.15 (c), and two additional bottom plates can be added like the
steps from (2) to (3) to create other two reflectors. To simplify the fabrication
process, a process from step (4) to (6) can be employed where the crossings in
step (4), can be either metallic steel or concrete containing high permittivity
materials at its surface, are simply integrated onto a substrate in step (5) which
also contains high permittivity material. Two specific construction machines
can be used to finish such process: the first one paints certain area of the road
surface with high permittivity materials; the second one puts and fixes the
pre–made crossings onto the painted area finished by the first machine. The
pre–made crossings shall be rigid enough, so that they are not deformed by the
tires of the vehicles running over them.

In order to make the detection from all directions more robust, the crossings in
Figure 4.15 (c) can be rotated one after another with a certain angle. This angle
can be determined with the help of the measurement results in Figure 4.6. For
example, the crossings in Figure 4.17 (a) has a rotation angle of 15°, leading
to a RCS decrease smaller than 3 dB according to Figure 4.6. Figure 4.17 (b)
presents the scene where a two-lane road are built with such road markings
that can be both detected by radar and camera sensors.

4.3.4 Encoding of Radar Road Markings

As has been mentioned in section 3.6.1, by adjusting the intervals between
the reflectors, the driving direction of the vehicle can be determined from the
Range–Doppler matrix evaluation. In section 4.3.2, the accurate localization
of the vehicle can be accomplished by adjusting the intervals of the reflectors
to make them unique within a certain area and matching the single shot detec-
tion points with the pre–stored radar reflection map. So the intervals between
the reflectors can contain additional information–a smart encoding method to
improve the localization accuracy and efficiency with radar.

More generally, not only the intervals between the reflectors, but also the pat-
terns formed by them can be encoded. The encoding can not only be used to
locate vehicle, to distinguish between solid and dashed, white and yellow road
markings, but can also contain additional road information like the forthcom-
ing of a zebra crossing, sharp and dangerous road curves, the beginning and
ending of a tunnel, the maximum allowed driving speed in this area, etc. The
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Figure 4.17: (a) Increase the detection robustness by adjusting the orientations of the integrated
reflectors e.g. to rotate them with 15° one after another. (b) Illustration of a two-lane
road integrated with the new type of road markings for radar–based lane detection.

corresponding algorithms to decode such constellations shall be able to tolerate
the disappearance of certain reflection points belonging to the reflectors and
the appearance of certain reflection points not belonging to the reflectors.

4.3.5 Guard Rails and Other Existing Roadside
Infrastructure

The above mentioned radar reflectors can be integrated between lanes because
of their small height. In contrast, at the sides of the road, existing infrastructure
like guard rails, traffic poles, and even curbstone and grass can help the vehicle’s
perception system to recognize the boundary of the road with a radar sensor.
Figure 4.18 presents two such examples. Different to the reflection points of
the grass and curbstone, those from the guard rails are more sparse and regular.

76



4.4 Summary

This is because the reflection points of the guard rails come mainly from
their standing piles that have a regular distance between each other. A lane
detection method with such guard rails and radar road markings employing
DL algorithms will be presented more in details in chapter 5.

Figure 4.18: Radar reflection points (a) (c) from guard rail, (b) (d) from curbstone and grass. Test
vehicle equipped with radar at its front is at the position of x = 0 m and y = 0 m.

4.4 Summary

Both simulation results in chapters 3 and measurements in chapter 4 indicate
that an asymmetrical reflector that has very small height but large azimuth
angle range and is also very simple to fabricate, is very appropriate to be
used as a radar road maker. By combining several such markers orientating to
various directions and integrating them into the current road markings painted
with color, lane detection can be accomplished both by radar and camera
sensors with higher robustness and reliability when encountering extreme
environmental conditions. Despite this, the solution is still not perfect when
the reflectors are fully covered by grave, leaves, etc. since such covering makes
the detection more difficult. Smart solutions to this problem still need to be
investigated in the future. Nevertheless, this chapter presents the opportunity
and verifies the feasibility of lane detection with radar sensors.
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5 Clustering and Classification of
Radar-detectable Roadside
Landmarks for Lane Course and
Lane Border Determination

In order to determine the lane information after collecting the reflection points,
it is necessary to distinguish the reflection points of radar road markers from
those of other objects like vehicles, pedestrians, grass, roadside infrastructure,
etc. that exist pervasively on the road with corresponding clustering or classifi-
cation algorithms. This chapter focuses firstly on the non–supervised clustering
of the reflection points of the radar road markers based on the on–road mea-
surement data in section 5.1. Then, detection and classification methods with
DL–a deep neural network based supervised machine learning technique for
lane detection with the help of guard rails and radar road markers will be pre-
sented: the radar reflection points are filled into manually created grid maps
for grid–based DL in section 5.2 and point–based DL in section 5.3.

5.1 Clustering

The clustering in this section is based on the distance between the reflection
points, the spatial arrangement of these points (point pattern), and their re-
flection magnitudes. A test scene with the radar road markers equidistantly
integrated at both sides of a 3 m width straight lane with an interval dps of
about 2 m is set up. All the markers are orientated to the same direction and
the test vehicle equipped with radar at its front starts driving orthogonal to the
lane direction and then turns right to drive into the lane like the illustration
depicted in Figure 5.1.
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Figure 5.1: (a) Measurement setup for radar road marker clustering. (b) (c) (d) The corresponding
radar detection points. Test vehicle equipped with radar at its front is at the position of
x = 0 m and y = 0 m.

5.1.1 Static Point Extraction

The reflection points come from static and moving targets. Since the radar road
markers are always static, so first of all, the reflection points of the moving
targets shall be excluded.

It has been mentioned previously that the detected velocity v of the object is
the relative radial velocity. For static objects, with knowing the velocity vEGO
of the test vehicle (or more precisely, the velocity at the position of the radar),
the projection of vEGO on the direction of the object shall be equal to v, whereas
for moving objects, this equation is not fulfilled.

Besides filtering out the reflection points of the moving objects, part of the
points stemming from noise and disturbance can also be filtered out. The vEGO
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can be read from the vehicle CAN bus messages, or be calculated from the
velocity vG of the ground clutter reflection points. When the mounting height
h of the radar is much smaller than the maximum detection range of the ground
clutter, the projection of vEGO on the direction of ground reflection points can be
seen equal to vG: vEGO ≈ vG. Figure 5.2 gives an example with a vG = 4.65 m/s
and the ground truth vEGO = 4.46 m/s.

Figure 5.2: Estimation of vEGO from the Range-Doppler matrix of the ground clutter reflection
points with h = 0.15 m (ground truth: vEGO = 4.46 m/s).

5.1.2 Distance Based Clustering

After excluding themoving points, the distance between the reflection points dp
is calculated. With n denoting the number of static reflection points, n(n−1)/2
times of calculation are required to get all the distances. In order to decrease this
number, the points within the range of the maximum detection range of ground
clutter (5 m in this example according to Figure 5.2) are ignored during the
calculation. Since the position of the reflection point is discrete corresponding
to the FFT bin location, a distance tolerance dpt of the designed distance dps
is introduced. For description convenience, the process to group all the points
according to their intervals is represented by:

Clusters← disCluster(X,Y, dps, dpt,nmin) (5.1)

where the clusters at the left side of the arrow contain minimum nmin points
with the length of each edge dp fulfilling dps − dpt ≤ dp < dps + dpt (an edge is
a simple connection between two points) and vectors X and Y containing all
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x and y values of the input points. The grouped points within the clusters in
this step are represented by {p1} and Figure 5.3 (a) presents such results with
dps = 2 m, dpt = 0.2 m, and nmin = 4 where three clusters are detected: one
cluster from the grass at the boundary of the test field; two clusters from the
radar road markers. The edges connecting these clustered points are also drawn
in blue color in Figure 5.3 (a) and it can be concluded from the results {p1}
that not only the reflection points belonging to road markers are clustered, but
also the points of the grass. This is unavoidable when encountering such dense
reflection points from vehicles, grass, etc. since the designed distance dp can
easily be found within them.

A method to solve this problem is to exclude the points according to the point
density around the points. A simpler way is just to reuse the equation (5.1)
with identical X and Y, but replacing the input parameters dps and dpt with d ′ps
and d ′pt according to

d ′ps = (dps − dpt)/2, d ′pt = d ′ps. (5.2)

With these input parameters, the equation (5.1) returns the points {p2} with
theirs edges fulfilling: 0 ≤ dp < dps − dpt and the corresponding example can
be seen in Figure 5.3 (b). It is clear that the dense points in {p1} belong also
to {p2}, whereas the reflection points of the road markers belong only to {p1}.
This characteristic can be exploited to get the expected points {p} according to

{p} = {p1} − {p1} ∩ {p2} (5.3)

and the corresponding result can be seen in Figure 5.3 (c). In process (5.3),
{p1} ∩ {p2} is used instead of {p2} since not all points in {p2} belong to {p1}.
This also can be seen in Figure 5.3 (a), (b). If necessary, the points {p} can be
used again for equation (5.1) to get the final points since certain edges in {p1}
could have been deleted in the process of (5.3).

However, the points clustered according to these steps still give many false
negatives (the points belonging to the radar road markers are mistakenly not
clustered). Consider the scene in Figure 5.3 (d) where a vehicle having dense
reflection points (the blue ones in the rectangle) is very close to the radar
road markers. Because of this, the three points belonging to the radar road
markers are wrongly deleted during the process of (5.3). This is because one
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Figure 5.3: Distance based clustering and line extraction. (a) Clustering results {p1} according to
the distance between the reflection points. (b) Dense points {p2} that shall be excluded
in the clusters in (a). (c) Remaining reflection points {p} after excluding points {p2}
in (b) from points {p1} in (a). (d) Examples of possible false negatives and false
positives. (e) Hough transformation of the points {p} in (c). Test vehicle equipped
with radar at its front is at the position of x = 0 m and y = 0 m.

information is still not included during the clustering: the spatial distribution
of the points–the point pattern.
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5.1.3 Spatial Distribution Characteristic of the Reflection
Points - the Point Pattern

As the reflectors in Figure 5.1 are placed in straight lines, their reflection points
shall be also in straight lines. A simple way to extract these points is to apply
the Hough Transform (HT). In HT, every point in the spatial space will be
represented by a curve described by θHT and rHT in the HT space and every
point in HT space can be represented by a curve described by x and y [DH72]
in the spatial space. rHT in the HT space is the distance from the origin to
the lines going through it in the spatial space and the corresponding θHT is
the angle of the perpendicular vector from the origin to those lines measured
clockwise from the positive x axis. For example, the 19 reflection points (red
and yellow points) from the radar road markers in Figure 5.3 (c) are converted
to 19 curves in HT space in Figure 5.3 (e). The positions where most of the
curves intersect in the HT space form peaks and indicate that a line in the
spatial space corresponding to this θHT and rHT has the maximum likelihood.
Two peaks in Figure 5.3 (e) can be detected which indicates that two lines exist
most likely from the 19 spatial reflection points. The values of the two peaks
are both 7, meaning for each line in the spatial space, 7 points are included.
These points are marked in black squares in Figure 5.3 (c) and it can be seen
that not all 19 points contribute to the HT peaks because not all these 19 points
are located in perfect straight lines. This error can stem from the error during
the placement of the radar road markers, but can be also from the discrete FFT
bins of the detection points. In order to include the remaining points in the
spatial space into the peaks in the HT space, the resolution of θHT and rHT
of the HT can be reduced, which will however also include other points not
belonging to the road markers. Thus it is always a trade–off that needs to be
tuned according to the requirements.

By extracting these lines in theHT space, they can be used to get the points {p2}
in equation (5.1) with restricted input points. The restricted points are within
the distance rε to the extracted line denoted by θHT and rHT and their positions
are represented by Xε and Yε instead of X and Y. The new {p2} used in the
process of (5.3) is then the result of disCluster(Xε , Yε , d ′ps, d ′pt, nmin). After
this step, the part of the points {p} that are within rε to the extracted line shall
be used again as input points in equation (5.1) to get the final results, otherwise,
errors may happen. One such error can be seen in Figure 5.3 (d) where three
lines are extracted from HT. For the line (r3, θ3) after applying (5.3), the points
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4, 6, 12, 16 are excluded from the group. However, the remaining points 3,
10, 13, 14, 15 are not the reflection points from the radar road markers since
the intervals between them are not correct. Without applying equation (5.1)
again to get the final points, these points will be mistakenly clustered into radar
road makers (the reason is that these points are not directly connected, but
connected through the points that are excluded in the process of (5.3)). This
error can also be found in the line (r1, θ1) where the remaining point number
after process (5.3) through direct connection is 3 (smaller than the previous
setting nmin = 4).

Previous discussion focuses mainly on extraction of straight lines, if further
kinds of curves need to be extracted, a generalizedHT can be employed [Bal81].
For straight lines, only two–dimensional HT of θHT and rHT (assume two di-
mensional spatial space) is required. Curves like parabola or clothoids are
frequently used to fit the road curves and they require more parameters and
consequently higher–dimensional HT space and higher processing require-
ment. Table 5.1 summarizes the necessary parameters of various curves in HT
space (θHT for parabola in the table describes its orientation).

Table 5.1: Parameters to represent various curves in HT space.

Curve Parameters Equation
Line θHT, rHT x cos θHT + y sin θHT = rHT
Circle xHT, yHT, rHT (x − xHT)

2 + (y − yHT)
2 = r2

HT
Parabola xHT, yHT, rHT, θHT (y − yHT)2 = 4rHT(x − xHT)

5.1.4 Traverse all Possible Paths

In contrast to HT, this section presents another approach to extract the specified
point patterns: to traverse all possible paths in a clustered point group and to
evaluate the relation of the angles of the edges (a path is comprised of points
and their corresponding edges).

In order to find out all the paths, all 2–combinations of the clustered points
from equation (5.1) are listed as the head and tail points of the possible paths.
Then, all possible paths from the head point to the tail point will be traversed.
At last, the angles of the edges of all these paths will be evaluated according to
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pre–defined constraints. Such a process can be seen in the example in Figure 5.4
(a) where 9 points are clustered into 2 groups. For the first group with point
1 to 5, there are 10 possible 2–combinations. If point 1 is the head point and
point 3 is the tail point, then there are 3 possible paths:

• point 1→ point 2→ point 3

• point 1→ point 2→ point 5→ point 3

• point 1→ point 2→ point 4→ point 5→ point 3

Figure 5.4: (a) Illustration of the path traversal process. (b) Clustering results with the path traversal
method (angle variation: smaller than 10°; minimum point number nmin in one cluster:
5). (c) Reflection magnitude estimation with knowing the orientation of the road
markers. (d) Estimated and measured reflection magnitudes of the road markers in
Figure 5.3 (c).

Cycles in the path that lead to infinite loop of the path traversal algorithm shall
be avoided by constraining each point in every path only be able to be traversed
once. For instance, path: point 1→ point 2→ point 5→ point 4→ point 2
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→ point 3 is not allowed since point 2 appears twice in this path. After getting
all the possible paths, the angles or slopes of the edges connecting the points
are calculated and evaluated. It is worth noting that the direction of each path
shall be defined at first in order to evaluate the angle differences between the
edges. Refer to the second clustered group in Figure 5.4 (a) of point 6 to 9, the
angel difference between the edges from point 6 to 8 and 8 to 7 is φ, whereas
that between from point 6 to 8 and 8 to 9 is 180°− φ. If no direction is defined,
the angle difference between their edges of the two paths from point 6 to 9 and
6 to 7 could both be φ, which will lead to wrong clustering results. Figure 5.4
(b) presents such a clustering result with the path traversal algorithm of the
same reflection points as in Figure 5.3 (a) where green connections present
all possible edges based on the distance and black connections indicate the 3
clustered groups with their edges fulfilling the following constraints:

• angle difference between all edges in a path shall be smaller than 10°;

• minimum point number in a path is 5.

These constraints can be adjusted accordingly in order to detect point patterns
like circles, parabolas, etc.

5.1.5 Utilize Reflection Magnitude to Increase the
Clustering Reliability

The reflection magnitude of the road marker or its RCS is incident angle
dependent, so without knowing the incident angle, it is not possible to estimate
its reflection magnitude. However, after determining the point pattern of the
reflection points with HT or with the path traversal algorithm, the orientation
of every road maker can be determined. Together with its position, the incident
angle to the marker can be calculated, and together with the antenna gain, its
reflection magnitude can be determined, like the one shown in Figure 5.4 (c).
Figure 5.4 (d) presents such estimated reflection magnitude of the reflection
points in magenta circles and the real measured reflection magnitude of the
points in Figure 5.3 (a) in red and yellow points. The reflection magnitude
difference between the estimation and measurement can be used as a criterion
to determine whether these points come from the radar road markers or not. It
is worth noting that the relative reflection magnitude between the points in the
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clustered group is preferred to be used since all the reflectors in an area can
simultaneously be affected by the same factors like water coverage, resulting in
a similar reflection magnitude change of all these radar markers in this area. In
the results of Figure 5.4 (c), all the estimated magnitudes have 5 dB to 10 dB
decrease when compared to the measured magnitudes (and the slope of the
magnitude with respect to d of the estimation and measurement are similar),
so they are very likely from the reflection points of the radar road markers.

5.1.6 Summary

The above mentioned algorithm clusters the reflection points of the radar
road markers without utilizing training data or labelling data, which is an
advantage of this method. Tracking technology can be employed to decrease
the processing power requirement and to increase the detection accuracy. This
method can handle simple scenarios whereas for more complicated scenarios,
supervised clustering and classification can be utilized. The following two
sections will focus on this topic.

5.2 Pixel-wise Lane Segmentation with Neural
Networks

From 1943 in which year Walter Pitts and Warren McCulloch created a com-
puter model–the neural networks to mimic the working process of a biological
brain, DL has evolved significantly over the time. The dramatic improvement
in computational performance, especially the introduction of Graphics Proces-
sing Unit (GPU) in 1999 has further promoted the evolution of DL. In recent
years, the humongous amount of data that can be acquired through various
sensors also have boosted the development of DL. For perception tasks of au-
tonomous vehicles (but not only), DL plays a more and more important role.
However, most DL for perception tasks nowadays are designed for and applied
to camera sensors. In the following sections, the application of DL to radar data
for perception purposes, especially for lane segmentation, will be presented.

This section is organized as follows: firstly, the basic concept of DL and
its software calculation platforms are introduced. Then, two frequently used
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pixel–wise semantic segmentationNNarchitectures and the input data structure
of radar reflection points are presented, followed by the introduction of the
evaluation metrics and training parameter setup. After that, lane detection with
guard rails on the high way and radar road markings on the test field are
discussed.

5.2.1 Basics of Deep Learning - Steps Towards Semantic
Segmentation

DL is a branch of machine learning whose models are mostly based on an
artificial neural network (ANN). AnANN is a neural network (NN) constructed
to imitate thewayhow the neurons in a biological brainwork, however in amuch
simpler way: in a biological brain, the neurons can be connected in any way as
long as they are close to each other; conversely in ANN, the artificial neurons
are arranged in different discrete layers, and their connections and the data
propagation graph are also predefined. Figure 5.5 shows a simple multilayer
perceptron (MLP) ANN used for handwriting recognition with one–hot output
encoding. Before the NN can be used for prediction, the training process needs
to be completed.

Figure 5.5: Classic DL problem: handwriting digit recognition.

In Figure 5.5, every input image is represented by 5×5 = 25 pixels. If only the
occupancy of the pixel by the digit is considered (1 if the pixel is occupied by
the digit, 0 otherwise; other features like grayscale or RGB (Red, Green, Blue)
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values can also be used to form the input vector) as the NN input format, the
pixels in every image can then be flattened into a vector x(i):[

x(i)1 x(i)2 · · · x(i)
n[l]−1 x(i)

n[l]

]T
, (5.4)

where n[l] is the number of features in the layer l (n = 25 for Figure 5.5, l = 0
for input layer). x(i) is then mathematically manipulated by a weight matrix
W [l] and a bias vector b[l]:

W [l] =



w
[l]
1,1 w

[l]
1,2 · · · w

[l]

1,n[l−1]

w
[l]
2,1 w

[l]
2,2 · · · w

[l]

2,n[l−1]

...
...

. . .
...

w
[l]

n[l] ,1 w
[l]

n[l] ,2 · · · w
[l]

n[l] ,n[l−1]


, b[l] =


b[l]1
b[l]2
...

b[l]
n[l]


(5.5)

to get the neurons’ activation a[l] according to:

a(i)[l] = g(z[l]) = g(W [l]a(i)[l−1] + b[l]), (a(i)[0] = x(i) for l = 1) (5.6)

where g(·) is called the nonlinear activation function which enables the net-
work to solve nonlinear problems. This is a recursion process called forward
propagation and for the last layer of the NN, n[l] is the number of the classes to
be predicted, a(i)[l] is the hypothesis of the ith input data x(i) and is represented
by ŷ(i) with the ground truth output represented by y(i).

With both the ground truth output y(i) and the corresponding hypothesis output
ŷ(i), a loss function L(y(i), ŷ(i)) is utilized to indicate their discrepancy. This
is only for a single input x(i). In order to characterize the discrepancy for all
m training data, an averaged loss function across all these samples–the cost
function J(W, b) is used:

J(W, b) =
1
m

m∑
i=1

L(y(i), ŷ(i)),W = {W [l] |1 ≤ l ≤ L}, b = {b[l] |1 ≤ l ≤ L}

(5.7)

As an example of the cost function, if a soft–matrix layer is employed in
the last layer, then the output hypothesis is normalized in the range [0 1],
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a cross–entropy loss function then can be used to indicate the discrepancy of
hypothesis from the ground truth labelling, and the corresponding cost function
is expressed as follows:

J0(W, b) = −
1
m

m∑
i=1

K∑
k=1
(y
(i)
k

log ŷ
(i)
k
+ (1 − y

(i)
k
) log(1 − ŷ

(i)
k
)). (5.8)

where the subscript k represents the k th output of K classes (K = n[l]). For the
illustration in Figure 5.5, K equals to 10.

Observing the above equation, it can be found that if the discrepancy between
labelling y

(i)
k

and hypothesis ŷ(i)
k

gets larger, the loss will increase dramatically,
indicating that the loss or cost function will penalize the wrong prediction:
when the labelling y

(i)
k

is 1, if the hypothesis ŷ
(i)
k

is also 1 which means a
correct prediction, then the loss will be 0; conversely, if the hypothesis is 0
which means a totally wrong prediction, then the loss will be infinitely large;
when the labelling y

(i)
k

is 0, if the hypothesis ŷ
(i)
k

is also 0 which means a
correct prediction, then the loss will be 0, conversely, if the hypothesis is 1
which means a totally wrong prediction, then the loss will be infinitely large.
This property is also illustrated in Figure 5.6. Theoretically, the loss or cost
can be zero, which is however hardly reachable in practice.

Sometimes, the trainedmodel works well for the training dataset, but not for the
testing dataset which is not used for training. This problem is called overfitting
in DL. The solutions to such problem are to include more training data, utilize
dropout layers, add an additional regularization item in the cost function, etc. In
equation (5.9), a Frobenius Norm item is added in the cost function to address
this problem where λ is the regularization parameter in the range of [0 1].
This parameter is a manually tuned parameter and when it is set close to 1, the
overfitting problem can be addressed whereas the contrary of overfitting–the
underfitting problemmay arise instead. In contrast, if this parameter is set to be
close to 0, then the overfitting problem may arise. So an appropriate selection
of λ is very essential.

J(W, b) = J0(W, b) +
λ

2m

L∑
l=1

n[l−1]∑
i=1

n[l]∑
j=1
(w
[l]
j ,i)

2. (5.9)
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Figure 5.6: Loss function: penalize discrepancy between labelling (ground truth) and hypothesis.

As been mentioned above, the cost function describes the discrepancy between
labelling and prediction. So the task of the training process is to minimize
the cost function J(W, b) by tuning W and b. Backpropagation is a frequently
used method to achieve min

W ,b
J(W, b) by calculating the gradient of J(W, b)with

respect to W and b: ∂J(W ,b)
∂W and ∂J(W ,b)

∂b . Then the trained parameters can be
updated as follows:

repeat {W : = W − κ
∂J(W, b)
∂W

b : = b − κ
∂J(W, b)
∂b

}

(5.10)

where κ represents the learning rate.

After the training is finished, i.e., the values of W and b are updated so that
the cost J(W, b) reaches a minimum value, the trained parameters can be used
for predicting the hypothesis of the untrained data. The above process is the
basic concept of training a DL network and in practice, more techniques li-
ke Dropout Regularization, Data Augmentation, Input Normalization, Batch
Normalization, Mini Batch, Gradient Descent with Momentum, Adaptive Mo-
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ment Estimation (ADAM) Optimization, and Learning Rate Decay, etc. are
frequently employed.

Since the basic model mentioned above flattens the input images into vectors,
the spatial information of the images are not fully exploited. In order to address
this problem, a special structure ofMLP–the CNNs is developed and Figure 5.7
(a) illustrates such a simple CNN. Different to MLP where the flattened input
vector is multiplied by W [l], in CNN, the input matrix (or pixels for images)
does not need to be flattened so that the spatial information can be retained.
Instead of W [l] in MLP, matrices called kernels (sometimes also named filters
or feature detectors) are used in CNN to get the convolutions of each patch
of the input matrices. These kernels are moved all around the input matrix
to get the output so that they can be seen as the weights shared by all the
patches of the input matrix. These convolutional values are then fed into
activation functions to enable non–liner computations which is similar to that
of MLP. Several parameters of the convolution are frequently used: kernel size;
stride that defines the movement step size of the kernel; padding that defines
the extension of the border of the input matrix; dilation rate that defines the
spacing between the values in a kernel in order to widen the field of view at
the same computational cost. Figure 5.7 (b) gives two examples with dilation
rate equal to 0 and 1. The last layers of CNN are usually also MLPs after the
output of the convolutional layers are flattened. In practice, in order to improve
the prediction robustness, several pooling layers will be added between the
convolutional layers.

The training of a CNN calculates the values of the kernels that minimize the
cost J and the learned values describe the features in the input matrix that
are learned during training. So the kernels are also named feature maps. The
feature learning process is a recursive process, indicating those features learned
by the latter layers are based on the features learned by the previous layers,
so the front layers learn low–features and the latter layers learn high–features
based on those low–features.

With this NN, the class of the input can be predicted. Researchers in [BKC17],
[SLD16] make a step forward. With the images as the input, they have achieved
pixel–level understanding–the semantic segmentation with a CNN–based NN.
Figure 5.8 (a) shows a segmentation examplewith a photo taken on the highway
as the input and the trained model [BKC17] for prediction. This architecture
can be thought as a structure containing two sub–networks, one to convert
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(a)

(b)

Figure 5.7: (a) Architecture of a CNN and (b) its convolution process.

the input matrix into predictions and the other one to convert the pixel–wise
segmentations into the same predictions as from the first half of the network.
This process is illustrated in Figure 5.8 (b)where the predictions fromboth sides
meet at the middle of the image. So typically, such segmentation architecture
is symmetric (the weights however need to be learned individually). In this
chapter, such idea for image semantic segmentation with images recorded with
camera sensors will be applied for radar data–based semantic segmentation,
especially for lane segmentation.
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(a)

(b)

Figure 5.8: (a) Pixel-level image semantic segmentation [BKC17]. (b) Principle of pixel-wise
semantic segmentation NN.

5.2.2 Deep Learning Framework

It has been mentioned above that training a NN model is simply to find the
optimal weights and biases of this model so that the total cost of all the training
data reaches a minimum value. With the help of CPUs, GPUs, TPUs, etc., this
calculation process can be significantly accelerated. A graph representing the
architecture of the NN, together with training specifications can be created in
some platforms to accomplish the computation task. TensorFlow developed by
GoogleBrainTeam,Keras, PyTorch, Caffe, Theano, etc. are frequently usedDL
frameworks. All the results in this dissertation are realized with TensorFlow.

5.2.3 Grid Segmentation Neural Network Architecture

FCN semantic segmentation [SLD16] and SegNet [BKC17] are the first enco-
der–decoder architectures for image semantic segmentation where the encoder
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(a)

(b)

Figure 5.9: (a) Comparison between decoder architectures in SegNet [BKC17] and FCN semantic
segmentation [SLD16]. (b) Architecture of a 5-Layer SegNet [BKC17].

converts the input image into feature map vectors and the decoder converts the
semantic segmentation back to the input image dimension. The part of the de-
coder is where various NNs of segmentation differ, for example, in Figure 5.9
(a), two distinct decoders of SegNet and FCN are presented. For the decoder
in SegNet, upsampling is performed with max unpooling and the indices link
that connects the corresponding encoder layer that indicates the position of the
value to be set during upsampling. In the following section, the SegNet is used
for the semantic segmentation with the radar data.

Figure 5.9 (b) shows the architecture of a 5–layer SegNet used in this chapter
with its parameters described in Table 5.2 where the receptive field describes
the region in the input space that is converted into a feature value in correspon-
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ding layers. For each convolution layer with batch normalization: stride = 1
and padding = SAME; for each max un–/pooling layer: stride = 2 and pad-
ding = SAME; dilation = 1 is for the whole network. Sublayers 1 to 11 belong
to the encoder network and the remaining ones belong to the decoder network.

Table 5.2: Configuration of SegNet and its corresponding receptive field.

Layer 1 2 3
Sublayer 2 3 4 5 6 7
Kernel size (7,7,64) (2,2) (7,7,64) (2,2) (7,7,64) (2,2)
Receptive field 7 × 7 8 × 8 20 × 20 22 × 22 46 × 46 50 × 50

Layer 4 5
Sublayer 8 9 10 11
Kernel size (7,7,64) (2,2) (7,7,64) (2,2)
Receptive field 98 × 98 106 × 106 202 × 202 218 × 218

5.2.4 Input Dataset Preparation

Unlike the pixels in images captured by video sensors, the data collected by
radar sensors after CFAR process are discrete reflection points. Figure 5.10
illustrates two different methods to feed such detection points into the NN:

• FFT grid: as has been mentioned in previous chapters, the position
of the radar reflection points is determined by target range r and its
corresponding azimuth angle β, both of which are equally spaced values.
So all possible detection points will fit into a fan–shaped grid map like
the one shown in Figure 5.10 in orange color;

• Custom grid: unlike the fan–shaped FFT grid cells, square–shaped grid
cells of identical size are manually created, and the reflection points are
filled into these cells afterwards, like the one shown in Figure 5.10 in
grey color.

In Figure 5.10, two identical grey squares are created to illustrate the possible
objects in two distinct ranges and the blue points around them are to represent
their possible detection points. If the FFT grid is employed, then the reflection
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Figure 5.10: Input data for NN.

points of these two objects will form two totally different shapes like shown in
Figure 5.10 and this shape deformation is caused by the “deformed” fan shape
itself. For the second variant–the custom square, this shape deformation does
not exist.

So although both input formats are possible to be used as NN input, the latter
one is simpler and thus preferred in this dissertation. Because of the point
density variation with respect to range, the reflection points of the same object
at all various ranges shall be included in the training dataset.

In the following implementations, several input features are considered:

• Single channel inputwith binary digit: as the simplest way, when a square
grid is filled with at least one reflection point, then this cell is represented
with digit 1. When the cell is empty otherwise, it is represented with
digit 0. In the following description, the 5–layer NN in Figure 5.9 (b) is
represented by model B5. Structures with 4 and 3 layers are represented
by model B4 and B3, respectively.

• Single channel input with maximum normalized reflection amplitude:
instead of binary digits, the cells can store the amplitude value of the
reflection points. However, the reflection amplitude of the same object
can be different with a different parameter setup of the radar or with
different radars. So the RCS or the normalized amplitude of the points
are preferred. In this work, the normalized reflection amplitude will be
employed and it is calculated as follows: the ground clutter reflection
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points are firstly be selected and sorted according to their amplitudes,
then the ones with their amplitudes between 20% and 80% among the
sorted points are averaged. At last, all the reflection points are normalized
with respect to this averaged amplitude value. If several points are located
in the same cell, the one with the maximum magnitude will be selected.
Such input with 5–layer and 4–layer (with the last layer in encoder
and first layer in decoder layer of Figure 5.9 (b) deleted) structures are
represented by model A4 and A5, respectively.

• Two–channel input with point number and maximum normalized reflec-
tion magnitude: different from single input channels, in this model, two
channels are considered. In the first channel, the number of points in
every cell is calculated (similar to point density) as the input feature.
In the second channel, the maximum normalized reflection magnitude
is calculated. Such input with 5–layer structure is represented by model
C2.

• Four–channel input: the first two channels are identical to those of model
C2, the last two channels contain additionally the range and angle of the
cells. Such input with 5–layer structure is abbreviated with model C4.

The radial velocity feature of the reflection points can be used to differentiate
moving objects from static objects. In order to prove the ability of the NN to
distinguish objects like guard rails, trees and bushes at road side, vehicles in
traffic jam also without any velocity information, the feature velocity is not
used.

5.2.5 Evaluation Metrics

In order to evaluate the performance of the prediction results, several parame-
ters are used:

• True positive (TP): an actual positive value is correctly predicted as
positive.

• False positive (FP): an actual negative value is wrongly predicted as
positive.
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• True negative (TN): an actual negative value is correctly predicted as
negative.

• False negative (FN): an actual positive value is wrongly predicted as
negative.

• Accuracy: among all the predictions, the percentage of correct predic-
tions, calculated by: TP+TN

TP+TN+FP+FN .

• Precision: the fraction of positive predictions that is correct, calculated
by: TP

TP+FP .

• Recall: the fraction of actual positive values that is correctly predicted,
calculate by: TP

TP+FN .

• F1 score: a value considering both precision and recall, calculated by:
2

F1 score =
1

Precison +
1

Recall .

• Intersection over union (IoU): area of overlap over area of union, calcu-
lated by: TP

TP+FP+FN .

In summary, these definitions are also visualized in Figure 5.11.

Figure 5.11: Evaluation metrics.
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5.2.6 Training Parameters

• Objective loss function: cross entropy loss function.

• Optimization algorithm: ADAMwith initial learning rate equal to 0.001,
exponential decay rate for the 1st and 2nd moment estimation equal to
0.9 and 0.999 respectively [KB15].

• Dataset distribution: 64% for training, 16% for validation, 20% for tes-
ting.

• Activation function: Rectified Linear Unit (ReLU) for encoder network,
no activation function for decoder network.

• Input normalization: Local response normalization with depth radius
equal to 5, bias equal to 1, alpha and beta equal to 0.0001 and 0.75
respectively [KSH12].

• Intermediate layer normalization: Batch normalization [IC15].

5.2.7 Guard Rail Based Lane Segmentation on the Highway

Output Dataset Preparation - Labelling

In order to calculate the NN parameters W and b, ground truth values y(i) are
required which are created through labelling. To detect the lane by the guard
rails at the two sides of a highway, 6673 measurement cycles with 300 × 450
grid cells covering 40 m × 60 m (13.3 cm × 13.3 cm for one single grid cell)
in each cycle are labelled. Figure 5.12 shows two measurements and their
corresponding labelling examples. Besides the driving lane (purple, class 1),
the vehicles on the lane are also labelled (red, class 2) to indicate that the
area is not drivable regardless of the lane. The rectangles hitting all the points
belonging to one vehicle are labelled to represent the vehicles. All remaining
regions are labelled as undefined (class 0). In Figure 5.12, vehicle A is not
labelled as a vehicle since there exist no guard rail at its right side; in other
words, in this labelling, a lane with guard rails at both sides is the prerequisite
for the vehicle. The statistics of the labelling are as follows: class 0 (785,168,388
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grids, 87.2%); class 1 (112,777,272 grids, 12.5%); class 2 (2,909,340 grids,
0.3%).

Figure 5.12: Labelling of the driving lane on a high way between guard rails (purple, class 1) and
relevant vehicles (red, class 2). Test vehicle equipped with radar at its front is at the
position of x = 0 m and y = 0 m.

Training Metrics and Predictions

Figure 5.13 presents the training metrics of the validation dataset up to Epoch
65. An Epoch consists of one full training of all the training data, meaning
equation (5.10) is updated 65 times during training (actually, the training data
is divided into several sub–datasets, called mini–Batches in order to decrease
the memory requirements and to accelerate the training process).

Figure 5.14 (a) shows the prediction results with trained model B5. It can be
found that although vehicle A is not labelled as vehicle in Figure 5.12, it is
recognized partly as a vehicle, which reduces the precision score of class 2 in
Figure 5.13. So in another variant, all the vehicles are labelled regardless of
the presence of the guard rails (e.g. vehicle A in Figure 5.12 is also labelled as
a vehicle) and its corresponding prediction result of Figure 5.14 (a) is shown
in Figure 5.14 (b). The corresponding training metrics are also plotted in
Figure 5.13 with the model name B5–AllVeh. All the testing metrics can be
found in Table 5.3 where the precision of class 2 improves from 0.46 with
model B5 to 0.61 with model B5–AllVeh.
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(a)

(b)

Figure 5.13: Validation metrics during training. (a) Loss and accuracy of the validation dataset up
to training Epoch 65. (b) Precision and recall of the validation data set up to training
Epoch 65.
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Figure 5.14: (a) (b) Segmentation results of Figure 5.12 with model B5 and model B5-AllVeh
at Epoch 65. (d) (e) Segmentation results of model A4 and model A5 with the lane
width equal to about 20 m. (f) (g) Segmentation results of model A4 and model A5
with no guard rail existing at the right side (no defined lane). (c) The corresponding
measurement scene of (d), (e), (f), (g) recorded with a camera mounted in the test
vehicle. Test vehicle equipped with radar at its front is at the position of x = 0 m and
y = 0 m.

From the training metrics, it can be concluded that the results of model B5,
A5, C2 present nearly no difference, indicating the amplitudes of the reflection
points do not contribute to the prediction performance. In contrast, those of
model A4 and C4 are much worse. Table 5.2 shows that the receptive field of
model A4 used in this section is 106 × 106 and for certain datasets, the space
between the guard rails at two sides of the road can be up to about 20 m (150
grid cells with 13.3 cm / grid cell) like the example shown in Figure 5.14 (c).
In this case, the receptive field is not large enough to cover the width of the
lane where the guard rails at both sides are the critical feature for learning
(with guard rails at only one side of the lane, no area will be recognized and
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Table 5.3: Test metrics of guard rail-based lane detection with a segmentation network.

Epoch 65 93
Class Metrics A4 A5 B5 B5-AllVeh C2 C4 B5 C4

1

Precision 0.54 0.88 0.85 0.88 0.71 0.49 0.86 0.84
Recall 0.95 0.88 0.97 0.95 0.99 0.99 0.97 0.94
F1 score 0.69 0.88 0.90 0.92 0.83 0.65 0.91 0.89
mIoU 0.52 0.79 0.83 0.85 0.71 0.49 0.83 0.80

2

Precision 0.42 0.50 0.46 0.61 0.38 0.24 0.56 0.54
Recall 0.93 0.93 0.95 0.97 0.95 0.98 0.93 0.93
F1 score 0.58 0.65 0.62 0.75 0.54 0.38 0.70 0.68
mIoU 0.41 0.49 0.45 0.60 0.37 0.24 0.54 0.52

labelled as lane). For model A5, the receptive field is 218× 218 corresponding
to about 29 m width. Figure 5.14 (d), (e), (f), (g) present the prediction results
with model A4 and A5 for a road width equal to about 20 m and a lane without
guard rail at its right side, respectively. For model C4 with 4–channel input,
the learning procedure is much slower than the others since it contains more
input data: its performance is much worse than that of model A5, B5, C2 up to
Epoch 65. Up to Epoch 93 in Table 5.3, its performance gets closer to that of
model B5, which is however still not better. Since training curve up to Epoch
93 is already flat, no obvious performance improvement can be expected. It
can be concluded that input data with more channels including point density,
point amplitude, and point positions bring us no advantages over the simple
binary input data format. So they just increase the calculation consumption and
training time without benefit.

Besides the prediction accuracy, another very important indicator for the mo-
del is the prediction efficiency. In this section, the number of measurement
cycles predicted per second–the prediction frequency with various GPUs is
summarized in Table 5.4. The two single channel models with amplitude va-
lues and binary digits have no difference. Models with fewer layers consume
less time, but the trade–off between precision and prediction efficiency shall
be considered.
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Table 5.4: Prediction frequency (cycle/s = Hz) of guard rail-based lane detection with a segmen-
tation network.

GPU Processing power –single precision (TFLOPS) Model
A5 B5 B4 B3

NVIDIA M2000M 1.4 3.1 3.1 3.3 3.5
NVIDIA Quadro P6000 10.9 24.1 24.1 25.7 27.3
NVIDIA Quadro GV100 16.7 37.0 37.0 39.4 41.8

5.2.8 Radar Road Marking Based Lane Segmentation

The lane segmentation in the last section relies on guard rails at two sides of the
road. However, not all roads have such guard rails at both sides. Furthermore,
for a roadwithmultiple lanes, it is not possible to build such guard rails between
all these lanes.

In chapter 3, a radar detectable roadmarking / marker with low profile andwide
reflection angle range is introduced. In section 5.1, corresponding clustering
algorithm based on the intervals between points and the patterns formed by
the points are presented. In this section, the lane semantic segmentation results
with such radar road markings will be given.

Output Dataset Preparation - Labelling and Data Augmentation

Similar to section 5.2.7, but with reflection points of guard rails replaced by
radar road markings, the areas between these reflection points are defined and
labelled as driving lanes. Examples can be seen in Figure 5.15 (a). There are
two classes in these measurements: lane (purple, class 1) and no lane (no
color, class 0). Totally, 680 measurements cycles with 227 × 227 grid cells
in 40 m × 40 m in each cycle are labelled under which 96.2% (33714144 grid
cells) are class 0 and 3.8% (1325576 grid cells) are class 1.

In order to increase the volume of the training data set, the reflection points in
680 measurement cycles are randomly rotated and transformed before they are
added in the training dataset–the data augmentation. Before the transformation,
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(a)

(b)

Figure 5.15: (a) Lane labelling on a test field when the vehicle is at position 4, 5, and 6 in
Figure 4.13. (b) Training data augmentation with rotating and translating all the
reflection points with respect to radar position after excluding the ground clutter
reflection points. Test vehicle equipped with radar at its front is at the position of
x = 0 m and y = 0 m.

the reflection points from ground clutter need to be excluded since these points
appear only in the near range of the radar sensor. Besides, the data augmentation
also helps to avoid the problem of data over fitting during training. Figure 5.15
(b) shows one example of data augmentation of one measurement data used for
training by transforming the positions of the reflection points after excluding
ground clutter in the near range.

Data augmentation for reflection points only makes sense for binary input
features. For features like reflection amplitude, radial velocity, the data aug-
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mentation through point transformation is not appropriate since these values
change when the positions of the reflection points are transformed.

Training Metrics and Predictions

The prediction performance is compared with various layer numbers of the
NN and input formats and the results are presented in Table 5.5. Similar to the
results in section 5.3.3, the accuracy with including amplitude features of the
reflection points is not improved. For binary input with various NN layers, there
is a performance surge from 1 layer to 2 layers and from 2 layers to 3 layers.
This improvement decreases after 3 layers and the result stays stable after 5
layers. The receptive field of a 3–layer NN is 50× 50 grid cells (8.8 m× 8.8 m)
according to Table 5.2 whereas that of a 2–layer NN is 3.9 m × 3.9 m. For the
measurements, the maximum width of a lane is 7 m (refer to Figure 4.13), so
a minimum layer number of 3 is required to cover these measurements which
matches good with the results in Table 5.5. In the following sections, a 5–layer
model with binary feature input is applied.

Table 5.5: Test metrics of class 1 with respect to the number of layers of the segmentation neural
network and input data format.

Input format Layer number 1 2 3 4 5 6

Single channel binary digit
Precision 0.20 0.52 0.91 0.87 0.89 0.94
Recall 0.06 0.67 0.79 0.99 0.92 0.86
F1 score 0.10 0.58 0.85 0.89 0.91 0.90

Single channel normalized amplitude
Precision 0.24 0.31 0.91 0.89 0.86
Recall 0.23 0.81 0.87 0.92 0.94
F1 score 0.24 0.44 0.89 0.91 0.90

Feature Map - Features Learned by the Neural Network

After the training process is finished, the learned parameters W[l]n[l] can be
visualized–the so called feature maps. In Figure 5.16 (a), 64 feature maps of
the first layer are presented (l = 1 for the first layer and kernel number n[1] = 64
according to the kernel size in Table 5.2). To better understand the features
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learned by the NN, synthetic datasets can be generated and fed into the trained
model. Part of the tested synthetic datasets can be seen in Table 5.6 where the
parameters like the intervals between the points, the lane width, the number
of noise points and the points of other objects are adjusted. These parameters
of the trained datasets (datasets that are used for network training, not the
synthetic data) and the corresponding prediction metrics are also added at the
top of the table for comparison. Part of the synthetic data prediction results are
plotted in Figure 5.16 (b)–(f).

Figure 5.16: (a) Feature map at the first layer of NN learned during training. Segmentation results
of synthetic (b) data set 3, (c) data set 5 with larger point intervals, (d) data set 9
with larger lane width, (e) data set 13 with noise, and (f) data set 17 with part of the
lane occupied by other objects. Test vehicle equipped with radar at its front is at the
position of x = 0 m and y = 0 m.

From the Table 5.6, it can be seen that if the point interval between the points
is increased or decreased (synthetic datasets 1 to 5 and Figure 5.16 (c)), the
prediction score decreases dramatically. This is also valid for the results of
a changed lane width (synthetic datasets 6 to 10 and Figure 5.16 (d)). This
proves also that the learned features of the NN is the width of the lane and the
interval between the reflection points. With more points of the noise (synthetic
datasets 11 to 14 and Figure 5.16 (e)) and other objects (datasets 15 to 17 and
Figure 5.16 (f)), the prediction performance also deteriorates which is within
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Table 5.6: Test metrics of synthetic datasets with trained model.

Point in-
terval (m)
(left, right)

Lane
width
(m)

Noise
point
number

Object
point
number

Precision Recall F1 score

Measurement
data / training
data

(1.5, 2.0) 3.5
N.A. 0.89 0.92 0.91(2.0, 1.5) 3.5

(2.0, 2.0) 7.0

Synthetic
datasets

1 (0.7, 0.7)

3.5 0

1.00 0.69 0.82
2 (1.5, 2.0) 0.91 0.93 0.92
3 (2.0, 1.5) 0.95 0.94 0.95
4 (4.0, 3.0) 0.82 0.79 0.80
5 (8.0, 6.0) 0.85 0.12 0.21
6

(2.0, 1.5)

2.6

0

0.68 0.74 0.71
7 6.0 0.98 0.64 0.77
8 8.0 1.00 0.80 0.89
9 10.0 0.77 0.05 0.09
10 14.0 0.46 0.03 0.06
11

3.5

16

0

0.95 0.93 0.94
12 64 0.98 0.90 0.94
13 256 0.49 0.08 0.14
14 1024 0.11 0.03 0.05
15

0
8 0.97 0.91 0.94

16 32 0.93 0.89 0.91
17 128 0.94 0.66 0.78

expectation since such cases are not included in the training dataset. These
synthetic datasets can also be included into the training datasets to improve
the segmentation performance and robustness, and also to decrease the work
to measure and record data in such cases in the real world.

Improve Segmentation Stability with Bayes’ Theorem

With data augmentation, the segmentation performance increases. However,
some prediction errors appear in certain single measurement cycles which
makes the prediction a bit unstable. Figure 5.17 (a), (b), (c) present such
errors, and most of them are FP errors (lane as the detection target). In order
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to increase the prediction stability, several consecutive predictions pn can be
combined to get a joint probability Pn according to Bayes’ Theorem:

log
Pn

1 − Pn
=

n∑
i=n−k+1

log
pi

1 − pi
(5.11)

where p is the NN inferred probability from ith single measurement that a grid
belongs to the lane, n is the current measurement cycle, and k is the number
of consecutive preceding predictions.

Figure 5.17: Segmentation results with ((d) to (f)) and without ((a) to (c)) Bayes’ recursion.

Generally, there are two approaches to get the joint predictions Pn like shown in
Figure 5.18 (a) where two consecutive measurements A and B are considered
as example:

• in the first approach, a global grid map is used as the reference grid map
and all the reflection points from related measurement cycles are filled

111



5 Clustering and Classification of Radar-detectable Roadside Landmarks for Lane Course and
Lane Border Determination

into this reference gridmap. In the example of Figure 5.18 (a), the vehicle
makes a rotation from position A to B. The reflection points of these two
measurements are both filled into the same grid map in grey color. For
the first measurement, the orientation of the detected area (solid blue
rectangle, assumed that the radar is mounted in front of the vehicle)
is identical to that of the reference grid map, whereas for the second
measurement, the detected area by the radar (dashed green rectangle)
is not. Then a minimum rectangle that is aligned with the reference
grid map cells is created (solid green rectangle) and the cells inside this
rectangle are used as the NN input data for the second measurement.
With this method, the prediction cells of both measurements (filled
rectangles in green and blue color) will overlap with each other without
offset. During Bayes calculation step, the prediction cells that are not
overlapped with preceding prediction cells are set to 0.5, indicating that
the prediction cell of this measurement will not influence the value of
the joint prediction Pn. This approach also shows that for predicting
test data with the trained models, the input dimension of the test data
can be different from that of the trained data (like the solid green and
blue rectangles can be both predicted by the trained model but only the
dimension of the blue rectangle is identical to that of the trained data).
This indicates that the features learned by the NN depend not on the
absolute positions of the features, but on the local features.

• in the second approach, after the detection points are collected (solid
blue and dashed green rectangles), they are immediately sent to the NN
to conduct predictions (filled solid blue and dashed green rectangles).
However, the prediction cells of these twomeasurements will not overlap
totally with each other, meaning additional algorithms are needed to
merge their prediction results besidesBayes’ Theorem. Like the approach
2 in Figure 5.18 (a), the prediction cell pn(1) aligns with none of pn-1(1),
pn-1(2), pn-1(3), and pn-1(4). So the value pn-1 to calculate the joint
prediction Pn is unclear. One solution is to calculate theweighted average
based on the percentage of the overlapped area between cell pn(1) and
pn-1(1), pn-1(2), pn-1(3), pn-1(4). Since this approach is more complex
and consumes more calculation time, approach 1 is preferred.

To calculate the joint predictions after the movement of the vehicle, the relative
position after the movements are needed. To get these data, CAN (Controller

112



5.2 Pixel-wise Lane Segmentation with Neural Networks

(a)

(b)

Figure 5.18: (a) Two approaches to calculate the joint probability Pn from consecutive preceding
predictions. (b) Calculation flow of a joint prediction with Bayes’ Theorem and
morphological closing and opening algorithm.
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Area Network) data, ADMA data, or radar based SLAM algorithm can be
utilized.

After getting the joint prediction Pn, morphological closing and opening algo-
rithms are employed in order to eliminate minor outliers, to fill small gaps, and
to smooth the contours. The whole processing chain can be seen in Figure 5.18
(b). The improved joint prediction results of Figure 5.17 (a), (b) and (c) are
correspondingly presented in Figure 5.17 (d), (e) and (f).

Contour and Bounding Box Detection

After each pixel is classified, a contour or bounding box describing the shape,
size and orientation of the object can be created. This can be finished by
processing the prediction results of the semantic segmentation NN. However,
if only the boxes need to be detected, it is not necessary to carry out the
pixel–wise prediction any more. Because the number of the parameters to
describe such boxes is much smaller than the number of the pixels to be
predicted, by employing an NN architecture that predicts the boxes directly
without pixel–wise classification, the prediction efficiency can be increased.

Figure 5.19 (a) and (b) present two labelling examples of the detection points
in Figure 5.12. The labelling boxes are irregular quadrilaterals that are defined
with eight geometric parameters like shown in Figure 5.19 (c). To create the
ground truth vector ŷ(i) and to describe the NN output y(i), a confidence score
pe that denotes the probability of the existence of an object and a class score pk
that predicts the class of the object are added. By taking the NN architecture
of YOLO in [RF18] but replacing the prediction output of rectangles with
irregular quadrilaterals defined in Figure 5.19 (c), the prediction results of the
detection points in Figure 5.12 are presented in Figure 5.20 where the numbers
beside the predicted boxes are pepk.

Table 5.7 presents the evaluation results of the predictions (AP50 denotes the
average precision of the predictions whose detection boxes having the IoU
with the ground truth boxes larger than 0.50 considered as correct predictions).
Because the results of AP90 are nearly zero, it can be concluded that the
predicted boxes match not perfectly with the labellings. This conclusion can
also be found in the visualized prediction result in Figure 5.20 (a) where the
predicted contour does not match perfectly with the road (the predicted box
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Figure 5.19: (a) Contour and bounding box labelling of the detection points in Figure 5.12. (b)
Parameters to describe the box.

is shifted to left). If we compare the mIoU in Table 5.7 with that in Table 5.3
(model B5-AllVeh), the results in Figure 5.20 (a) with those in Figure 5.14 (a),
(b), we can conclude that the prediction accuracy of such a NN is not as good
as the previous presented semantic segmentation NN. However, the prediction
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Figure 5.20: Contour and bounding box prediction results of the detection points in Figure 5.12
with YOLO [RF18] by replacing the prediction output of rectangles in [RF18] with
irregular quadrilaterals defined in Figure 5.19 (c).

frequency with such a NN (GPU: NVIDIA M200M) is about 6.2 Hz, which is
faster than the prediction with the segmentation NN in Table 5.4.

Table 5.7: Evaluation results of contour and bounding box prediction.

AP50 AP75 AP90 mIoU
Road 0.76 0.20 0.02 0.66
Vehicle 0.73 0.08 0.01 0.60

5.2.9 Summary

This section presents the working principle of NNs and applies a segmentation
network for radar reflection point–based lane segmentation. It shows the po-
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tential of DL in road segmentation with high resolution radar data, a method
which is currently mostly implemented with optical sensors like camera or
LiDAR. A low level sensor fusion and its joint-segmentation carried out by
different sensors (e.g. radar and video) can support to improve the robustness
of the system for autonomous driving functions like free space detection, lane
course prediction and automated vehicle steering. In the next section, instead
of pixel-wise semantic segmentation, point-wise segmentation is discussed.

5.3 Point Cloud Lane Segmentation with Neural
Networks

In section 5.2, segmentation is based on grid cells by filling radar reflection
points into them like shown in Figure 5.10. This approach is similar to seg-
mentation on pixel–level for video images. However, such a filling process by
manually creating a grid map causes problems. For example, the filling of the
points into the grid cells will unavoidably introduce additional errors to these
point features. So the feasibility of taking directly the point itself as the NN in-
put is worth discussing. Besides, using points as input also decreases the input
data size. For example, we have counted the number of reflection points collec-
ted by the high–resolution automotive radar prototype [MSK15], [MSK17]
tested on highways: there exist in total 6,234,499 reflection points in 10,154
measurement cycles with the lateral range of the receptive region from −20 m
to 20 m and longitudinal range from 0 m to 60 m, resulting in about 614 reflec-
tion points in one measurement cycle on average. If a grid map is created in this
receptive region with 0.5 m resolution, then 120 × 80 grid cells are generated
for every measurement cycle, which is much larger than 614. This comparison
has not yet considered that if a 3D grid cubic is employed or if the resolution of
the created grid map is better than 0.5 m (the resolution of an automotive radar
can be much better than 0.5 m), this difference will be even much larger. So it
is advantageous to make predictions directly based on the points also from the
view of input data size.

However, to use reflection points directly as theNN input data, several problems
need to be solved:
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• Unstructured input data: unlike the grid cells, the reflection points have
no fixed structure, so the conventional CNN and CNN–based segmenta-
tion NN can not be applied to these reflection points.

• Varying point number: the number of the collected reflection points
varies with respect to the measurements. The number of reflection points
of the same object can be different even with the same radar and radar
setup. However logically, this point number variation shall not influence
the prediction results.

• No defined point sequence: the input sequence of the reflection points
into the NN is not defined and can be different, which however shall
also not lead to different predictions. In other words, the prediction shall
be independent of the input point permutation. So sequence–related
NNs like RNN (Recurrent Neural Network), LSTM (Long Short–Term
Memory) are not appropriate.

In this chapter, the reflection points collected by a high–resolution radar (point
cloud) in single–cycles are semantically segmented, especially w.r.t. lanes, or
rather, guard rails on the highway and radar road markings on the test field.
A NN originally designed for LiDAR point cloud segmentation is modified to
improve the prediction performance for radar data.

5.3.1 Classification with Support Vector Machine (SVM)

SVM is a branch of supervised machine learning and is a simpler method that
requires less computational effort to classify points comparedwith DL. A SVM
is a classifier that utilizes a trained hyperplane (mostly with a transformation
kernel to convert the inputs to higher dimensions) to accomplish the point
cloud classification. However, SVM is usually only effective in cases where
the number of the data dimension is larger than the number of training data,
which is not the case in this chapter.
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5.3.2 PointNet and PointNet++

In order to solve the problems raised at the beginning of this section, aut-
hors in [QSKG17] and its improved version [QYSG17] proposed point–wise
segmentation NNs called PointNet and PointNet++ for classification of the re-
flection points collected by LiDAR sensors. The main principle of PointNet is
to integrate a symmetric function into the NN. Typical symmetric functions can
be a max function, a sum function, etc. With a symmetric function integrated
in the NN, the input data is converted into a feature vector that is not dependent
on the number of the input reflection points and its permutation. Figure 5.21
(a) illustrates such a process where N is the number of input points, C[l] is the
number of features of a reflection point. The input points are organized like
shown in this plot. Then,C[l+1] kernels are employed to convolve with the input
data. The height of the kernel is 1 and its width equals to the feature number
of the input data C[l] which is called a single layer perceptron. After that, a
N ×C[l+1] matrix is generated and for each column of the matrix, a symmetric
function is applied to get single elements like the filled squares in the figure, so
for a matrix withC[l+1] columns, a vector containingC[l+1] elements is created.
This vector features the whole input data points and thus is called the global
feature. Figure 5.21 (b) shows a PointNet architecture [QSKG17]. The MLP
consists of multiple layers of a single layer perceptron in Figure 5.21 (a) and the
number in the parentheses are the feature numbersC[l]. Additional transforma-
tion T–nets are added to take the point cloud geometrical transformation (like
move, rotate) into account. The global feature after the symmetric function
(max function here) is repeated with the number of points and concatenated
with point features to generate a feature matrix. Another MLP is used with the
feature number of the last layer equal to the number of classes c. So the output
provides the probability of every point belonging to each class.

However, such a network features only the global behavior of the input point
cloud with the global feature. As mentioned in section 5.2 that a grid–based
segmentation network is able to learn local features, in order also to be able to
learn local features of the point cloud, [QYSG17] proposes a network based
on PointNet–the PointNet++.

The basic idea of PointNet++ is to divide the point cloud into several groups
and for each group, a PointNet is used. So this is a hierarchical structure
with the feature of each group–the local feature constituting the feature of
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(a)

(b)

Figure 5.21: (a)Method to get global feature independent of input point number and its permutation
by utilizing symmetric functions. (b) Architecture of a PointNet [QSKG17].

the higher hierarchy. Figure 5.22 illustrates the architecture of a PoineNet++
with 5 hierarchies. Similar to a grid–based CNN, this architecture consists
mainly of two parts: the set abstraction part for feature learning and the feature
propagation part for reverse feature mapping to every point.

Figure 5.22: Architecture of a 5-layer (hierarchies) PointNet++ [QYSG17].
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One layer in the set abstraction part includes a sampling layer, a grouping layer,
and a mini–PointNet layer. The sampling layer samples N ′ centroids from the
N input points and each centroid is responsible for its surrounding points in
a local region. So N ′ groupings corresponding to N ′ local regions exist after
this step. A mini–PointNet, which is a simplified version of PointNet based on
the structure in Figure 5.21 (a) is employed to get the features of these N ′ point
groupings with N ′ feature vectors. These N ′ feature vectors are then used as
input points of the following layers recursively.

After the features in the set abstraction part are extracted, the feature propa-
gation part will reverse these features into class classifications for each point.
Every layer in this part includes interpolation, unit PointNet, FC (Fully Con-
nected) and dropout layers. The interpolation layer gets the point positions
from the corresponding set abstraction layer and unit PointNet is a simplified
mini-PointNet with the column number of the convolution kernel equal to 1.

In [QYSG17], FPS (Farthest Point Sampling) is used for selecting the N ′ cen-
troids, ball query or kNN (k Nearest Neighbors) is used for finding surroun-
ding reflection points around each centroid. Additionally, MSG (Multi–Scale
Grouping) or MRG (Multi–Resolution Grouping) is employed to address the
problem of point density variation with respect to different ranges between the
reflection points and the radar. For the following implementations, the script in
Tensorflow is extended based on the script of the author [CWZZ] where ball
query and MRG are employed.

5.3.3 Guard Rail Based Lane Segmentation

Labelling and Training Datasets

In this section, all points are assigned to three classes: vehicles (class 1), guard
rails (class 2), and others like lawn, trees, and bushes at the road side (class
0). For the guard rails, when several guard rails exist at the same side of the
vehicle, the nearest one will be labelled as guard rail, and the other one as
unlabeled since only the guard rail closest to the vehicle defines the drivable
lane for this vehicle. Figure 5.23 shows two labelling examples of single–cycle
radar detection points on a highway. A, B, C, and D are vehicles (class 1),
E and F are reflection points from guard rails at both sides of the vehicles.
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Although G is guard rail, these points are not labelled as class 2 because it is
at the outer side of F.

Figure 5.23: Single–cycle radar detection points on a highway and point-level labelling (red for
class 1 of vehicles, blue for class 2 of guard rails, black for class 0 of others). Test
vehicle equipped with radar at its front is at the position of x = 0 m and y = 0 m.

Two datasets are separately trained for comparison:

• Dataset A: 6,673 measurement cycles, under which are 2,249,855 points
of class 0 (63.2%), 469,179 points of class 1 (13.2%), and 838,745 points
of class 2 (23.6%).

• Dataset B: 10,154measurement cycles, underwhich are 4,329,962 points
of class 0 (69.5%), 743,185 points of class 1 (11.9%), and 1,161,352
points of class 2 (18.6%).

80% of the training datasets are used for training, the remaining 20% are used
for evaluating trained models.

Feature Adjustment

As mentioned in the previous section, the NN requires to divide the reflection
points into groups, this grouping however, depends only on the geometric
features x and y. It can be proven that if non–geometric features like reflection
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magnitude, velocity are also used for grouping, the training and testing results
of the NN will be very poor.

Additionally, [QYSG17] is proven to be very robust to point density variation.
However, the point density is a very important feature, for example, the reflec-
tion points from the guard rails and the grass at the road side can both comprise
straight lines, whereas the ones of the guard rails have more regular intervals
between them than the ones of the grass. So in addition to the pattern of the
points, the point distribution property shall be also considered in the NN.

Figure 5.24 shows two approaches to incorporate such an additional feature
where (a) illustrates amethod to concatenate the feature rmin into the NN during
grouping process, like MRG. rmin is the distance from the centroid point to the
nearest point excluding the points within a small value rthreshold that is used to
exclude the points coming from the side lobe of FFT / angle estimation of the
centroid point. For multilayer NN, this feature can be selectively concatenated
in all layers or only in certain layers and it is also possible to concatenate other
point distribution features during this step. Such concatenation is proven to
be very time- and processing-consuming when compared with the following
method.

Figure 5.24: (a) NN incorporating point distribution features in MRG or (b) include additional
features in input dataset.

Instead of concatenating the additional features in the NN, they can be also
added as additional input features (indirect features) besides the geometric
features (direct features), like the example shown in Figure 5.24 (b). In order to
describe the point distribution features, additional indirect features like point
density and point coordinate covariance can be used. In this example, for each
centroid, k concentric circles with radii rk are created and the number of the
reflection points and the covariance of the points within each circle is counted
and calculated. As mentioned previously, these additional features shall not be
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used for sampling and grouping to prevent poor training and prediction results.
At last, all these features need to be normalized (feature normalization) before
they are concatenated as the input features.

The detected velocity v of each point can be used to distinguish static objects
from moving objects. On the one hand, [SHDW18] has proven that v helps
to improve the training and prediction performance, so this is no longer the
emphasis of this section. On the other hand, using v can be limited, for example,
guard rail and grass are all static and the vehicles are also static if a traffic jam
is encountered.

At last, various radii values of grouping can be selected in various layers of the
NN. So the influence of various radii, together with the number of NN layers on
the prediction performance, will both be investigated in the following section.

Segmentation Results

This section presents 4 different tests as listed in Table 5.8. The parameter setup
for every test and their corresponding evaluation results are listed in Table 5.9.
For example, Radii 1 describes a 4–layer NN with the grouping radii equal to
4 m, 8 m, 16 m, and 32 m. Analyses are as follows:

• Compare Test 1 and Test 2: in Test 2, an additional feature is added into
the feature vector during grouping process and its evaluation F1 score is
much more stable than that of Test 1. In Test 1, with the change of the
radii, the F1 score of class 0 varies in the range from 0.87 (radii 5) to
0.95 (radii 2) whereas for Test 2, the range is from 0.90 (radii 4) to 0.92
(radii 1). So the performance of Test 1 depends strongly on the radii and
when an additional feature is added, this dependency disappears. From
another point of view, the F1 score of Test 2 shows advantages over Test
1 only with larger radii (radii 4 and radii 5). Similar conclusions can be
also drawn from Test 1 and Test 3.

• Compare Test 2 and Test 3: For all radii, Test 3 shows better results than
Test 2.

• Compare Test 3 and Test 4: the only difference between Test 3 and Test 4
is the volume of the training dataset. Test 4 has 52.2%more training data
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than Test 3 and their evaluation results are very similar. This indicates
that the tests are repeatable and stable.

• The number of NN layers: in Test 3, the number of NN layers is decreased
down to one layer. However, the F1 score keeps nearly unchanged until
layer 1, where that of class 0, class 1, class 2 decreases from 0.94 to 0.92,
from 0.95 to 0.93, from 0.89 to 0.85, respectively. So for this application,
the minimum layer number shall be 2.

Table 5.8: Various tests of point-wise semantic segmentation.

Test 1 Test 2 Test 3 Test 4
Concatenate features in NN No Yes No No
Concatenate features in input No No Yes Yes
Training and evaluation dataset dataset A dataset A dataset A dataset B

Table 5.9: Evaluation metrics and parameter setups of various measurements on a highway.

Name Radii (m) Layer number Evaluation F1 score (class 0, class 1, class 2)
Test 1 Test 2 Test 3 Test 4

Radii 1 (4, 8, 16, 32) (0.92, 0.93,
0.85)

(0.92, 0.92,
0.85)

(0.93, 0.94,
0.86)

(0.94, 0.94,
0.86)

Radii 2 (8, 16, 32, 64) (0.95, 0.95,
0.90)

(0.92, 0.91,
0.85)

(0.93, 0.94,
0.87)

(0.95, 0.95,
0.88)

Radii 3 (16, 32, 64, 64) 4 (0.93, 0.93,
0.88)

(0.91, 0.91,
0.85)

(0.94, 0.95,
0.89)

(0.95, 0.96,
0.89)

Radii 4 (32, 64, 64, 64) (0.89, 0.86,
0.79)

(0.90, 0.88,
0.81)

(0.94, 0.94,
0.88)

(0.95, 0.95,
0.88)

Radii 5 (64, 64, 64, 64) (0.87, 0.85,
0.78)

(0.91, 0.88,
0.84)

(0.94, 0.94,
0.89)

(0.95, 0.95,
0.89)

Radii 6 (16, 32, 64) 3 (0.94, 0.95,
0.89)

Radii 7 (16, 32) 2 / / (0.94, 0.95,
0.89)

/

Radii 8 (16) 1 (0.92, 0.93,
0.85)

Besides the comparison of the numerical metrics in Table 5.9, the prediction
results of untrained datasets with trained models are also visualized and che-
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cked. It can be proven that the trained model in Test 3 is more stable and
accurate than that in Test 1, even though the numerical metrics show similar
results (like radii 2 in Test 1 and radii 3 in Test 3). One such example can be
seen in Figure 5.25 where three results that are predicted with the three distinct
trained models are compared: model M1 in Test 1 with radii 5; model M2 in
Test 1 with radii 2 (best in Test 1); mode M3 in Test 3 with radii 3 (best in Test
3). Following conclusions can be drawn from these results:

• The reflection point group A shall be predicted as class 0 (others, black),
so the best prediction comes from model M3 and the worst comes from
model M1.

• The reflection point group B shall be predicted as class 2 (guard rails,
blue), but with model M2, one point is mistakenly predicted as class 1
(vehicle, red). Otherwise, the prediction results of the three models of
this group are similar.

• The sparse reflection point group C comes from noise or ground clutter
and shall be predicted as class 0. However both with model M1 and
M2, these points are wrongly predicted as class 1. The point distribution
feature of these sparse points are quite different from the reflection
points from vehicles and they are correctly predicted by model M3. The
number of these sparse points is quite small, so their predictions may not
correctly be reflected in the numerical metrics in Table 5.9, even though
they can be very critical since such incorrect predictions could trigger
functions like automatic braking by mistake.

• The reflection points in group D come from the truck. They are best
predicted with model M3.

Prediction Efficiency

Besides the prediction accuracy, the time consumed for a prediction is also a
very important criterion. The number of measurements that the NN predicts in
one second–the prediction frequency of Test 1 and Test 3 is listed in Table 5.10.
The results show that:

• the influence of radii on prediction frequency is very small;
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Figure 5.25: Comparison of prediction results with various trained models: (a) model M1; (b)
model M2; (c) model M3.

• by adding additional features in the input, the prediction performance is
improved, and the prediction efficiency is nearly not affected;

• with fewer number of NN layers, the prediction efficiency increases,
however, the prediction performance degrades. With considering the
trade–off between these two criteria, radii 7 is the best choice;

• when comparing Table 5.11 with Table 5.4, it can be concluded that
although the input data size of the PointNet++ ismuch smaller than that of
the grid–based input data of SegNet, the prediction efficiency is roughly
similar. This is because during the sampling and grouping process of
PointNet++, a lot of time is consumed to calculate the distances between
the points.
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Table 5.10: Prediction frequency comparison in Hz with respect to radii of Test 1 and Test 3 (GPU:
M2000M).

Radii 1 2 3 4 5 6 7 8
Test 1 2 1.8 2 2 2 /
Test 3 2 / 2 / 2 2.6 4.4 8.9

In order to increase the prediction frequency, model compression [CWZZ18]
without losing prediction accuracy can be considered. A GPU with higher
computational power can be employed, too. Table 5.11 shows the estimated
prediction frequency with two additional NVIDIA GPUs for this application.

Table 5.11: Estimated prediction frequency with various GPUs (Test 3, radii 7).

GPU (NVIDIA Quadro) Processing power (TFLOPS) Estimated prediction frequency (Hz)
M2000M 1.4 4.4
P6000 10.9 34.4
GV100 16.7 52.5

5.3.4 Radar Road Marking Based Lane Segmentation

Labelling and Training Datasets

For the tests in the test track like shown in Figure 4.13, the reflection points
are classified into two classes: radar road markings (class 1) and others (class
0). In Figure 5.26 (a), a labelling example (the red color stands for class 1 and
the black for class 0) when the test vehicle is at position 3 in Figure 4.13 is
presented.

The training dataset in this section (dataset C) includes 289,074 points of class
0 (95.6%) and 13,172 points of class 1 (4.4%). Two tests are compared in
this section: Test 5 where only direct point coordinate values are used as input
features and Test 6 where additional indirect point distribution features are
added as input features. The corresponding trained models are named model
M5 and model M6, respectively.

128



5.3 Point Cloud Lane Segmentation with Neural Networks

Figure 5.26: (a) Labelling example of radar road markers. (b) Prediction results with model M5.
(c) Prediction results with model M6. (d) Evaluation confusion matrices of Test 5
and Test 6. Test vehicle equipped with radar at its front is at the position of x = 0 m
and y = 0 m.

Segmentation Results

Similar to section 5.3.3, the NN parameters are tuned for comparison and
the results are shown in Table 5.12. Similar conclusions of section 5.3.3 can
be drawn except that the performance improvement with the additional input
point distribution features is more obvious in this section. Figure 5.26 (b) and
(c) present two corresponding prediction results with model M5 and M6 and
Figure 5.26 (d) shows the evaluation confusion matrices of Test 5 and Test 6,
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where the number in the parentheses indicate the number of points. From all
these metrics, it can be concluded that the additional input distribution features
help to improve the prediction performance.

Table 5.12: Evaluation F1 score of point-wise radar road marking segmentation.

Radii Evaluation F1 score (class 0, class 1)
Test 5 Test 6

1 (0.93, 0.39) (0.97, 0.65)
2 (0.91, 0.34) (0.97, 0.60)
3 (0.94, 0.42) (0.98, 0.67)
4 (0.89, 0.31) (0.97, 0.61)
5 (0.85, 0.25) (0.98, 0.70)
6

/
(0.98, 0.70)

7 (0.98, 0.67)
8 (0.97, 0.61)

5.3.5 Summary

This section presents point-wise segmentation of radar point clouds, especially
for the application of guard rail and radar road marking based lane segmenta-
tion. The PointNet++, primary designed for LiDAR point cloud segmentation,
is adapted and utilized in this section. Better prediction results are achieved
when additional point distribution features are concatenated to the geometric
features of the points. The influence of NN parameters like grouping radii and
number of layers are analyzed and compared. With the further improvement of
the detection precision of the automotive radar, environmental perception with
automotive radar sensors by using NNs and DL methods will become more
and more likely and applicable.To step forward, further improvements can be
made: Firstly, a NN with less processing and storage requirements, but without
losing or even with higher prediction accuracy shall be developed; Secondly,
with adding timing information (multiple consecutive measurements) to the
NN, the prediction accuracy can be expected to become much better.
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To complement the weakness that the lane detection function carried out solely
by video cameras works not well under certain adverse environmental condi-
tions, and to increase the robustness and reliability of the system by sensor
data fusion with the currently existing massively equipped automotive radars,
this dissertation discusses the capability and feasibility to detect the lane mar-
kings with a high–resolution automotive FMCW radar. Both simulations and
on–road measurements with various radar road markers are conducted. An
asymmetric corner reflector with a large bottom plate and a low vertical profile
is preferred. This reflector can be integrated into the current road markings or
can be used solely as a radar road marker. When these reflectors are integrated
at the two sides of the lane, it is also possible to determine the moving status
of the vehicle by analyzing their reflection characteristic in the Range-Doppler
domain. With a geometrical coding of these reflectors, more information like
the indication of oncoming specific zones or the maximum allowed driving
velocity, etc. can be incorporated in these reflectors. The reflection points of
these low-profile reflectors can be stored and used to create a “signature“ map
of the road with algorithms like SLAM–a radar road signature for accurate
vehicle localization by matching the real–time collected reflection points with
the map, as a complement to GNSS–based vehicle localization. With such re-
flectors and currently existing guard rails, traffic poles, etc., a radar–based lane
detection system can make the autonomous vehicle more reliable and safer.
External coverings like leaves, gravel, etc. on these novel radar reflectors still
need a practical solution before its industrialization. A larger detection range
by improving the radar sensitivity or the RCS of the reflector is always an
option for further improvements in the near future.

Suitable unsupervised and supervised clustering and classification algorithms
are elaborated in this dissertation. In unsupervised clustering, the reflection
points of the radar road markers are clustered by analyzing their intervals,
patters and reflection magnitudes. With a 2D antenna array, the height of
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the objects can be determined, too. This enhances the classification perfor-
mance for the radar road markers by selecting the reflection points according
to the radar mounting height. In the supervised clustering and classification
algorithm–the neural network based DL algorithm, both grid- and point-based
networks are introduced. Very promising results are achieved, which proves the
feasibility and potential of DL for radar application. Further work to increase
the accuracy by adjusting the architecture of the network, incorporating timing
information, and increasing the processing efficiency of the algorithm bymodel
compression algorithms is proposed for further performance improvement.

By incorporating the radar road markers in the lane markings painted with
color, sensor fusion algorithms for lane detection based on both camera and
radar data can be developed. The fusion can be both carried out for low–and
high–level data. A sensor fusion algorithm with a DL NN that reads both the
camera and radar data can be a very promising approach (low–level fusion).
An alternative is, of course, also to feed the camera and radar data in separate
NNs and merge them together afterwards (high–level fusion).
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