57,374 research outputs found

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    Leveraging probabilistic reasoning in deterministic planning for large-scale autonomous Search-and-Tracking

    Get PDF
    Search-And-Tracking (SaT) is the problem of searching for a mobile target and tracking it once it is found. Since SaT platforms face many sources of uncertainty and operational constraints, progress in the field has been restricted to simple and unrealistic scenarios. In this paper, we propose a new hybrid approach to SaT that allows us to successfully address large-scale and complex SaT missions. The probabilistic structure of SaT is compiled into a deterministic planning model and Bayesian inference is directly incorporated in the planning mechanism. Thanks to this tight integration between automated planning and probabilistic reasoning, we are able to exploit the power of both approaches. Planning provides the tools to efficiently explore big search spaces, while Bayesian inference, by readily combining prior knowledge with observable data, allows the planner to make more informed and effective decisions. We offer experimental evidence of the potential of our approach

    PILCO: A Model-Based and Data-Efficient Approach to Policy Search

    No full text
    In this paper, we introduce PILCO, a practical, data-efficient model-based policy search method. PILCO reduces model bias, one of the key problems of model-based reinforcement learning, in a principled way. By learning a probabilistic dynamics model and explicitly incorporating model uncertainty into long-term planning, PILCO can cope with very little data and facilitates learning from scratch in only a few trials. Policy evaluation is performed in closed form using state-of-the-art approximate inference. Furthermore, policy gradients are computed analytically for policy improvement. We report unprecedented learning efficiency on challenging and high-dimensional control tasks. Copyright 2011 by the author(s)/owner(s)

    Active Inference

    Get PDF
    The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning
    • …
    corecore