719 research outputs found

    EAGLEā€”A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatioā€“temporal correlations. Most semantic approaches do not have spatioā€“temporal support. Some of them have attempted to provide full spatioā€“temporal support, but have poor performance for complex spatioā€“temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatioā€“temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatioā€“temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Storing and querying evolving knowledge graphs on the web

    Get PDF

    Continuous client-side query evaluation over dynamic linked data

    Get PDF
    Existing solutions to query dynamic Linked Data sources extend the SPARQL language, and require continuous server processing for each query. Traditional SPARQL endpoints already accept highly expressive queries, so extending these endpoints for time-sensitive queries increases the server cost even further. To make continuous querying over dynamic Linked Data more affordable, we extend the low-cost Triple Pattern Fragments (TPF) interface with support for time-sensitive queries. In this paper, we introduce the TPF Query Streamer that allows clients to evaluate SPARQL queries with continuously updating results. Our experiments indicate that this extension significantly lowers the server complexity, at the expense of an increase in the execution time per query. We prove that by moving the complexity of continuously evaluating queries over dynamic Linked Data to the clients and thus increasing bandwidth usage, the cost at the server side is significantly reduced. Our results show that this solution makes real-time querying more scalable for a large amount of concurrent clients when compared to the alternatives

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Runtime Adaptive Hybrid Query Engine based on FPGAs

    Get PDF
    This paper presents the fully integrated hardware-accelerated query engine for large-scale datasets in the context of Semantic Web databases. As queries are typically unknown at design time, a static approach is not feasible and not flexible to cover a wide range of queries at system runtime. Therefore, we introduce a runtime reconfigurable accelerator based on a Field Programmable Gate Array (FPGA), which transparently incorporates with the freely available Semantic Web database LUPOSDATE. At system runtime, the proposed approach dynamically generates an optimized hardware accelerator in terms of an FPGA configuration for each individual query and transparently retrieves the query result to be displayed to the user. During hardware-accelerated execution the host supplies triple data to the FPGA and retrieves the results from the FPGA via PCIe interface. The benefits and limitations are evaluated on large-scale synthetic datasets with up to 260 million triples as well as the widely known Billion Triples Challenge

    Continuously Updating Query Results over Real-Time Linked Data

    Get PDF
    Abstract. Existing solutions to query dynamic Linked Data sources extend the language, and require continuous server processing for each query. Traditional endpoints accept highly expressive queries, contributing to high server cost. Extending these endpoints for time-sensitive queries increases the server cost even further. To make continuous querying over real-time Linked Data more affordable, we extend the low-cost Triple Pattern Fragments ( ) interface with support for time-sensitive queries. In this paper, we discuss a framework on top of that allows clients to execute queries with continuously updating results. Our experiments indicate that this extension significantly lowers the server complexity. The trade-off is an increase in the execution time per query. We prove that by moving the complexity of continuously evaluating real-time queries over Linked Data to the clients and thus increasing the bandwidth usage, the cost of server-side interfaces is significantly reduced. Our results show that this solution makes real-time querying more scalable in terms of usage for a large amount of concurrent clients when compared to the alternatives

    Towards Semantically Enabled Complex Event Processing

    Full text link

    Querying the web of data with low latency: high performance distributed SPARQL processing and benchmarking

    No full text
    The Web of Data extends the World Wide Web (WWW) in a way that applications can understand information and cooperate with humans on complex tasks. The basis of performing complex tasks is low latency queries over the Web of Data. The large scale and distributed nature of the Web of Data have negative impacts on several critical factors for efficient query processing, including fast data transmission between datasets, predictable data distribution and statistics that summarise and describe certain patterns in the data. Moreover, it is common on the Web of Data that the same resource is identified by multiple URIs. This phenomenon, named co-reference, potentially increases the complexity of query processing, and makes it even harder to obtain accurate statistics. With the aforementioned challenges, it is not clear whether it is possible to achieve efficient queries on the Web of Data on a large scale.In this thesis, we explore techniques to improve the efficiency of querying the Web of Data on a large scale. More specifically, we investigate two typical scenarios on the Web of Data, which are: 1) the scenario in which all datasets provide detailed statistics that are possibly available on a large scale, and 2) the scenario in which co-reference is taken into account, and datasetsā€™ statistics are not reliable. For each scenario we explore existing and novel optimisation techniques that are tailored for querying the Web of Data, as well as well developed techniques with careful adjustments.For the scenario with detailed statistics we provide a scheme that implements a statistics query optimisation approach that requires detailed statistics, and intensively exploits parallelism. We propose an efficient algorithm called Parallel Sub-query Identification () to increase the degree of parallelism. () breaks a SPARQL query into sub-queries that can be processed in parallel while not increasing network traffic. We combine with dynamic programming to produce query plans with both minimum costs and a fair degree of parallelism. Furthermore, we develop a mechanism that maximally exploits bandwidth and computing power of datasets. For the scenario having co-reference and without reliable statistics we provide a scheme that implements a dynamic query optimisation approach that takes co-reference into account, and utilises runtime statistics to elevate query efficiency even further. We propose a model called Virtual Graph to transform a query and all its co-referent siblings into a single query with pre-defined bindings. Virtual Graph reduces the large number of outgoing and incoming requests that is required to process co-referent queries individually. Moreover, Virtual Graph enables query optimisers to find the optimal plan with respect to all co-referent queries as a whole. () is used in this scheme as well but provides a higher degree of parallelism with the help of runtime statistics. A Minimum-Spanning-Tree-based algorithm is used in this scheme as a result of using runtime statistics. The same parallel execution mechanism used in the previous scenario is adopted here as well.In order to examine the effectiveness of our schemes in practice, we deploy the above approaches in two distributed SPARQL engines, LHD-s and LHD-d respectively. Both engines are implemented using a popular Java-based platform for building Semantic Web applications. They can be used as either standalone applications or integrated into existing systems that require quick response of Linked Data queries.We also propose a scalable and flexible benchmark, called Distributed SPARQL Evaluation Framework (DSEF), for evaluating optimisation approaches in the Web of Data. DSEF adopts a expandable virtual-machine-based structure and provides a set of efficient tools to help easily set up RDF networks of arbitrary sizes. We further investigate the proportion and distribution of co-reference in the real world, based on which DESF is able to simulate co-reference for given RDF datasets. DSEF bases its soundness in the usage of widely accepted assessment data and queries.By comparing both LHD-s and LHD-d with existing approaches using DSEF, we provide evidence that neither existing statistics provided by datasets nor cost estimation methods, are sufficiently accurate. On the other hand, dynamic optimisation using runtime statistics together with carefully tuned parallelism are promising for significantly reducing the latency of large scale queries on the Web of Data. We also demonstrate that () and Virtual Graph algorithms significantly increase query efficiency for queries with or without co-reference.In summary, the contributions of this these include: 1) proposing two schemes for improving query efficiency in two typical scenarios in the Web of Data; 2) providing implementations, named LHD-s and LHD-d, for the two schemes respectively; 3) proposing a scalable and flexible evaluation framework for distributed SPARQL engines called DSEF; and 4) showing evidence that runtime-statistics-based dynamic optimisation with parallelism are promising to reduce latency of Linked Data queries on a large scale
    • ā€¦
    corecore