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a b s t r a c t

In this work, we propose a novel technique for obtaining descriptors of gray-level texture images. The
descriptors are provided by applying a multiscale transform to the fractal dimension of the image esti-
mated through the probability (Voss) method. The effectiveness of the descriptors is verified in a classi-
fication task using benchmark over texture datasets. The results obtained demonstrate the efficiency of
the proposed method as a tool for the description and discrimination of texture images.

� 2014 Published by Elsevier B.V.

1. Introduction

Fractals have played an important role in many areas with
applications related to computer vision and pattern recognition
[1–6], owing to their flexibility in representing structures usually
found in nature. In such objects, we observe different levels of de-
tail at different scales, which are described in a straightforward
manner by fractals, rather than through classical Euclidean
geometry.

Most fractal-based techniques are based on the concept of frac-
tal dimension. Although this concept was originally defined only
for mathematical fractal objects, it contains some properties that
make it a very interesting descriptor for any object in the real
world. Indeed, fractal dimension measures how the complexity (le-
vel of detail) of an object varies with scale, an effective and flexible
means of quantifying how much space an object occupies, as well
as important physical and visual properties of the object, such as
luminance and roughness.

Fractal techniques include the use of Multifractals [7–9], Multi-
scale Fractal Dimension [10,11] and fractal descriptors [12–16].
Here we are focused on the last approach, which has demonstrated
the best results in texture classification [17]. The main idea of frac-
tal descriptors theory is to provide descriptors of an object repre-
sented in a digital image from the relation among fractal
dimensions taken at different observation scales, thus these values

provide a valuable information on the complexity of the object, in
the sense that they capture the degree of detail at each scale. In this
way, fractal descriptors are capable of quantifying important phys-
ical characteristics of the structure, as the fractal dimension, but
presenting a richer information than can be provided by a single
number (fractal dimension).

Although fractal descriptors have demonstrated to be a promis-
ing technique, we observe that they are defined mostly on well-
known methods to estimate the fractal dimension. Here, we pro-
pose fractal descriptors based on a less known definition of fractal
dimension: the probability dimension. This is a statistical ap-
proach, which measures the distribution of pixel intensities along
the image. In this way, such descriptors can express how the statis-
tical arrangement of pixels in the image changes with the scale and
how much such correlation approximates a fractal behavior. In this
sense, our descriptor also measure the self-similarity and complex-
ity of the image but upon a statistical viewpoint. This is a rich and
not explored perspective, which is studied in depth in this work.

We use the whole power-law curve of the dimension and apply
a time-scale transform to emphasize the multiscale aspect of the
features. Finally, we test the proposed method over three well-
known datasets, that is, Brodatz, Outex and UIUC, comparing the
results with another fractal descriptor approach showed in [13]
and other conventional texture analysis methods. The results dem-
onstrate that probability descriptors achieve a more precise classi-
fication than other classical techniques.

2. Fractal theory

In recent years, fractal geometry concepts have been applied to
the solution of a wide range of problems [1–6], mainly because
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conventional Euclidean geometry has severe limitations in provid-
ing accurate measures of real-world objects.

2.1. Fractal dimension

The first definition of fractal dimension provided in [18], is the
Hausdorff dimension. In this definition, a fractal object is a set of
points immersed in a topological space. Thus one can use results
from measure theory to define a measure over this object. This is
the Hausdorff measure expressed by

Hs
dðXÞ ¼ inf

X1

i¼1
jUijs : Ui is a d-cover of X; ð1Þ

where jXj denotes the diameter of X, that is, the maximum possible
distance among any elements of X:

jXj ¼ supfjx� yj : x; y 2 Xg: ð2Þ

Here, a countable collection of sets Ui, with jUij 6 d, is a d-cover of X
if X � [1i¼1Ui.

Notice that H also depends on a parameter d, which expresses
the scale at which the measure is taken. We can eliminate such
dependence by applying a limit over d, defining in this way the
s-dimensional Hausdorff measure:

HsðXÞ ¼ imd!0 Hs
dðXÞ: ð3Þ

The plot of HsðXÞ as a function of s shows a similar behavior in any
fractal object analyzed. The value of H is1 for any s < D and it is 0
for any s > D, where D always is a non-negative real value. D is the
Hausdorff fractal dimension of X. More formally,

DðXÞ ¼ fsgj inf s : HsðXÞ ¼ 0
� �

¼ sup HsðXÞ ¼ 1
� �

: ð4Þ

In most practical situations, the Hausdorff dimension is difficult
or even impossible to calculate. Thus assuming that any fractal ob-
ject is intrinsically self-similar, the literature shows a simplified
version, also known as the similarity dimension or capacity
dimension:

D ¼ � logðNÞ
logðrÞ ; ð5Þ

where N is the number of rules with linear length r used to cover
the object.

In practice, the above expression may be generalized by consid-
ering N to be any kind of self-similarity measure and r to be any
scale parameter. This generalization has given rise many methods
for estimating fractal dimension, with widespread applications to
the analysis of objects that are not real fractals (mathematically
defined) but that present some degree of self-similarity in specific
intervals. An example of such a method is the probability dimen-
sion, used in this work and described in the following section.

2.2. Probability dimension

The probability dimension, also known as the information
dimension, is derived from the information function. This function
is defined for any situation in which we have an object occupying a
physical space. We can divide this space into a grid of squares with
side-length d and compute the probability pm of m points of the ob-
ject pertaining to some square of the grid. The probability function
is given by

NPðdÞ ¼
XN

m¼1

1
m

pmðdÞ; ð6Þ

where N is the maximum possible number of points of the object in-
side a unique square. Here we use a generalization of the above
expression defined in the multifractal theory [19]:

NPðdÞ ¼
XN

m¼1

mapmðdÞ; ð7Þ

where a is any real number.
The dimension itself is given as

D ¼ �lim
d!0

ln NP

ln d
: ð8Þ

When this dimension is estimated over a gray-level digital im-
age I : ½M;N� ! R, a common approach is to map it onto a three-
dimensional surface S as

S ¼ fi; j; Iði; jÞjði; jÞ 2 ½1 : M� � ½1 : N�g: ð9Þ

In this case, we construct a three-dimensional grid of 3D cubes also
with side-length d. The probability pm is therefore given by the
number of grid cubes containing m points on the surface divided
by the maximum number of points inside a grid cube (see Fig. 1).

3. Fractal descriptors

Fractal descriptors are values extracted from the log–log rela-
tionship common to most methods of estimating fractal dimen-
sion. Actually, any fractal dimension method derived from the
concept of the Hausdorff dimension obeys a power-law relation,
which may be expressed as

D ¼ � logðMÞ
logð�Þ ; ð10Þ

where M is a measure depending on the fractal dimension method
and � is the scale at which this measure is taken.

Therefore Fractal descriptors are provided from the function u:

u : logð�Þ ! logðMÞ: ð11Þ

We call the independent variable t to simplify the notation. Thus
t ¼ log � and our fractal descriptor function is denoted uðtÞ. For
the probability dimension used in this work, we have

uðtÞ ¼ � logðNV ðdÞÞ
logðdÞ : ð12Þ

The values of uðtÞ may be directly used as descriptors of the
analyzed image or may be post-processed by some kind of opera-
tion aimed at emphasizing some specifical aspects of that function.
Here, we apply a multiscale transform to uðtÞ and obtain a bi-
dimensional function Uðb; aÞ, in which the variable b is related to
t and a is related to the scale at which the function is observed.
A common means of obtaining U is through a wavelet transform:

Uðb; aÞ ¼ 1
a

Z
R

w
t � b

a

� �
uðtÞdt; ð13Þ

where w is a wavelet basis function and a is the scale parameter
[20]. Fig. 2 shows an example where two textures with the same
dimension, but visually distinct, provide different descriptors.

4. Proposed method

This work proposes to obtain fractal descriptors from textures
by using the probability fractal dimension. At first, the values on
the curve uðtÞ : logðNPðdÞÞ in Eq. (7) are computed for each image.
Therefore we apply a multiscale transform to u.

The multiscale process employs a wavelet transform of uðtÞ, as
described in the previous section:

Uðb; aÞ ¼ 1
a

Z
R

w
t � b

a

� �
uðtÞdt: ð14Þ

108 J.B. Florindo, O.M. Bruno / Pattern Recognition Letters 42 (2014) 107–114



As the multiscale transform maps a one-dimensional signal
onto a bi-dimensional function, it is a process that generates intrin-
sic redundancies. There are different approaches to eliminating
such redundancies and keeping only the relevant information
[11]. Here, we adopt a simple method, fine-tuning smoothing, in
which Uðb; aÞ is projected onto a specific value a0 of the wavelet
parameter. We tested values of a ranging between 0:1 and 5 and
used the values that provided the best performance in the training
experiments.

Empirically, we observed that the initial points in this multi-
scaled curve provided better performance in our application. Then,
we established a threshold t after which all the points in the con-
volution curve are disregarded. Finally, different values of a in Eq.
(7) can be used and the multiscale transforms resulting from each
value are combined to provide the proposed descriptors.

The proposed method is different from any other fractal method
proposed in the literature in the sense that it is the first proposal of
a multiscale fractal analysis under a statistical viewpoint. While

other fractal-based descriptors employ geometrical and/or spectral
information of the pixel arrangement in the entire image, here the
analysis relies on the number of regions with a specific distribu-
tion, in this way reducing the sensitivity to distortions in the pixel
distribution within a particular scale and leading to a representa-
tion of the texture more robust to noises and other artifacts.
Fig. 3 shows a visual example illustrating the discriminative capa-
bility of the proposed method on texture images.

5. Experiments

In order to verify the efficiency of the proposed technique, we
applied our probability descriptors to the classification of three
benchmark datasets and compared our results to the performance
of other well-known and state-of-the-art methods for texture
analysis.

The first classification task used the Brodatz dataset, a classic
set of natural gray-level textures photographed and assembled in
an architecture book [21]. This dataset is composed by 111 classes
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Fig. 1. Two estimates of the probability dimension. Above, the 2D version used for shape analysis. Below, the 3D version used for gray-level images. In the 3D case, the
original image is represented by a surface.
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with 10 textures in each class. Each image has a pixel dimension of
200�200.

The second data set was Outex, a set of color textures extracted
from natural scenes [22]. Here, we used the first 20 classes, each
one having 20 images with a 128�128 pixel dimension, and con-
verted them to gray-level images.

The third database is UIUC [23]. This is composed by 68 classes
with 20 gray-level textures in each one. Such textures have a
strong variation on acquisition parameters, like albedo, illumina-
tion and viewpoint, making its classification a challenging task.

We compared our probability descriptors to eight other tech-
niques, namely, Local Binary Patterns (LBP) [24], shift Local Binary
Patterns [25], fuzzy Local Binary Patterns [25], Gabor-wavelets
[26], Gray-Level Difference Method (GLDM) [27], a multifractal ap-
proach described in [19] and Bouligand–Minkowski fractal
descriptors [13,17].

The proposed method has three important parameters that are
the multiscale threshold t and scale a and the coefficient (s) a in
the probability dimension. These parameters are set empirically
by scanning within a range of values and considering those values
that provide the best classification of a training set of the database.
Particularly, a varies between 0:1 and 5:0 (with increments of 0:1),
t varies between 1 and 150 (with increments of 1) and a varies be-
tween �2 and 2 (with increments of 0:1). These ranges were cho-
sen as there is no significant contribution outside this boundary.
Table 1 shows the best parameters found for each database.

For the literature methods, the setup described in each refer-
ence was followed.

Since most of the compared methods provide feature vectors
with large dimension, we applied a Principal Component Analysis
(PCA) over the data to extract the most meaningful information
and avoid problems such as the dimensionality curse [28]. Finally
to verify the accuracy of each compared approach, the dataset
was split following a cross-validation scheme, that is, the data is
partitioned into K complementary subsets and the classification
is performed in K rounds. In each round, one subset is used for test-
ing and the K � 1 remaining subsets for training. The value of K
usually ranges between 5 and 10 and is obtained empirically for
each database. The classification itself is carried out by a Support
Vector Machine (SVM) classifier [29]. The classification also has
two parameters set empirically in the same way as the method set-
tings, e. g., the K of the K-fold and the maximum number of fea-
tures (descriptors) per image. Table 2 shows the parameters used
in each data set.

6. Results

Table 3 shows the correctness rate in the classification of the
Brodatz dataset using the compared descriptors. The proposed
method obtained the best result, outperforming the powerful
Bouligand–Minkowski fractal descriptors and taking substantial
advantage over other state-of-the art techniques such as Gabor
and LBP. A particularly important aspect of our method with this
data set is the reduced number of descriptors needed to provide
a precise classification. This point is especially important in large
databases, for which computational performance is more relevant.

Furthermore, the small number of features avoids the curse of
dimensionality, which impairs the reliability of the global result.

Table 4 shows the results for the Outex textures. The proposed
approach achieved a success rate of 100%, despite the challenge of
applying a gray-scale-based method to color analysis. In fact, Out-
ex textures exhibit nuances which are better expressed in the color
information, such as the changes in the lighting perspective and
the images from different classes presenting similarities in the
intensity distribution, though distinguished by color. Based on this
result, our method demonstrates that although it does not use any
color information, it is powerful also for color image analysis.

In Table 5, the success rates for UIUC database is showed. The
proposed method outperformed even state-of-the-art approaches
like the variants of LBP and Gabor-wavelets. This database is char-
acterized by its significant variation in viewpoint, albedo, 3D
shape, scale and illumination conditions. Such variation makes
the categorization of those textures a challenging task. Again, our
method provided the greatest success rate confirming the richness
of the information enclosed in the multiscale transform of the
probability fractal dimension. In fact, the multiscale view of the
texture captures the particular behavior of each material concern-
ing the environment changings, whereas the probability dimension
describes the essential morphology of the image. The combination
of both tools explains the best results obtained in these
experiments.

Fig. 4 shows how the success rate varies according to the num-
ber of descriptors used in both datasets. The graphs show a well-
known property of Karhunen–Loève transform enclosed in PCA.
The most expressive information is concentrated in the initial
descriptors, so that the success curves show a quick growing and
then tend to stabilize at a constant rate. The larger size and the na-
tive gray-scale format of Brodatz data leads to a clearer advantage

Table 1
Empirical parameters used for the proposed method.

Database a t a

Brodatz 0.1 8 0.2
Outex 0.1 30 �0.4, �0.5, �0.8
UIUC 0.1 110 �1, �1.1, �1.3

Table 2
Parameters used for the classification. K is the K-fold parameter and n is the
maximum number of features per image.

Database K n

Brodatz 5 10
Outex 10 20
UIUC 5 11

Table 3
Correctness rate for Brodatz dataset.

Method Correctness rate (%) Number of descriptors

LBP 82.5 ± 0.2 10
Shift LBP 92.0 ± 0.1 9
Fuzzy LBP 87.7 ± 0.1 10
Gabor 86.8 ± 0.1 8
GLDM 79.6 ± 0.2 8
Multifractal 54.9 ± 0.5 9
Bouligand–Minkowski 90.8 ± 0.1 10
Proposed method 93.0 ± 0.1 8

Table 4
Correctness rate for Outex dataset.

Method Correctness rate (%) Number of descriptors

LBP 100.0 ± 0.0 13
Shift LBP 100.0 ± 0.0 6
Fuzzy LBP 99.3 ± 0.0 11
Gabor 98.8 ± 0.0 12
GLDM 92.5 ± 0.1 14
Multifractal 84.5 ± 0.2 11
Bouligand–Minkowski 99.8 ± 0.0 11
Proposed method 100.0 ± 0.0 17
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of probability descriptors in that database. In Outex, the first
descriptors, corresponding to the PCA components with higher var-
iance, do not have as much significance for the classification pur-
pose. However, the sum of all of them provide the best result.
This is a specific property of fractal descriptors, as can be observed
in the Bouligand–Minkowski descriptors for the Brodatz data as
well. Fractal descriptors are tightly correlated among themselves,
thus we do not have a large significance carried only in a few
descriptors. Finally, the correctness rates for UIUC demonstrates
the efficiency of fractal approaches in this kind of textures. The
intrinsic multiscalar property of fractal descriptors attenuate
the effect of condition variations in that data set, by focusing on
the morphology of the texture instead of the simple pixel
intensities.

Finally, Figs. 5 and 6 show the confusion matrices of the meth-
ods with the best performances. In this kind of representation, a
good descriptor must produce a matrix with a diagonal as lighter
and continuous as possible and the minimum of dark points out-
side the diagonal.

As can be seen, in Brodatz data, the probability descriptors
clearly presented these characteristics, with almost no ‘‘gap’’ in
the diagonal and with a few dark points outside. Both gaps and

gray points indicate the confusion of the classifier, that is, elements
classified incorrectly in some way. This confusion is caused mostly
by the high similarity inter-class and low similarity intra-class. A
precise descriptor, like the proposed, avoids such confusion by pro-
viding measures capable of faithfully representing the most com-
plex structures.

In the case of Outex, all the best methods (proposed and vari-
ants of LBP) achieved 100% of success in the classification, resulting
in a confusion matrix with the entire diagonal in red. In the same
experiment, Bouligand–Minkowski also provided a good result
even though its matrix shows a slight misclassification on class
13 (class 13 and 14 are hardly distinguished without using color).

Fig. 7 shows the confusion matrices for UIUC database. The pic-
ture illustrates visually the behavior of each method in each class.
For instance, although LBP and the proposed approach have similar
overall performance, the binary patterns present a significant mis-
classification on class 14, confused with class 12. The proposed
method exhibits a more homogeneous result with a good predic-
tion skill on all the classes.

An overall analysis of the results demonstrates that the pro-
posed method outperformed the compared ones in all the tested
datasets, using a small number of descriptors. Such results were
expected from fractal theory given its wide applicability to the
analysis of natural textures. Actually, fractal geometry presents a
remarkable flexibility in the modeling of objects that cannot be
well represented by Euclidean rules. The fractal dimension is a
powerful metric for the complex patterns and spatial arrange-
ments usually found in nature. Fractal descriptors provide a way
of capturing multiscale variations and nuances that could not be
measured by conventional methods. More specifically, the proba-
bility descriptors proposed here combine a statistical approach
with fractal analysis, comprising a framework that supports a pre-
cise and reliable discrimination technique, as confirmed in the
above results.

Table 5
Correctness rate for UIUC dataset.

Method Correctness rate (%) Number of descriptors

LBP 74.1 ± 0.3 11
Shift LBP 69.9 ± 0.3 11
Fuzzy LBP 67.9 ± 0.3 11
Gabor 76.2 ± 0.2 11
GLDM 64.5 ± 0.3 11
Multifractal 64.1 ± 0.4 10
Bouligand–Minkowski 83.9 ± 0.2 11
Proposed method 84.9 ± 0.1 11
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Fig. 6. Confusion matrices in Outex dataset. (a) LBP, (b) Bouligand–Minkowski, (c) Shift LBP and (d) proposed method.
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7. Conclusion

We have proposed a novel method for extracting descriptors by
applying a multiscale transform over the power-law relation of the
fractal dimension estimated by the probability method.

We tested the efficiency of the proposed technique in the clas-
sification of three well-known benchmark texture datasets and
compared its performance to that of other classical texture analysis
methods. The results demonstrated that probability fractal
descriptors are a powerful tool for modeling such textures. The
proposed method achieved a high success rate in the classification
of the benchmark data sets, using a few descriptors in this task.
These results demonstrate that the proposed method is capable
of combining precision, low computational cost and robustness.

As a consequence, our method offers a reliable approach to
solve a large class of problems involving the analysis of texture
images.
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Fig. 7. Confusion matrices in UIUC dataset. (a) Gabor, (b) LBP, (c) Bouligand–Minkowski and (d) proposed method.
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