7,357 research outputs found

    Planning and Resource Allocation for Hard Real-time, Fault-Tolerant Plan Execution

    Full text link
    We describe the interface between a real-time resource allocation system with an AI planner in order to create fault-tolerant plans that are guaranteed to execute in hard real-time. The planner specifies the task set and all execution deadlines required to ensure system safety, then the resource utilization. A new interface module combines information from planning and resource allocation to enforce development of plans feasible for execution during a variety of internal system faults. Plans that over-utilize any system resource trigger feedback to the planner, which then searches for an alternate plan. A valid plan for each specified fault, including the nominal no-fault situation, is stored in a plan cache for subsequent real-time execution. We situate this work in the context of CIRCA, the Cooperative Intelligent Real-time Control Architecture, which focuses on developing and scheduling plans that make hard real-time safety guarantees, and provide an example of an autonomous aircraft agent to illustrate how our planner-resource allocation interface improves CIRCA performance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44010/1/10458_2004_Article_318111.pd

    Constraint logic programming for fault-tolerant distributed systems

    Get PDF
    This paper presents key notions of Constraint Logic Programming (CLP), which is a young programming paradigm oriented toward solving difficult discrete highly combinatorial problems by making active use of constraints on the basis of mechanisms of Logic Programming. Being the subject of intensive research all over the world, CLP has already been used successfully in a large variety of application areas. As one of the important applications where CLP demonstrates its potential, we propose CLP-based procedures of solving the problems of optimal resource and task allocation at the stages of design and operation of Fault-Tolerant Distributed Technical Systems.Peer Reviewe

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network
    • …
    corecore