124 research outputs found

    Threshold-coloring and unit-cube contact representation of planar graphs

    Full text link
    In this paper we study threshold-coloring of graphs, where the vertex colors represented by integers are used to describe any spanning subgraph of the given graph as follows. A pair of vertices with a small difference in their colors implies that the edge between them is present, while a pair of vertices with a big color difference implies that the edge is absent. Not all planar graphs are threshold-colorable, but several subclasses, such as trees, some planar grids, and planar graphs with no short cycles can always be threshold-colored. Using these results we obtain unit-cube contact representation of several subclasses of planar graphs. Variants of the threshold-coloring problem are related to well-known graph coloring and other graph-theoretic problems. Using these relations we show the NP-completeness for two of these variants, and describe a polynomial-time algorithm for another. © 2015 Elsevier B.V

    Discrete Mathematics : Elementary and Beyond

    Get PDF

    Planar graphs : a historical perspective.

    Get PDF
    The field of graph theory has been indubitably influenced by the study of planar graphs. This thesis, consisting of five chapters, is a historical account of the origins and development of concepts pertaining to planar graphs and their applications. The first chapter serves as an introduction to the history of graph theory, including early studies of graph theory tools such as paths, circuits, and trees. The second chapter pertains to the relationship between polyhedra and planar graphs, specifically the result of Euler concerning the number of vertices, edges, and faces of a polyhedron. Counterexamples and generalizations of Euler\u27s formula are also discussed. Chapter III describes the background in recreational mathematics of the graphs of K5 and K3,3 and their importance to the first characterization of planar graphs by Kuratowski. Further characterizations of planar graphs by Whitney, Wagner, and MacLane are also addressed. The focus of Chapter IV is the history and eventual proof of the four-color theorem, although it also includes a discussion of generalizations involving coloring maps on surfaces of higher genus. The final chapter gives a number of measurements of a graph\u27s closeness to planarity, including the concepts of crossing number, thickness, splitting number, and coarseness. The chapter conclused with a discussion of two other coloring problems - Heawood\u27s empire problem and Ringel\u27s earth-moon problem

    Graph colouring for office blocks

    Get PDF
    The increasing prevalence of WLAN (wireless networks) introduces the potential of electronic information leakage from one company's territory in an office block, to others due to the long-ranged nature of such communications. BAE Systems have developed a system ('stealthy wallpaper') which can block a single frequency range from being transmitted through a treated wall or ceiling to the neighbour. The problem posed to the Study Group was to investigate the maximum number of frequencies ensure the building is secure. The Study group found that this upper bound does not exist, so they were asked to find what are "good design-rules" so that an upper limit exists

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Networks, (K)nots, Nucleotides, and Nanostructures

    Get PDF
    Designing self-assembling DNA nanostructures often requires the identification of a route for a scaffolding strand of DNA through the target structure. When the target structure is modeled as a graph, these scaffolding routes correspond to Eulerian circuits subject to turning restrictions imposed by physical constraints on the strands of DNA. Existence of such Eulerian circuits is an NP-hard problem, which can be approached by adapting solutions to a version of the Traveling Salesperson Problem. However, the author and collaborators have demonstrated that even Eulerian circuits obeying these turning restrictions are not necessarily feasible as scaffolding routes by giving examples of nontrivially knotted circuits which cannot be traced by the unknotted scaffolding strand. Often, targets of DNA nanostructure self-assembly are modeled as graphs embedded on surfaces in space. In this case, Eulerian circuits obeying the turning restrictions correspond to A-trails, circuits which turn immediately left or right at each vertex. In any graph embedded on the sphere, all A-trails are unknotted regardless of the embedding of the sphere in space. We show that this does not hold in general for graphs on the torus. However, we show this property does hold for checkerboard-colorable graphs on the torus, that is, those graphs whose faces can be properly 2-colored, and provide a partial converse to this result. As a consequence, we characterize (with one exceptional family) regular triangulations of the torus containing unknotted A-trails. By developing a theory of sums of A-trails, we lift constructions from the torus to arbitrary n-tori, and by generalizing our work on A-trails to smooth circuit decompositions, we construct all torus links and certain sums of torus links from circuit decompositions of rectangular torus grids. Graphs embedded on surfaces are equivalent to ribbon graphs, which are particularly well-suited to modeling DNA nanostructures, as their boundary components correspond to strands of DNA and their twisted ribbons correspond to double-helices. Every ribbon graph has a corresponding delta-matroid, a combinatorial object encoding the structure of the ribbon-graph\u27s spanning quasi-trees (substructures having exactly one boundary component). We show that interlacement with respect to quasi-trees can be generalized to delta-matroids, and use the resulting structure on delta-matroids to provide feasible-set expansions for a family of delta-matroid polynomials, both recovering well-known expansions of this type (such as the spanning-tree expansion of the Tutte polynnomial) as well as providing several previously unknown expansions. Among these are expansions for the transition polynomial, a version of which has been used to study DNA nanostructure self-assembly, and the interlace polynomial, which solves a problem in DNA recombination
    corecore