1,654 research outputs found

    A Model of Plant Identification System Using GLCM, Lacunarity And Shen Features

    Get PDF
    Recently, many approaches have been introduced by several researchers to identify plants. Now, applications of texture, shape, color and vein features are common practices. However, there are many possibilities of methods can be developed to improve the performance of such identification systems. Therefore, several experiments had been conducted in this research. As a result, a new novel approach by using combination of Gray-Level Co-occurrence Matrix, lacunarity and Shen features and a Bayesian classifier gives a better result compared to other plant identification systems. For comparison, this research used two kinds of several datasets that were usually used for testing the performance of each plant identification system. The results show that the system gives an accuracy rate of 97.19% when using the Flavia dataset and 95.00% when using the Foliage dataset and outperforms other approaches.Comment: 10 page

    Fractal Descriptors in the Fourier Domain Applied to Color Texture Analysis

    Get PDF
    The present work proposes the development of a novel method to provide descriptors for colored texture images. The method consists in two steps. In the first, we apply a linear transform in the color space of the image aiming at highlighting spatial structuring relations among the color of pixels. In a second moment, we apply a multiscale approach to the calculus of fractal dimension based on Fourier transform. From this multiscale operation, we extract the descriptors used to discriminate the texture represented in digital images. The accuracy of the method is verified in the classification of two color texture datasets, by comparing the performance of the proposed technique to other classical and state-of-the-art methods for color texture analysis. The results showed an advantage of almost 3% of the proposed technique over the second best approach.Comment: Chaos, Volume 21, Issue 4, 201

    Sabanci-Okan system at ImageClef 2011: plant identication task

    Get PDF
    We describe our participation in the plant identication task of ImageClef 2011. Our approach employs a variety of texture, shape as well as color descriptors. Due to the morphometric properties of plants, mathematical morphology has been advocated as the main methodology for texture characterization, supported by a multitude of contour-based shape and color features. We submitted a single run, where the focus has been almost exclusively on scan and scan-like images, due primarily to lack of time. Moreover, special care has been taken to obtain a fully automatic system, operating only on image data. While our photo results are low, we consider our submission successful, since besides being our rst attempt, our accuracy is the highest when considering the average of the scan and scan-like results, upon which we had concentrated our eorts

    Fractal descriptors based on the probability dimension: a texture analysis and classification approach

    Get PDF
    In this work, we propose a novel technique for obtaining descriptors of gray-level texture images. The descriptors are provided by applying a multiscale transform to the fractal dimension of the image estimated through the probability (Voss) method. The effectiveness of the descriptors is verified in a classification task using benchmark over texture datasets. The results obtained demonstrate the efficiency of the proposed method as a tool for the description and discrimination of texture images.Comment: 7 pages, 6 figures. arXiv admin note: text overlap with arXiv:1205.282

    Texture analysis by multi-resolution fractal descriptors

    Full text link
    This work proposes a texture descriptor based on fractal theory. The method is based on the Bouligand-Minkowski descriptors. We decompose the original image recursively into 4 equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by the concatenation of such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the proposed technique achieves better results than classical and state-of-the-art texture descriptors, such as Gabor-wavelets and co-occurrence matrix.Comment: 8 pages, 6 figure

    Fine-Scale Plant Species Identification in a Poor Fen and Integration of Techniques and Instrumentation in a Classroom Setting

    Get PDF
    Refining carbon flux measurements in the carbon cycle is an ongoing challenge. This study attempted to identify plant species in Sallie’s Fen, a nutrient-poor fen in Barrington, New Hampshire, at a fine scale in order to better model and understand carbon exchange between plants and the atmosphere in this type of ecosystem. A protocol for estimating percent cover of species in plots via ground measurements was developed. The next stage of this project was to compare these measurements with measurements derived from spectral images using ImageJ computer software. Statistical tests of the ground measurement data revealed that patterns of seasonal defoliation had a strong effect on the apparent species richness, evenness, and biodiversity of plants as seen aerially. The presence of Sphagnum mosses excluded the presence of other species, but the presence of other plants only excluded the visibility of Sphagnum since it resides in the understory of the layered community. A regression comparing percent cover of the vascular plant functional group and fractal dimensions from a digital camera was statistically significant, indicating that ground and aerial measurements agree and that spectral imaging can be used to save time in the field in place of ground measurements. Additionally, since ecosystem science is such an interdisciplinary field, it provides the perfect platform around which students can apply their scientific knowledge and understanding. Modifications to this project were suggested so that it can be carried out in a secondary school classroom setting while aligning with the Next Generation Science Standards

    Plant image retrieval using color, shape and texture features

    Get PDF
    We present a content-based image retrieval system for plant image retrieval, intended especially for the house plant identification problem. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging.We studied the suitability of various well-known color, shape and texture features for this problem, as well as introducing some new texture matching techniques and shape features. Feature extraction is applied after segmenting the plant region from the background using the max-flow min-cut technique. Results on a database of 380 plant images belonging to 78 different types of plants show promise of the proposed new techniques and the overall system: in 55% of the queries, the correct plant image is retrieved among the top-15 results. Furthermore, the accuracy goes up to 73% when a 132-image subset of well-segmented plant images are considered
    • …
    corecore