471 research outputs found

    Planetary Rover Localization Within Orbital Maps

    Get PDF
    This paper introduces an advanced rover localization system suitable for autonomous planetary exploration in the absence of Global Positioning System (GPS) infrastructure. Given an existing terrain map (image and elevation) obtained from satellite imagery and the images provided by the rover stereo camera system, the proposed method determines the best rover location through visual odometry, 3D terrain and hori- zon matching. The system is tested on data retrieved from a 3 km traverse of the Basalt Hills quarry in California where the GPS track is used as ground truth. Experimental results show the system presented here reduces by over 60 the localization error obtained by wheel odometry

    Efficient Autonomous Navigation for Planetary Rovers with Limited Resources

    Get PDF
    Rovers operating on Mars are in need of more and more autonomous features to ful ll their challenging mission requirements. However, the inherent constraints of space systems make the implementation of complex algorithms an expensive and difficult task. In this paper we propose a control architecture for autonomous navigation. Efficient implementations of autonomous features are built on top of the current ExoMars navigation method, enhancing the safety and traversing capabilities of the rover. These features allow the rover to detect and avoid hazards and perform long traverses by following a roughly safe path planned by operators on ground. The control architecture implementing the proposed navigation mode has been tested during a field test campaign on a planetary analogue terrain. The experiments evaluated the proposed approach, autonomously completing two long traverses while avoiding hazards. The approach only relies on the optical Localization Cameras stereobench, a sensor that is found in all rovers launched so far, and potentially allows for computationally inexpensive long-range autonomous navigation in terrains of medium difficulty

    Automated localisation of Mars rovers using co-registered HiRISE-CTX-HRSC orthorectified images and wide baseline Navcam orthorectified mosaics

    Get PDF
    We present a wide range of research results in the area of orbit-to-orbit and orbit-to-ground data fusion, achieved within the EU-FP7 PRoVisG project and EU-FP7 PRoViDE project. We focus on examples from three Mars rover missions, i.e. MER-A/B and MSL, to provide examples of a new fully automated offline method for rover localisation. We start by introducing the mis-registration discovered between the current HRSC and HiRISE datasets. Then we introduce the HRSC to CTX and CTX to HiRISE co-registration workflow. Finally, we demonstrate results of wide baseline stereo reconstruction with fixed mast position rover stereo imagery and its application to ground-to-orbit co-registration with HiRISE orthorectified image. We show examples of the quantitative assessment of recomputed rover traverses, and extensional exploitation of the co-registered datasets in visualisation and within an interactive web-GIS

    Opportunity rover localization and topographic mapping at the landing site of Meridiani Planum, Mars

    Get PDF
    This paper presents the results of Mars topographic mapping and lander and rover localization for the Opportunity rover at Meridiani Planum during the Mars Exploration Rover (MER) 2003 mission. By Sol 458, the Opportunity rover traversed a distance of 5.20 km. We localized the lander using two-way Doppler radio positioning and cartographic triangulation of craters visible in both orbital and ground images. Additional high-resolution orbital images were taken to verify the determined lander position. Visual odometry and bundle adjustment techniques were applied to overcome wheel slippages, azimuthal angle drift, and other navigation errors (as large as 21% within Eagle crater). In addition, orbit-to-ground image-based adjustment was applied to correct rover location errors where bundle adjustment was not applicable. We generated timely topographic products, including orthoimages, digital terrain models (DTMs), three-dimensional (3-D) crater models, and rover traverse maps. In particular, detailed 3-D terrain models of major features, such as Endurance crater, have been generated using multisite panoramic stereo images based on bundle adjustment and wide baseline stereo technique

    Coordinates and maps of the Apollo 17 landing site

    Get PDF
    We carried out an extensive cartographic analysis of the Apollo 17 landing site and determined and mapped positions of the astronauts, their equipment, and lunar landmarks with accuracies of better than ±1 m in most cases. To determine coordinates in a lunar body‐fixed coordinate frame, we applied least squares (2‐D) network adjustments to angular measurements made in astronaut imagery (Hasselblad frames). The measured angular networks were accurately tied to lunar landmarks provided by a 0.5 m/pixel, controlled Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) orthomosaic of the entire Taurus‐Littrow Valley. Furthermore, by applying triangulation on measurements made in Hasselblad frames providing stereo views, we were able to relate individual instruments of the Apollo Lunar Surface Experiment Package (ALSEP) to specific features captured in LROC imagery and, also, to determine coordinates of astronaut equipment or other surface features not captured in the orbital images, for example, the deployed geophones and Explosive Packages (EPs) of the Lunar Seismic Profiling Experiment (LSPE) or the Lunar Roving Vehicle (LRV) at major sampling stops. Our results were integrated into a new LROC NAC‐based Apollo 17 Traverse Map and also used to generate a series of large‐scale maps of all nine traverse stations and of the ALSEP area. In addition, we provide crater measurements, profiles of the navigated traverse paths, and improved ranges of the sources and receivers of the active seismic experiment LSPE
    corecore