134 research outputs found

    Overview of FAA's aircraft icing program

    Get PDF
    An overview of the FAA's icing program is presented. The program involves certification of various types of aircraft for flight in known icing conditions, the study of icing conditions, and the preparation of certification standards. Test and technology transfer programs are also included

    Sticky Actuator: Free-Form Planar Actuators for Animated Objects

    Get PDF
    We propose soft planar actuators enhanced by free-form fabrication that are suitable for making everyday objects move. The actuator consists of one or more inflatable pouches with an adhesive back. We have developed a machine for the fabrication of free-from pouches; squares, circles and ribbons are all possible. The deformation of the pouches can provide linear, rotational, and more complicated motion corresponding to the pouch's geometry. We also provide a both manual and programmable control system. In a user study, we organized a hands-on workshop of actuated origami for children. The results show that the combination of the actuator and classic materials can enhance rapid prototyping of animated objects.National Science Foundation (U.S.) (Grant 1240383)National Science Foundation (U.S.) (Grant 1138967

    Inflatable actuators based on machine embroidery

    Get PDF
    The growing interest in wearable technologies has prompted the development of new techniques for integrating electronics into garments, and more specifically to overcome the challenges interfacing hard and soft components. In comparison to sensors and leads, the textile-based or integrated solutions for actuation remain underexplored. Approaching materials as extensions of actuators, we investigate machine embroidery as means to integrate silicone-based inflatables into garments. Following a research through design methodology, we created inflatables whose design and behavior are determined by machine embroidered substrates. Our iterative process resulted in 24 samples, divided in five series, exploring distinct challenges: 1) sewing attributes to create properties of inflatables; 2) fit & support; 3) improving integration & resolution of complex shapes; 4) enlarging area of actuation; and 5) textile integration. We discuss the impact of different parameters to the fabrication and the interaction possibilities of soft actuators. We show how machine embroidery allows shifting the complexity of the designs away from the casting process, simplifying fabrication, while enabling the creation of a wide range of shapes and behaviors through layering of textile structures. Our work extends the possibilities of integrating different technologies into garments through a single manufacturing process. We contribute with the detailed description of our design process and reflections on designing inflatables by means of machine embroidery

    Puffy: A Step-by-step Guide to Craft Bio-inspired Artifacts with Interactive Materiality

    Full text link
    A rising number of HCI scholars have begun to use materiality as a starting point for exploring the design's potential and restrictions. Despite the theoretical flourishing, the practical design process and instruction for beginner practitioners are still in scarcity. We leveraged the pictorial format to illustrate our crafting process of Puffy, a bio-inspired artifact that features a cilia-mimetic surface expressing anthropomorphic qualities through shape changes. Our approach consists of three key activities (i.e., analysis, synthesis, and detailing) interlaced recursively throughout the journey. Using this approach, we analyzed different input sources, synthesized peers' critiques and self-reflection, and detailed the designed experience with iterative prototypes. Building on a reflective analysis of our approach, we concluded with a set of practical implications and design recommendations to inform other practitioners to initiate their investigations in interactive materiality.Comment: 17th International Conference On Tangible Embedded And Embodied Interactio

    Sistemas interativos tangíveis e processos de mediação tecnológica: hipóteses sobre agência, significação e cognição a partir da investigação do MIT Tangible Media Group

    Get PDF
    A presente dissertação toma a investigação em sistemas de interação tangível do MIT Tangible Media Group como objeto, a pretexto da sua inclusão na edição de 2016 do Festival Ars Electronica, sob o tema Radical Atoms: The Alchemists of Our Time. Pretende-se compreender quais os pontos de contato da investigação do grupo com os estudos dos media, de forma a localizar a sua relevância para a programação do festival. O enquadramento nos estudos dos media é feito pela localização de um conjunto de termos-chave no trabalho do grupo, os quais evocam questões afetas à fenomenologia, filosofia da tecnologia e mediação tecnológica. Conclui-se que estes sistemas de interação tangível ativam processos particulares de constituição de agência, significação e cognição. Na ausência de outros materiais que explorem estas relações no contexto do festival, a dissertação apresenta-se assim como complemento à leitura do tema Radical Atoms: The Alchemists of Our Time.This dissertation thesis takes the research of the MIT Tangible Media Group as its object, by occasion of its inclusion in the 2016 edition of Ars Electronica Festival under the theme Radical Atoms: The Alchemists of Our Time. The aim is to understand what are the common points between the group's research and media studies, in order to locate this object's relevance to the festival programming scope. The framing within media studies is done by surveying a set of keywords from the group's research, which evoke topics from phenomenology, philosophy of technology and technological mediation. It's concluded that these tangible interactive systems activate specific processes of agency, signification, and cognition. Given the lack of materials which explore these relationships within the context of the festival, the dissertation presents itself as a supplement to the reading of the Radical Atoms: The Alchemists of Our Time theme

    Tacsel: Shape-Changing Tactile Screen applied for Eyes-Free Interaction in Cockpit

    Get PDF
    International audienceTouch screens have become widely used in recent years. Nowadays they have been integrated on numerous electronic devices for common use since they allow the user to interact with what is displayed on the screen. However, these technologies cannot be used in complex systems in which the visual attention is very limited (cockpit manipulation, driving tasks, etc.). This paper introduces the concept of Tacsel, the smaller dynamic element of a tactile screen. Tacsels allow shape-changing and flexible properties to touch screen devices providing eyes-free interaction. We developed a high-resolution prototype of Tacsel to demonstrate its technical feasibility and its potential within a cockpit context. Three interaction scenarios are described and a workshop with brainstorming and video-prototyping is conducted to evaluate the use of the proposed Tacsel in several cockpit tasks. Results showed that interactive Tacsels have a real potential for future cockpits. Several other possible applications are also described, and several advantages and limitations are discussed

    Tool-Naming by Iron Workers

    Get PDF
    First unionized in the latter half of the nineteenth century, the trade of iron worker developed at a time when the industrial revolution allowed, for the first time in history, the erection of steel structures on a widespread scale. The technology of steel construction was new; the men hired to do the actual work, the construction gangs, were for the large part uneducated immigrants willing to work a dangerous job for low pay. The combination of a new technology with a class of worker unfamiliar with architectural and engineering terminology precipitated a colorful jargon which exists, in one form or another, to this day. The vocabulary of this jargon is functional, descriptive, often amusing, and usually obscene

    LiftTiles: Constructive Building Blocks for Prototyping Room-scale Shape-changing Interfaces

    Full text link
    Large-scale shape-changing interfaces have great potential, but creating such systems requires substantial time, cost, space, and efforts, which hinders the research community to explore interactions beyond the scale of human hands. We introduce modular inflatable actuators as building blocks for prototyping room-scale shape-changing interfaces. Each actuator can change its height from 15cm to 150cm, actuated and controlled by air pressure. Each unit is low-cost (8 USD), lightweight (10 kg), compact (15 cm), and robust, making it well-suited for prototyping room-scale shape transformations. Moreover, our modular and reconfigurable design allows researchers and designers to quickly construct different geometries and to explore various applications. This paper contributes to the design and implementation of highly extendable inflatable actuators, and demonstrates a range of scenarios that can leverage this modular building block.Comment: TEI 202

    Embroidered Inflatables: Exploring Sample Making in Research through Design

    Get PDF
    This paper reflects on the experience of sample making to develop interactive materials. Sample making is a way to explore possibilities related to different materials techniques. In recent years design research has put an increasing emphasis on making as a mode of exploration, which in turn has made such exploration an increasingly popular and effective design research approach. However, sample making is a messy and complex process that is hard to document and communicate. To mitigate this, design researchers typically report their journeys from the perspective of their success, retroactively editing out or reducing the accounts of experiments that did not directly contribute to their goal. Although it is a useful way to of contextualizing a design process, it can contribute to a loss of richness and complexity of the work done along the way. Samples can be seen as instantiations of socio-techno systems of production, which means that they can be looked at from different perspectives and can potentially become the starting points of new design explorations. In recognition of this quality, we aim to investigate ways that samples can be appropriated in future journeys. To do so, we analyzed and reflected on the sample making process of the Embroidered Inflatables as a design case. The project resulted in 27 samples that explored distinct challenges related to designing actuators for soft wearables through the combination of silicone casting and embroidery techniques. To explore the potential of sample appropriation, we invited a fashion designer to a creative session that analyzed these samples from her personal perspective to identify new design directions. We detail the design process, reflect on our sample making experience and present strategies to support us in the process of reevaluating and appropriating samples
    corecore