101 research outputs found

    Automatic plankton quantification using deep features

    Get PDF
    The study of marine plankton data is vital to monitor the health of the world’s oceans. In recent decades, automatic plankton recognition systems have proved useful to address the vast amount of data collected by specially engineered in situ digital imaging systems. At the beginning, these systems were developed and put into operation using traditional automatic classification techniques, which were fed with handdesigned local image descriptors (such as Fourier features), obtaining quite successful results. In the past few years, there have been many advances in the computer vision community with the rebirth of neural networks. In this paper, we leverage how descriptors computed using Convolutional Neural Networks (CNNs) trained with out-of-domain data are useful to replace hand-designed descriptors in the task of estimating the prevalence of each plankton class in a water sample. To achieve this goal, we have designed a broad set of experiments that show how effective these deep features are when working in combination with state-of-the-art quantification algorithms

    Application of the YOLOv5 Model for the Detection of Microobjects in the Marine Environment

    Full text link
    The efficiency of using the YOLOV5 machine learning model for solving the problem of automatic de-tection and recognition of micro-objects in the marine environment is studied. Samples of microplankton and microplastics were prepared, according to which a database of classified images was collected for training an image recognition neural network. The results of experiments using a trained network to find micro-objects in photo and video images in real time are presented. Experimental studies have shown high efficiency, comparable to manual recognition, of the proposed model in solving problems of detect-ing micro-objects in the marine environment.Comment: 9 pages, 8 figure

    Deep learning for Plankton and Coral Classification

    Get PDF
    Oceans are the essential lifeblood of the Earth: they provide over 70% of the oxygen and over 97% of the water. Plankton and corals are two of the most fundamental components of ocean ecosystems, the former due to their function at many levels of the oceans food chain, the latter because they provide spawning and nursery grounds to many fish populations. Studying and monitoring plankton distribution and coral reefs is vital for environment protection. In the last years there has been a massive proliferation of digital imagery for the monitoring of underwater ecosystems and much research is concentrated on the automated recognition of plankton and corals. In this paper, we present a study about an automated system for monitoring of underwater ecosystems. The system here proposed is based on the fusion of different deep learning methods. We study how to create an ensemble based of different CNN models, fine tuned on several datasets with the aim of exploiting their diversity. The aim of our study is to experiment the possibility of fine-tuning pretrained CNN for underwater imagery analysis, the opportunity of using different datasets for pretraining models, the possibility to design an ensemble using the same architecture with small variations in the training procedure. The experimental results are very encouraging, our experiments performed on 5 well-knowns datasets (3 plankton and 2 coral datasets) show that the fusion of such different CNN models in a heterogeneous ensemble grants a substantial performance improvement with respect to other state-of-the-art approaches in all the tested problems. One of the main contributions of this work is a wide experimental evaluation of famous CNN architectures to report performance of both single CNN and ensemble of CNNs in different problems. Moreover, we show how to create an ensemble which improves the performance of the best single model

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    Collaborative Deep Learning Models to Handle Class Imbalance in FlowCam Plankton Imagery

    Get PDF
    Usingautomatedimagingtechnologies,itisnowpossibletogeneratepreviouslyunprecedented volumes of plankton image data which can be used to study the composition of plankton assemblages. However, the current need to manually classify individual images introduces a bottleneck into processing chains.AlthoughMachineLearningtechniqueshavebeenusedtotryandaddressthisissue,pasteffortshave suffered from accuracy limitations, especially in minority classes. Here we use state-of-the-art methods in Deep Learning to investigate suitable architectures for training an automated plankton classification system which achieves high efficacy for both abundant and rare taxa. We collected live plankton from Station L4 in the Western English Channel and imaged 11,371 particles covering 104 taxonomic groups using the automatedplanktonimagingsystemFlowCam.Theimagesetcontainedasevereclassimbalance,withsome taxa represented by > 600 images while other, rarer taxa were represented by just 14. We demonstrate that by allowing multiple Deep Learning models to collaborate in a single classification system, classification accuracyimprovesforminorityclasseswhencomparedwiththebestindividualmodel.Thetopcollaborative model achieved a 6 % improvement in F1 accuracy over the best individual model, while overall accuracy improved by 3.2 %. This resulted in a 97.4 % overall accuracy score and a 96.2 % F1 macro score on a separate holdout test set containing 104 taxonomic groups. Based on a survey of similar studies in the literature, we believe collaborative deep learning models can significantly improve the accuracy of existing automated plankton classification systems

    Efficient Unsupervised Learning for Plankton Images

    Get PDF
    Monitoring plankton populations in situ is fundamental to preserve the aquatic ecosystem. Plankton microorganisms are in fact susceptible of minor environmental perturbations, that can reflect into consequent morphological and dynamical modifications. Nowadays, the availability of advanced automatic or semi-automatic acquisition systems has been allowing the production of an increasingly large amount of plankton image data. The adoption of machine learning algorithms to classify such data may be affected by the significant cost of manual annotation, due to both the huge quantity of acquired data and the numerosity of plankton species. To address these challenges, we propose an efficient unsupervised learning pipeline to provide accurate classification of plankton microorganisms. We build a set of image descriptors exploiting a two-step procedure. First, a Variational Autoencoder (VAE) is trained on features extracted by a pre-trained neural network. We then use the learnt latent space as image descriptor for clustering. We compare our method with state-of-the-art unsupervised approaches, where a set of pre-defined hand-crafted features is used for clustering of plankton images. The proposed pipeline outperforms the benchmark algorithms for all the plankton datasets included in our analysis, providing better image embedding properties

    Applications of Machine Learning in Chemical and Biological Oceanography

    Full text link
    Machine learning (ML) refers to computer algorithms that predict a meaningful output or categorize complex systems based on a large amount of data. ML is applied in various areas including natural science, engineering, space exploration, and even gaming development. This review focuses on the use of machine learning in the field of chemical and biological oceanography. In the prediction of global fixed nitrogen levels, partial carbon dioxide pressure, and other chemical properties, the application of ML is a promising tool. Machine learning is also utilized in the field of biological oceanography to detect planktonic forms from various images (i.e., microscopy, FlowCAM, and video recorders), spectrometers, and other signal processing techniques. Moreover, ML successfully classified the mammals using their acoustics, detecting endangered mammalian and fish species in a specific environment. Most importantly, using environmental data, the ML proved to be an effective method for predicting hypoxic conditions and harmful algal bloom events, an essential measurement in terms of environmental monitoring. Furthermore, machine learning was used to construct a number of databases for various species that will be useful to other researchers, and the creation of new algorithms will help the marine research community better comprehend the chemistry and biology of the ocean.Comment: 58 Pages, 5 Figure

    Machine learning in marine ecology: an overview of techniques and applications

    Get PDF
    Machine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of ∼1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.Machine learning in marine ecology: an overview of techniques and applicationspublishedVersio
    corecore