1,773 research outputs found

    Microgrids & District Energy: Pathways To Sustainable Urban Development

    Get PDF
    A microgrid is an energy system specifically designed to meet some of the energy needs of a group of buildings, a campus, or an entire community. It can include local facilities that generate electricity, heating, and/or cooling; store energy; distribute the energy generated; and manage energy consumption intelligently and in real time. Microgrids enable economies of scale that facilitate local production of energy in ways that can advance cost reduction, sustainability, economic development, and resilience goals. As they often involve multiple stakeholders, and may encompass numerous distinct property boundaries, municipal involvement is often a key factor for successful implementation. This report provides an introduction to microgrid concepts, identifies the benefits and most common road blocks to implementation, and discusses proactive steps municipalities can take to advance economically viable and environmentally superior microgrids. It also offers advocacy suggestions for municipal leaders and officials to pursue at the state and regional level. The contents are targeted to municipal government staff but anyone looking for introductory material on microgrids should find it useful

    Investigating Impacts of CVR and Demand Response Operations on a Bi-Level Market-Clearing With a Dynamic Nodal Pricing

    Get PDF
    This paper investigates the impacts of conservation voltage reduction (CVR) on electricity prices, the local market, and technical issues in distribution networks. An increase in electricity demand is one of the key challenges for developing sustainable societies. An increase in electric consumption puts immense pressure on electricity providers, which forces them to apply for load reduction programs during peak-demand time intervals. The CVR is one of the popular methods for load reduction, but how it would impact the pricing process and electricity market at the distribution level needs further investigation. The proposed methodology includes a power tracing and loss allocation-based pricing method. Since the distribution networks are going to be confronted by penetration of distributed energy resources (DER), prosumers, and microgrids, it is important to have a comprehensive methodology. This paper deploys a bi-level optimization algorithm to consider the financial benefits of all participating agents. In addition to CVR, the demand response (DR) programs are considered to shift and curtail flexible loads by the distribution system operator (DSO) and prosumers, respectively. The price sensitivity of prosumers toward change in the network’s voltage for better planning is calculated. The operation costs/profits of DSO/prosumers decrease/increase during CVR and DR programs by 4.63% / 3%, respectively.©2023 Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Power Quality Concerns in Implementing Smart Distribution-Grid Applications

    Get PDF
    This paper maps the expected and possible adverse consequences for power quality of introducing several smart distribution-grid technologies and applications. The material presented in this paper is the result of discussions in an international CIGRE-CIRED joint working group. The following technologies and applications are discussed: 1) microgrids; 2) advanced voltage control; 3) feeder reconfiguration; and 4) demand-side management. Recommendations are given based on the mapping

    Smart grids for rural conditions and e-mobility - Applying power routers, batteries and virtual power plants

    Get PDF
    Significant reductions of greenhouse gas emission by use of renewable energy sources belong to the common targets of the European Union. Smart grids address intelligent use and integration of conventional and renewable generation in combination with controllable loads and storages. Two special aspects have also to be considered for smart grids in future: rural conditions and electric vehicles. Both, the increasing share of renewable energy sources and a rising demand for charging power by electrical vehicles lead to new challenges of network stability (congestion, voltage deviation), especially in rural distribution grids. This paper describes two lighthouse projects in Europe (“Well2Wheel” and “Smart Rural Grid”) dealing with these topics. The link between these projects is the implementation of the same virtual power plant technology and the approach of cellular grid cells. Starting with an approach for the average energy balance in 15 minutes intervals in several grid cells in the first project, the second project even allows the islanded operation of such cells as a microgrid. The integration of renewable energy sources into distribution grids primary takes place in rural areas. The lighthouse project “Smart Rural Grid”, which is founded by the European Union, demonstrates possibilities to use the existing distribution system operator infrastructure more effectively by applying an optimised and scheduled operation of the assets and using intelligent distribution power routers, called IDPR. IDPR are active power electronic devices operating at low voltage in distribution grids aiming to reduce losses due to unbalanced loads and enabling active voltage and reactive power control. This allows a higher penetration of renewable energy sources in existing grids without investing in new lines and transformers. Integrated in a virtual power plant and combined with batteries, the IDPR also allows a temporary islanded mode of grid cells. Both projects show the potential of avoiding or postponing investments in new primary infrastructure like cables, transformers and lines by using a forward-looking operation which controls generators, loads and batteries (mobile and stationary) by using new grid assets like power routers. While primary driven by physical restrictions as voltage-band violations and energy balance, these cells also define and allow local smart markets. In consequence the distribution system operators could avoid direct control access by giving an incentive to the asset owners by local price signals according to the grid situation and forecasted congestions.Peer ReviewedPostprint (published version

    Frequency-Based Decentralized Conservation Voltage Reduction Incorporated Into Voltage-Current Droop Control for an Inverter-Based Islanded Microgrid

    Get PDF
    Conservation voltage reduction (CVR) aims to decrease load demands by regulating bus voltages at a low level. This paper proposes a new strategy for decentralized CVR (DCVR), incorporated into the current-based droop control of inverter-interfaced distributed energy resources (IDERs), to improve the operational reliability of an islanded microgrid. An IdqI_{dq} controller is developed as an outer feedback controller for each IDER, consisting of IdI_{d} VV controllers for the DCVR and IdI_{d} ω\omega and IqI_{q} VV controllers for power sharing. In particular, the IdI_{d} VV controllers adjust the output voltages of the IDERs in proportion to the frequency variation determined by the IdI_{d} ω\omega controllers. This enables the output voltages to be reduced by the same amount, without communication between the IDERs. The IqI_{q} VV controllers are responsible for reactive power sharing by adjusting the voltages while taking into account the IdI_{d} VV controllers. Small-signal analysis is used to verify the performance of the proposed DCVR with variation in the IdI_{d} ω\omega and IqI_{q} VV droop gains. Case studies are also carried out to demonstrate that the DCVR effectively mitigates an increase in the load demand, improving the operational reliability, under various load conditions determined by power factors and load compositions.11Ysciescopu

    Review of blockchain-based distributed energy: Implications for institutional development

    Get PDF
    The future of energy is complex, with fluctuating renewable resources in increasingly distributed systems. It is suggested that blockchain technology is a timely innovation with potential to facilitate this future. Peer-to-peer (P2P) microgrids can support renewable energy as well as economically empower consumers and prosumers. However, the rapid development of blockchain and prospects for P2P energy networks is coupled with several grey areas in the institutional landscape. The purpose of this paper is to holistically explore potential challenges of blockchain-based P2P microgrids, and propose practical implications for institutional development as well as academia. An analytical framework for P2P microgrids is developed based on literature review as well as expert interviews. The framework incorporates 1) Technological, 2) Economic, 3) Social, 4) Environmental and 5) Institutional dimensions. Directions for future work in practical and academic contexts are identified. It is suggested that bridging the gap from technological to institutional readiness would require the incorporation of all dimensions as well as their inter-relatedness. Gradual institutional change leveraging community-building and regulatory sandbox approaches are proposed as potential pathways in incorporating this multi-dimensionality, reducing cross-sectoral silos, and facilitating interoperability between current and future systems. By offering insight through holistic conceptualization, this paper aims to contribute to expanding research in building the pillars of a more substantiated institutional arch for blockchain in the energy sector
    corecore