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Fractal descriptors in the Fourier domain applied to color texture analysis
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(Received 31 January 2011; accepted 20 September 2011; published online 18 October 2011)

The present work proposes the development of a novel method to provide descriptors for colored

texture images. The method consists of two steps. First, we apply a linear transform in the color

space of the image aiming at highlighting spatial structuring relations among the color of pixels.

Second, we apply a multiscale approach to the calculus of fractal dimension based on Fourier

transform. From this multiscale operation, we extract the descriptors that are used to discriminate

the texture represented in digital images. The accuracy of the method is verified in the

classification of two color texture datasets, by comparing the performance of the proposed

technique to other classical and state-of-the-art methods for color texture analysis. The results

showed an advantage of almost 3% of the proposed technique over the second best approach.
VC 2011 American Institute of Physics. [doi:10.1063/1.3650233]

Fractal objects constitute a particular category of nonlin-

ear dynamic system. Essentially, fractals are geometric

objects which do not obey the classical Euclidian rules.

Besides, they are characterized by the self-similarity, that

is, we observe some geometrical and/or statistical pat-

terns which repeat themselves along different observation

scales. In a true fractal, the self-similarity is observed at

infinite observation scales. The inherent composition

rules of fractals yield to some interesting characteristics.

For instance, fractals present non-proportionality bet-

ween cause and effect. Still they present infinite complex-

ity (complexity in the sense of observed details) and they

show a high dependence level from initial conditions.

Such characteristics allow for fractals are also to be con-

sidered as a chaotic system. This physical interpretation

collaborated for authors, such as Mandelbrot,1 to suggest

the use of fractals to model objects found in the nature.

More recently, Manoel et al.2 developed a method for

using fractal theory in the extraction of features from

natural objects represented in a digital image. This is an

important problem in computational vision. Bruno et al.3

applied the technique to a shape recognition problem.

Here, we propose the development and study of a novel

fractal-based method for the analysis of color texture.

We verify the efficiency of the proposed approach in the

solution of a color texture classification problem.

I. INTRODUCTION

Texture is a visual attribute which is present in most of

the nature images. The texture quantification, identification,

and classification are the most important problems that

are defined in computer vision as the study of pixel patterns

in an image region. Although this attribute is naturally

processed by natural vision and easily comprehended by

humans, there is no formal definition for it. Indeed, textures

are complex visual patterns formed by arrangements of pix-

els, regions, or even set of patterns formed by other visual

attributes, such as shape or color. These patterns can be com-

posed by completely distinct factors, such as pixel organiza-

tion or even its disorganization. In fact, depending on the

context, even the noise can be considered as a sort of texture.

These characteristics of the texture attribute make it special

and hard to be well defined.

Along the last years, several methods have been devel-

oped for the analysis of textures. Such interest in texture

analysis methods may be comprehended by the richness of

the texture attribute in images, which was analyzed in pattern

recognition problems.

Basically, the texture analysis methods can be divided

into 4 categories,4 that is, the structural methods, in which

the texture is described as a set of primitives well defined;

statistical methods, in which the texture is represented

through non-deterministic measures of distribution; spectral

methods, based on the analysis in the frequency domain; and

model-based methods, based on the mathematical and physi-

cal modelling of the texture image.

Among the model-based methods, the fractal model has

presented a large projection recently in the description of

textures in a wide number of problems.5–7 Most of these

methods employ the fractal dimension direct or indirectly for

the representation of the texture. In recent years, however, a

family of methods3,8–10 was developed through extracting a

set of features from the fractal modelling, unlike the fractal

dimension which is only a unique number. Generically

speaking, these methods provide the called fractal descrip-

tors, capable of representing a texture with a higher degree

of richness than the simple fractal dimension.

a)Electronic mail: bruno@ifsc.usp.br. Telephone: þ55 16 3373 8728.

FAX: þ55 16 3373 9879.
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The ability of fractal features in the description of tex-

tures is related to the nature of fractality concept. The fractal

dimension measures the complexity of a structure, which in

turn corresponds to important physical properties of a mate-

rial, such as the roughness, the reflectance, etc. Finally, such

properties are strong stimuli in our visual identification of

texture images by allowing the classification of objects based

on their texture aspects. In this way, fractal theory becomes a

worthy tool in the automation of this process.

Actually, the use of term “fractal” in such kind of appli-

cation may bring some controversy, if the analyzed images

are not real fractals. Because, fractals are only mathematical

entities lacking any perfect representation in the real world.

The interested reader may appreciate this discussion for

example in a letter exchange involving Avnir et al. and Man-

delbrot.11,12 Inasmuch as this debate is not in any way fin-

ished, the most acceptable approach in the literature is that

presented in Ref. 13. There, objects from real world are

measured through fractal metrics even when they get away

from fractal concept. In this case, the fractal measures act as

a complexity metric of the real world object.

This work proposes a novel technique for the extraction

of fractal descriptors based on the Fourier fractal dimension

method14 from colored textures. The color is an important at-

tribute in texture images, mainly those extracted from natural

scenes.15 The method consists in representing the color image

in a new space color through the linear transform described in

Ref. 16. This transform aims at emphasizing the relation

between the pixels color and their spatial distribution. Posteri-

orly, we apply the method for the calculus of fractal dimen-

sion by the Fourier transform. In this method, the dimension

is obtained from a curve relating the power spectrum of the

Fourier transform and the frequency. Instead of simply using

the dimension value, this work proposes the use of the whole

curve to provide the descriptors of the texture.

The proposed method takes some important advantages

over classical fractal signature techniques like that based on

wavelets17 or multifractal.18 One of such advantages is that

the technique here presented gathers information from fre-

quency domain inherently, allowing the capturing of details

and patterns which escapes from the conventional spatial

analysis. Besides, the space used allows the expression of

colors and spatial distribution of pixels as being a related en-

tity. This relation is important in many applications involv-

ing color texture. Moreover, and not less relevant, the

method shows a simple computational implementation and

presents a low computational effort.

The performance of the proposed technique is tested in

comparison with other classical and state-of-the-art methods

for color texture analysis, namely, chromaticity moments,

histogram ratio, and multispectral Gabor. The comparison is

achieved in the classification of two color texture datasets.

This work is divided into 8 sections. Section II addresses

the definitions and theoretical aspects of fractal theory.

Section III describes the Fourier fractal dimension. Section

IV presents the concept of fractal descriptors. Section V

describes the proposed method. Section VI shows the experi-

ments employed. Section VII discusses the results and the

last one does the conclusions.

II. FRACTAL

The existence of strange objects which do not obey the

rules of the traditional Euclidian geometry is known from

mathematicians some centuries ago. Nevertheless, the for-

malization and denomination of such objects are due to

Benoit Mandebrot in the 1970s.1 A fractal is defined as a set

whose Hausdorff-Besicovitch dimension exceeds strictly the

topological (Euclidian) dimension. Such fact has as a conse-

quence that the fractals are dynamical systems with infinite

complexity. Besides, fractals are self-similar, that is, each

part of the object is a similar copy of the whole. It is noticea-

ble that this repetition of patterns along different observation

scales is also present in objects found in the nature, such as

the embranchment of a river, a tree or of the lung alveoli, or

still in the nervures of a plant leaf, in a cloud, in a coastline,

and in many other cases.1

In computational vision problems, we are interested in

finding descriptors which characterize the objects in analysis.

From the similarities between the aspect of natural objects

and the objects studied in fractal theory, researchers started

to study the application of a fractal descriptor to the objects

from the real world.13 The most relevant and safe descriptor

for this purpose is the fractal dimension.

A. Fractal dimension

The literature presents several definitions of dimensions

which are generally named as fractal dimension.19 Among

these, we can cite the Hausdorff-Besicovitch dimension, the

packing dimension, the Renyi dimension, the box-counting

dimension, and so forth.

A common point among all these methods is that they

are based on the idea of measuring at d scale. The analyzed

object is measured for different values of d and at each dif-

ferent value, the details smaller than d are neglected. The

fractal dimension thus must express the behavior of the mea-

sure as d! 0. In a fractal object, a measure Md(F) of a set F
must generally obey a power law,

MdðFÞ � cd�s; (1)

where c is a constant and s is the fractal dimension of F. The

value of s can, therefore, be obtained from

s ¼ � lim
d!0

logðMdðFÞÞ
logðdÞ : (2)

In a general way, Md(F) must be a homogeneous function

with degree d yielding to the power law,

MdðFÞ � cdd�s: (3)

Here, we describe briefly the development of the first

and perhaps most important measure of the fractal dimension,

e.g., the Hausdorff dimension. For a general set F 2 <n, the

Hausdorff dimension is defined by the following expression:

dimHðFÞ ¼ fsgj inf s : HsðFÞ ¼ 0f g ¼ sup HsðFÞ ¼ 1f g;
(4)
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where Hs(F) is the s-dimensional measure of F, defined

through

HsðFÞ ¼ lim
�!0

Hs
�ðFÞ; (5)

where

Hs
�ðFÞ ¼ inf

X1
i¼1

jUijs : Ui is an �-cover of F

( )
: (6)

III. FOURIER FRACTAL DIMENSION

The literature still shows alternative definitions for the

fractal dimension. Among these definitions, one of the most

important is the Fourier fractal dimension.19 For the calculus

of this dimension, we must initially define the Fourier trans-

form of a mass distribution l 2 <n, that is, a measure on a

bounded subset of <n such that l <nð Þ is positive and finite.

The transforms are defined by

TðlðuÞÞ ¼
ð
<n

eix�udlðxÞ; (7)

where u is a generic subset of <n and x is the Fourier space

counterpart of u.

In the following, we employ an analogy from the classi-

cal mechanics for the definition of the fractal dimension. We

use the concept of s-potential of a mass distribution l over a

point x in <n, given by

psðxÞ ¼
ð

1

jx� yjsdlðyÞ; (8)

where y is an auxiliary variable.

By still extending the Physics analogy, the potential

energy es may be obtained through

esðlÞ ¼ ð2pÞnc

ð
TðpsÞðuÞTðlðuÞÞdu; (9)

in which c is a constant dependent on s and n and �x is the

complex conjugate of x. In this way,

esðlÞ ¼ ð2pÞnc

ð
jujs�njTðlðuÞÞj2du: (10)

From a theorem developed in Ref. 19, if there is a mass dis-

tribution l(u) on the set S 2 <n for which the expression

(10) is finite for some value(s) of s, the Hausdorff dimension

of S has its lower limit in s. Particularly, if jTðlðuÞÞj
� bjuj�t=2

, for a constant value b, then esðlÞ always con-

verges if s< t. The greatest t for which there is a mass distri-

bution l on S is called the Fourier fractal dimension of S.

For practical purposes, the method for the calculus of

the Fourier fractal dimension described in Ref. 14 is applied

to a gray-scale (intensity) image I.
In this case, we have a 2D real-valued image I(i, j) with

size N�N and the Fourier transform ~I is expressed through

~Iðu; vÞ ¼
XN�1

i¼0

XN�1

j¼0

Iði; jÞexp�
v2p
N ðuiþvjÞ; (11)

where u and v are, respectively, the horizontal and the

vertical frequencies. The total frequency f is given by

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. Another important measure is the power spec-

trum P, given through P ¼ ~I 2.

Russ14 demonstrates that there is an exponential relation

between the frequency f and the power spectrum P in the

Fourier spectrum of I

P / f�a: (12)

He still affirms that the exponentiation parameter a may be

used for the estimation of the fractal dimension D of the tex-

ture in I. In the practice, a is calculated as being the slope of

the curve log(P)� log( f ). The dimension is easily estimated

through

D ¼ aþ 6

2
: (13)

In digital image applications, the Fourier transform is calcu-

lated by classical optimized techniques, such as fast Fourier

trasnform.20 The Fourier spectrum is divided into radial rings

(corresponding to frequency bands). Thus, the variable P in

the previous expression corresponds to the power spectrum

averaged over each ring and the frequency f corresponds to

the average distance of each ring from the center of the spec-

trum. Figure 1 illustrates the process. Figure 2 illustrates the

dimension calculated by this practical method.

IV. FRACTAL DESCRIPTORS

Although the fractal dimension is a good descriptor for

textures, shapes, contours, etc., they become inefficient in

tasks which require a greater precision in the description of

the object. Fractal descriptors have arisen with the aim of

filling this gap and provide a more precise technique for the

characterization of the image. Figure 3 shows graphically the

importance of fractal descriptors.

The first known work applying the concept of fractal

descriptor is Manoel et al.2 which uses the technique named

multiscale fractal dimension (MFD) to obtain the descrip-

tors. In this approach, the fractal dimension from the object

FIG. 1. (Color online) Fourier spectrum is divided into radial rings and the

power spectrum P is averaged over each ring. The frequency f corresponds

to the average distance of each ring to the center of the spectrum.
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is inferred at different observation scales. In Manoel et al.,2

the authors used the Minkowski sausage method for the cal-

culus of the fractal dimension. In this method, the object is

dilated by a variable radius r and the area of the dilated

object (number of pixels) is called the dilation area A(r).

The fractal dimension is estimated from the slope of the

curve log(A(r)))� log(r). Instead of simply obtaining

the dimension, the authors used the whole log(A(r))

curve to compose the descriptors by the measures extracted

from the curve, such as the peaks, the area under the

curve, etc.

In turn, in Refs. 3 and 9, we have an application of MFD

in which the derivative of log(A(r)) is used in order to pro-

vide the fractal descriptors. Bruno et al.8 still applies the

MFD to the analysis of textures, mapped onto surfaces and

using the volumetric Minkowski sausage method.

V. PROPOSED METHOD

This work proposes a novel method for the extraction of

fractal descriptors from colored texture images.

Several methods have been described in the literature

for the extraction of features from colored textures with the

aim of solving problems such as classification and segmenta-

tion in different application fields.21–23 However, many of

such works do not take into account the spatiality of the

color, that is, the relation between the color of a pixel and its

position in the image or in a specific neighborhood.

In order to deal with this situation, Geusebroek et al.16

proposed an interesting method based on physical character-

istics of colors. Roughly speaking, the method consists in a

linear transform from the original color space into another

physical space. In the special case in which the original

space is RGB (red-green-blue) like it is in our case, the trans-

formation is represented by the simple expression,

~Ek
~Ekk
~Ekkk

0
@

1
A ¼ 0:06 0:63 0:31

0:19 0:18 �0:37

0:22 �0:44 0:06

0
@

1
A R

G
B

0
@

1
A; (14)

where R, G, and B are the original color channels and ~Ek,
~Ekk, and ~Ekkk are the transformed channels. ~Ek corresponds

to the convolution of color energy (wavelength) with a Gaus-

sian. ~Ekk represents the same convolution with the first deriv-

ative of a Gaussian, while ~Ekkk is the same with the second

derivative of Gaussian filter. In Ref. 24 the authors apply the

classical Gabor filters to the transformed color space obtain-

ing interesting results.

In this work, initially, we apply the transform described

to the texture image. In the following, for each one of the

channels ~Ek, ~Ekk, and ~Ekkk we extract fractal descriptors

based on the Fourier fractal dimension described in Sec. III.

For the calculus of these descriptors, instead of simply calcu-

lating the fractal dimension by Eq. (13), we use all the values

of log(P) in the curve, that is, the logarithm of the whole

power spectrum. Thus, we apply a multiscale transform to

FIG. 2. (Color online) Calculus of the fractal dimension of textures. (a) Original texture. (b) Power spectrum. (c) Log-log curve of power

spectrum� frequency.

FIG. 3. (Color online) Illustration of the richness of texture fractal descrip-

tors. At left, two textures with similar fractal dimensions. At right, the fractal

descriptors for each texture and the clear visual distinction between them.
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the curve, with the aim of capturing the fractal behavior at

different observation scales, in a similar manner to that

described in Ref. 9.

Essentially, a multiscale transform is a mapping from

the original signal u(t) onto a function U(b,a), where b is

related to the original variable t and a is the scale parameter.

The literature presents several approaches for the calculus of

multiscale transform.25,26 Based on empirical results, we

opted for the use of space-scale approach. In this solution,

the transform is formally represented through

fðb; aÞja; b 2 <; a > 0; b 2 fU1ðt; aÞgzcg; (15)

in which zc represents the zero-crossings of . and U1(t,a)

expresses the convolution of u(t) with the first derivative of

the Gaussian g1
a, given by

U1ðt; aÞ ¼ uðtÞ � g1
aðtÞ; (16)

where a denotes the smoothing parameter of Gaussian, refer-

enced in the most of textbooks as r. The best results were

achieved by calculating the derivative through the Fourier

property and projecting U(b,a) onto the axis corresponding

to a ¼ 0. This multiscale representation based on Eqs. (15)

and (16) uses the Gaussian kernel concept. It states, using a

result from partial derivative theory, that the Gaussian filter

FIG. 4. (Color online) A scheme of the

proposed method. From up to down, the

original texture, the transformed chan-

nels, the Fourier curve for each channel,

and the final descriptor.
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associated with the first derivative is the unique operation ca-

pable of representing an image or signal under different

scales without adding any spurious element in the process.

More details may be seen in Ref. 25.

Finally, we concatenate the fractal descriptors from each

channel, generating the final color Fourier fractal descriptor.

The steps of the method are depicted in Figure 4, while

Figure 5 summarizes the algorithm process.

By joining the power of fractal theory and more specifi-

cally fractal descriptors in the description of natural textures

and the efficiency of the color approach described in Ref. 24,

we obtain a powerful descriptor for natural colored textures.

Such descriptor is capable of capturing complex patterns in

the texture, which are capital for a complete and precise

identification of a real scene. Figure 6 shows in a simple

example the potentiality of texture discrimination which is

present in the proposed descriptor may be seen even visually.

VI. EXPERIMENTS

The performance of the proposed technique is tested by

the classification of samples from VisTex,27 a classical data-

set of colored textures and USPTex, a dataset developed in

the research group of the authors, which is composed by

FIG. 5. Proposed method generic

algorithm.

FIG. 6. (Color online) The ability of the proposed descriptors in the discrimination of texture classes. Left, we see texture images from two classes and their

respective descriptors. Right, the descriptors are plotted in a same graph, showing visually the high discrimination potential.
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images of natural textures, photographed in high resolution.

Figures 7 and 8 show some image samples from each

dataset.

The dimensionality of proposed descriptors is propor-

tional to the dimension of the image. Thus, for the VisTex

dataset, the signatures are composed by 120 descriptors,

while in USPTex we use 132 descriptors. We have not used

other resolutions for descriptors, once such approach may

compromise the fractality measure, in which all multiscale

levels have equal importance for the description of the

texture.

The results obtained were compared with the use

of other classical methods for descriptors of colored textures,

that is, color Gabor,24 color histogram ratio,28 and chroma-

ticity moments.22 The descriptors are classified by the well

known K-Nearest Neighbor (KNN) method,29 with k¼ 1

(empirically determined) and using a 10-fold cross-valida-

tion process. The comparison is done in terms of the correct-

ness rate with its confidence interval and the confusion

matrices for each descriptor and dataset.

VII. RESULTS

In a first moment, we tested the classification perform-

ance of some metrics extracted from MFD curve, as it is

done in the original MFD work.2 Here, we employed some

fractal and statistical metrics, e.g., fractal dimension of

channels 1, 2, and 3, mean, standard deviation, kurtosis,

skewness, second and third order moments, and the combi-

nation of these measures. Table I shows the correctness rate

and associated error for each approach in Vistex dataset.

Thus, we see that the use of whole MFD curve in the com-

position of descriptors provided the best result. From now,

we show results for the use of the whole curve in the tested

datasets.

Initially, we see in Table II the global correctness rate

for each compared descriptor for Vistex and USPTex dataset.

It is clearly noticeable that the proposed Fourier method pre-

sented the best result in the classification of both datasets.

The proposed technique presented an advantage of 2.8% in

Vistex dataset and 2.7% in USPTex over Gabor method, the

second best technique in this experiment.

In Table III, we present the confusion matrices for each

descriptor method. In this matrix, each raw (or column) rep-

resents a class and the value in row i and column j expresses

the number of objects of class i, but classified as being from

class j. The ideal method (with a 100% correctness rate)

must present a diagonal confusion matrix.

For the Vistex dataset, the numbers correspond to

the following classes (exemplified in Figure 7): 1-Bark,

FIG. 7. (Color online) One image sam-

ple from each class of the Vistex dataset.

From up to down, left to right: Sand,

Tile, Water, Bark, Fabric, Food, and

Metal.
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2-Fabric, 3-Food, 4-Metal, 5-Sand, 6-Tile, and 7-Water. As

expected, the greater the correctness rate, more the confu-

sion matrix presents diagonal aspect. Particularly, the pro-

posed descriptor presented its best performance in classes 3,

FIG. 8. (Color online) Some image sam-

ples (one from each class) from the USP-

Tex dataset.

TABLE I. Percentage correctness rate and respective confidence interval in

the classification of Vistex dataset using statistical metrics extracted from

MFD curve.

Metric Correctness rate

FD Channel 1 30.51 6 0.20

FD Channel 2 33.11 6 0.23

FD Channel 3 35.38 6 0.14

Mean 32.46 6 0.21

Std. Dev. 26.62 6 0.17

Kurtosis 20.12 6 0.27

Skewness 29.54 6 0.39

2th Moment 26.62 6 0.30

3th Moment 29.87 6 0.40

Combined 93.83 6 0.21

Whole Curve 95.12 6 0.10

TABLE II. Percentage correctness rate and respective confidence interval in

the classification of the tested datasets by the compared descriptors.

Method Vistex USPTex

Moment 68.83 6 0.33 32.06 6 0.05

Histogram 78.89 6 0.21 41.49 6 0.18

Gabor 92.53 6 0.18 86.47 6 0.04

Fourier 95.12 6 0.10 88.83 6 0.07

TABLE III. Confusion matrices for the classification of Vistex dataset using

the compared descriptors. (a) Chromaticity moment. (b) Histogram. (c)

Gabor. (d) Fourier.

25 5 2 3 4 13 0 31 9 4 0 6 0 2

10 61 3 3 1 2 0 4 65 1 5 4 1 0

1 1 43 0 1 2 0 1 1 43 0 3 0 0

1 5 0 16 0 0 2 0 4 0 19 0 0 1

1 2 2 0 20 3 0 1 5 0 0 22 0 0

10 3 5 0 4 22 0 2 0 1 0 0 39 2

2 1 0 4 0 0 25 2 3 0 2 0 1 24

(a) (b)

45 3 0 1 2 1 0 50 1 0 0 0 1 0

1 77 0 0 0 2 0 1 74 1 0 1 1 2

0 0 48 0 0 0 0 0 0 48 0 0 0 0

0 1 0 23 0 0 0 0 0 0 24 0 0 0

0 0 0 0 28 0 0 0 0 0 0 28 0 0

6 2 0 2 1 33 0 1 1 0 0 0 42 0

0 1 0 0 0 0 31 2 3 0 0 0 0 27

(c) (d)
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4, and 5. Good results are also observed in classes 1 and 6.

Specially, in class 6, the proposed technique presented a rel-

evant advantage over Gabor method. Gabor misclassified

elements from class 6 as being from classes 1, 2, and 5. This

is explained by the self-similarity present in these classes.

The fractal method, as expected, captured more faithfully

the self-similar nuances. The confusion matrices from USP-

Tex were represented in a different graphical manner, by

using surface figures in Figure 9. In this representation,

each position in the matrix is represented by a surface point

and the height of the point, according to the legend on the

axis, determines the value in that position. Looking at each

figure, we observe that the matrix from the Fourier method

presented a more continuous diagonal with the highest

points, justifying the greater number of samples correctly

classified. The Gabor method presented bad results around

class 110.

VIII. CONCLUSION

This work proposed a novel technique for the calculus

of descriptors for colored textures. The method uses the

Fourier spectral dimension associated with the spatial color

transform proposed in Ref. 16. Initially, the transform

is applied to the original texture images in RGB space.

Following, the classical Fourier transform is applied to the

image and the values in the curve log(powerspectrum)

� log(frequency) are used as descriptors for the texture.

The accuracy of the proposed method was verified

by comparing other classical techniques in color texture

analysis. The results demonstrated the power of the novel

technique once Fourier descriptors presented the greater pre-

cision in the classification of two complex datasets. Spe-

cially, the proposed technique showed a great efficiency in

capturing self-similar patterns in the texture.

The results suggest strongly that color Fourier fractal

descriptors are an interesting alternative to be used in the so-

lution of problems in which the description of an object is

primordial, like tasks involving segmentation and classifica-

tion of objects represented by their texture.

ACKNOWLEDGMENTS

Odemir M. Bruno gratefully acknowledges the financial

support of CNPq (National Council for Scientific and Tech-

nological Development, Brazil) (Grant Nos. 308449/2010-0

and #473893/2010-0) and FAPESP (The State of São Paulo

Research Foundation) (Grant No. 2011/01523-1). João B.

Florindo is grateful to CNPq (National Council for Scientific

and Technological Development, Brazil) for his doctorate

grant.

FIG. 9. Surface visualization of confusion matrices for the classification of USPTex dataset using the compared descriptors. (a) Chromaticity moment. (b) His-

togram. (c) Gabor. (d) Fourier.
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