2,441 research outputs found

    Vertex Arboricity of Toroidal Graphs with a Forbidden Cycle

    Full text link
    The vertex arboricity a(G)a(G) of a graph GG is the minimum kk such that V(G)V(G) can be partitioned into kk sets where each set induces a forest. For a planar graph GG, it is known that a(G)≤3a(G)\leq 3. In two recent papers, it was proved that planar graphs without kk-cycles for some k∈{3,4,5,6,7}k\in\{3, 4, 5, 6, 7\} have vertex arboricity at most 2. For a toroidal graph GG, it is known that a(G)≤4a(G)\leq 4. Let us consider the following question: do toroidal graphs without kk-cycles have vertex arboricity at most 2? It was known that the question is true for k=3, and recently, Zhang proved the question is true for k=5k=5. Since a complete graph on 5 vertices is a toroidal graph without any kk-cycles for k≥6k\geq 6 and has vertex arboricity at least three, the only unknown case was k=4. We solve this case in the affirmative; namely, we show that toroidal graphs without 4-cycles have vertex arboricity at most 2.Comment: 8 pages, 2 figure

    Box representations of embedded graphs

    Full text link
    A dd-box is the cartesian product of dd intervals of R\mathbb{R} and a dd-box representation of a graph GG is a representation of GG as the intersection graph of a set of dd-boxes in Rd\mathbb{R}^d. It was proved by Thomassen in 1986 that every planar graph has a 3-box representation. In this paper we prove that every graph embedded in a fixed orientable surface, without short non-contractible cycles, has a 5-box representation. This directly implies that there is a function ff, such that in every graph of genus gg, a set of at most f(g)f(g) vertices can be removed so that the resulting graph has a 5-box representation. We show that such a function ff can be made linear in gg. Finally, we prove that for any proper minor-closed class F\mathcal{F}, there is a constant c(F)c(\mathcal{F}) such that every graph of F\mathcal{F} without cycles of length less than c(F)c(\mathcal{F}) has a 3-box representation, which is best possible.Comment: 16 pages, 6 figures - revised versio

    Edge-choosability of Planar Graphs

    Get PDF
    According to the List Colouring Conjecture, if G is a multigraph then χ' (G)=χl' (G) . In this thesis, we discuss a relaxed version of this conjecture that every simple graph G is edge-(∆ + 1)-choosable as by Vizing’s Theorem ∆(G) ≤χ' (G)≤∆(G) + 1. We prove that if G is a planar graph without 7-cycles with ∆(G)≠5,6 , or without adjacent 4-cycles with ∆(G)≠5, or with no 3-cycles adjacent to 5-cycles, then G is edge-(∆ + 1)-choosable

    Planar graphs as L-intersection or L-contact graphs

    Full text link
    The L-intersection graphs are the graphs that have a representation as intersection graphs of axis parallel shapes in the plane. A subfamily of these graphs are {L, |, --}-contact graphs which are the contact graphs of axis parallel L, |, and -- shapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are L-intersection graphs, and that triangle-free planar graphs are {L, |, --}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs

    Triangles and Girth in Disk Graphs and Transmission Graphs

    Get PDF
    Let S subset R^2 be a set of n sites, where each s in S has an associated radius r_s > 0. The disk graph D(S) is the undirected graph with vertex set S and an undirected edge between two sites s, t in S if and only if |st| <= r_s + r_t, i.e., if the disks with centers s and t and respective radii r_s and r_t intersect. Disk graphs are used to model sensor networks. Similarly, the transmission graph T(S) is the directed graph with vertex set S and a directed edge from a site s to a site t if and only if |st| <= r_s, i.e., if t lies in the disk with center s and radius r_s. We provide algorithms for detecting (directed) triangles and, more generally, computing the length of a shortest cycle (the girth) in D(S) and in T(S). These problems are notoriously hard in general, but better solutions exist for special graph classes such as planar graphs. We obtain similarly efficient results for disk graphs and for transmission graphs. More precisely, we show that a shortest (Euclidean) triangle in D(S) and in T(S) can be found in O(n log n) expected time, and that the (weighted) girth of D(S) can be found in O(n log n) expected time. For this, we develop new tools for batched range searching that may be of independent interest
    • …
    corecore