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ABSTRACT

This paper introduces an advanced rover localization system
suitable for autonomous planetary exploration in the absence
of Global Positioning System (GPS) infrastructure. Given
an existing terrain map (image and elevation) obtained from
satellite imagery and the images provided by the rover stereo
camera system, the proposed method determines the best
rover location through visual odometry, 3D terrain and hori-
zon matching. The system is tested on data retrieved from a
3 km traverse of the Basalt Hills quarry in California where
the GPS track is used as ground truth. Experimental results
show the system presented here reduces by over 60% the
localization error obtained by wheel odometry.

Index Terms— autonomous navigation, localization, vi-
sual odometry, horizon matching

1. INTRODUCTION

Planetary rover localization on past and current NASA mis-
sions relies on human expertise in matching rover camera
views and orbital terrain maps (image and elevation). In
addition, the location of rovers can occasionally be verified
by spacecraft imagery [1], although this is not a common
circumstance. Figure 1 illustrates several digital elevation
models (DEM) reconstructed from the navcam stereo camera
on-board the Mars Science Laboratory (MSL) rover that have
been aligned over the Martian orbital DEM reconstructed
from satellite imagery data (HiRISE mission) through stereo
image processing [2]. The automated system described in

Fig. 1. MSL rover panorama localized over HiRISE terrain.

this paper attempts to use the same information (orbital
terrain maps and on-board rover imagery) to complement,
enhance or (eventually) completely replaces the current prac-
tice. A typical approach to image based pose estimation is to
register successive point clouds generated from stereo rover
imagery by minimizing their square errors [3, 4] and inte-
grating the relative poses sequentially. To reduce the error
accumulation in consecutive pose estimation [5, 6, 7], most of
navigation systems take advantage of efficient bundle align-
ment [8, 9, 10, 11] and make use of Inertial Measurement
Unit (IMU) and wheel odometry measurements [12]. Auto-
mated horizon matching algorithms has been also proposed
to identify the location of a rover using a panoramic surface
image and a DEM of the surrounding terrain [13, 14, 15].

In this paper we propose a novel unified approach for
global pose estimation in the absence of GPS by minimizing
a cost function that penalizes the errors between 1) the esti-
mated rover pose and the pose predicted through visual odom-
etry 2) the 3D terrain from the estimated rover pose and the
orbital terrain map 3) the horizon curve detected in the rover
imagery and the horizon rendered from the estimated rover
pose over the orbital terrain The overall system is shown in
Figure 1.The components of this block diagram are explained
in more detail in the following sections.

Fig. 2. The overall rover localization system.

2. TERRAIN RECONSTRUCTION

The stereo imagery obtained from the camera system [16] on
board the rover is used to compute a set of 3D point clouds
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using the block matching algorithm implemented in OpenCV
package [17]. The stereo camera system with a baseline of 30
cm and focal length of 3.5 mm is calibrated using the method
described in [18]. Outliers in the reconstructed terrain are re-
moved using a 3×3 morphological filter. Our current system
achieves 5Hz on the full image resolution (1388×1038). It
is used in visual stereo odometry (Section 3) and in support-
ing the localization framework (Section 5) through 3D terrain
matching with the terrain model derived from stereo satellite
imagery. The reconstructed point clouds are limited to a range
of 30 m around the rover location. Points outside this range
have a spatial resolution below the resolution of the orbital
terrain model and often correspond to noisy data.

3. STEREO VISUAL ODOMETRY

Stereo visual odometry re-estimates the rover pose at every
frame using the rover imagery [19] and the point clouds gen-
erated as described in Section 2. The stereo visual odome-
try system starts with the detection of SURF keypoints [20].
SURF keypoint extraction is faster than SIFT [21] keypoint
extraction and allows for a larger and more reliable set of
matches than obtained using ORB [22] keypoints. The key-
points extracted from the current image are matched against
images from the previous frame using FLANN [23]. To re-
duce the number of false matches the process is repeated by
matching keypoints in the previous frame to keypoints in the
current frame and select only those keypoints and matches
that pass both conditions. The remaining outlier matches are
removed using RANSAC algorithm [24] and by constraining
a homographic transformation between matched keypoints in
consecutive frames. The resulting matched keypoints and
their associated 3D information obtained in Section 2 The cur-
rent rover pose relative to its previous pose is estimated using
the matched keypoints and their associated 3D position (Sec-
tion 2) with the method described in [4]. The stereo visual
odometry pose is estimated at 2Hz (same as the image cap-
ture rate) and is used in the localization framework described
in Section 5. Figure 3 shows the a section of a 3D and texture
mapped terrain model built using our stereo visual odometry
approach.

4. HORIZON DETECTION AND RENDERING

Outside the range where terrain can be reconstructed from
stereo imagery visual features from the satellite imagery and
rover imagery are often difficult to match due to variations in
illumination conditions, camera viewing angle, unknown lo-
cal albedo and image resolution. However the horizon curve
in rover images remains a discriminant visual feature that en-
ables global pose estimation by matching with the rendered
horizon obtained from the orbital terrain map. The next sub-
sections describe the horizon detection and rendering tech-
niques used in our approach.

Fig. 3. Rover map obtained through visual odometry.

4.1. Horizon Detection

The statistical approach for horizon detection described in this
paper does not use specific knowledge of the local terrain and
sky intensity distribution and is meant to perform on a large
variety of images collected from Earth, Mars, Moon or other
planetary bodies. Our method uses a Bayesian image for-
mation model and a set of visual observations to determine
the best image segmentation into ground and sky areas and
thereby determine the most likely horizon curve. Each pixel
in the image is associated through the Bayesian model (Fig-
ure 4(a)) with an observed node (visual feature) and a hidden
node with an unknown binary value that assigns it to sky or
ground segments respectively.

The dense (per pixel) visual features used for horizon de-
tection consists of the pixel gray scale intensity and local fea-
ture density. The local feature density is computed as the ratio
of the number of local edges within a local window around
each pixel and the area (in pixels) of the local window. In
our particular implementation the edges are computed using
a 3×3 Sobel edge detector and the size of local window is
chosen to be 7×7 pixels.

Let P (Oij |qij) be the distribution of observation vector
Oij at pixel ij (column i, row j) in the image given the bi-
nary value (g:ground or s:sky) of the corresponding hidden
node qij (Figure 4(a)). Figure 4(b) illustrates the initial dis-
tribution of visual features over ground (ground 1 and 2) and
sky (clear sky and cloudy). High intensity areas (low and
high feature density) are associated with cloud regions. High
intensity features and low feature density area are associated
with sky. Low intensity features and low feature density fea-
tures are associated with terrain in heavy shadows (ground 2)
and low image intensity features and high feature density ar-
eas are associated with regularly lit terrain. Let W and H be
the width and height of the image and P (Oj |Qj) be the prob-
ability of the observation vectors Oj = O1j . . . OHj in image
column j given the corresponding sequence of hidden nodes
Qj = q1j . . . qHj . For observation vectors extracted by scan-
ning each column from top to bottom we can assume without
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Fig. 4. (a) Bayesian image formation model. (b) P (Oij |qij)
sky (clear sky and cloudy sky) and terrain (ground 1 and 2)
distribution over the space of visual features (image intensity
and feature density).

loss of generality that there is only one transition from sky to
ground and the transition from ground to sky is constrained
to be zero. Therefore the observation probability in column
j given that the transition from sky to ground occurs in pixel
(k, j) is given by the following equation

P (Oj |Qj) =

H∏
i

P (Oij |qij)
k∏

i=1

P (qij = s)

H∏
i=k+1

P (qij = g)

Furthermore, there are a total H values associated with each
Qj sequence, one for each pixel in the column j where the
unique transition from sky to terrain occurs. This specific
pixel is the horizon pixel in column j. The set of all the hori-
zon pixels in each column defines the horizon line.

With the assumption of a smooth horizon line where
jumps of more than N pixels between horizon pixels in con-
secutive columns are not allowed the transition probability
between consecutive columns becomes:

P (Qj = k|Qj−1 = l) =

{
1
N if |k − l| ≤ N
0 otherwise

The conditional probability of the observed nodes given the
hidden nodes becomes

P (O|Q) = P (O1 . . .OW |Q1 . . .QW )

=

W∏
j

P (Oj |Qj)

W∏
j=1

P (Qj |Qj−1) (1)

where O = O1 . . .OW and Q = Q1 . . .QW . The proba-
bility of the pixel observations can be approximated by the
above joint probability as shown by the following equation

P (O) ≈ max
Q

P (O,Q) = P (O|Q)P (Q) ∝ P (O|Q) (2)

With the above formulation finding the horizon curve is
equivalent to finding the best sequence of Qj and is com-
puted as the maximum likelihood of Equation 2. This can be
obtained efficiently via the Viterbi [25] algorithm. Figure 5

Fig. 5. Example of horizon curve (blue) detection over a rec-
tified image taken by on-board camera.

illustrates an example of the horizon curve detection (blue) in
a rectified image captured by the on-board camera.

4.2. Horizon Rendering

Horizon rendering generates a synthetic view of the horizon
as would be observed by the rover mounted camera. This
view is based on the orbital DEM and the camera intrinsics
and extrinsics. An accurate rendered horizon curve is of-
ten determined by remote topographical features captured
in large coverage orbital terrain models. However, handling
very large terrain surfaces at the resolution required for terrain
matching can easily exceed computer memory limits. This is
of particular concern when the processing is offloaded from
the host computer to a Graphical Computational Unit (GPU)
for fast rendering. To accommodate these constrains a low
coverage (.8×.8 km), high resolution (1 m per post) terrain
model is augmented with a large coverage (10×10 km) low
resolution terrain (9 m per post). The resulting terrain model
is spilt into a set of tiles with multiple subsampled resolu-
tion levels. This approach satisfies both the wide coverage
requirements for horizon rendering and high resolution re-
quirements for terrain matching, while accommodating the
memory constraints of a typical GPU (around 1 GB for our
processors). The rendered image is computed using OpenGL
libraries [26], and the horizon curve is computed as the
boundary of the rendered surface.

5. LOCALIZATION FRAMEWORK

Rover localization or finding the optimal rotation (R) and
translation (T) from a global reference point is formulated as



a cost function L minimization problem

{R̃, T̃} = arg min
{R,T}

L(R,T)

The localization cost function L(R,T) is given by

L(R,T) = ωh(hd − hr(R,T))2 + ωe(eo − er(R,T))2

+ ωw(xw − x(R,T))2 + ωv(xv − x(R,T))2

where hd and hr(R,T) are the detected and rendered hori-
zon curves (Section 4) respectively. eo is the terrain elevation
of the orbital map and er(R,T) is the terrain elevation deter-
mined from the point clouds obtained from the rover stereo
camera (Section 2) and the rover estimated global position.
xw is the global position estimated from wheel odometry, xv

is the global position estimated from stereo visual odometry
(Section 3) and x(R,T) is the global position determined by
the estimated global rotation and translation. The weights ωh,
ωe, ωw and ωv are chosen such that ωh + ωe + ωw + ωv = 1
and represent the reliability of each of the horizon, terrain el-
evation, wheel odometry and visual odometry modules used
in localization respectively.They are also chosen to normal-
ize with various number of samples and vector sizes in each
modality.

6. EXPERIMENTAL RESULTS

Data used to validate the results of this paper was gathered
from the Basalt Hills State Park, California during a 3 km tra-
verse at an average speed of 0.8m/s. Images from the stereo
camera system on board the rover described in Section 2 were
captured at an average 2Hz. Figure 6 shows the reduction in
localization error obtained using the proposed system (labeled
advanced nav) versus the errors introduced by using a wheel
odometry-based localization solution. The errors are calcu-
lated with reference to ground truth data obtained by GPS.
Due to rover operation run-time requirements the proposed
localization system is utilized every 300 frames as evidenced
by to the large variations in localization error seen in Figure 6.
The average localization error is reduced by over 60% com-
pared to the wheel odometry solution.

Figure 7 shows the rover traverse ground truth determined
by GPS (green) and the estimated trajectories using wheel
odometry (red) and the proposed solution (blue). Note that
the differences between the GPS and wheel odometry trajec-
tories increase from the starting point (top right in Figure 7)
while the proposed solution remains significantly closer to the
GPS track during the entire traverse.

7. CONCLUSIONS

The localization method presented in this paper combines
visual odometry and terrain and horizon matching between
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Fig. 6. Localization errors (meters) for the proposed method
(blue) and wheel odometry (red) vs GPS position.
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Fig. 7. Estimated rover track using the proposed method
(blue) wheel odometry (red) and GPS (green).

rover and orbital views to accurately determine the rover loca-
tion within an orbital map. The accuracy of the method makes
it suitable for autonomous or semi-autonomous robotic plan-
etary exploration in the absence of pre-existing GPS or other
beacon based infrastructure. Future work will be directed
towards a real time implementation of the localization system
and testing with various rover configurations in a variety of
terrestrial environments, as well as with imagery returned
from current Mars missions.
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