2,811 research outputs found

    Vertical liquid controlled adiabatic waveguide coupler

    Get PDF
    A broadband vertical liquid controlled optical waveguide coupler (LCC) is demonstrated. The fabricated vertical LCC with silicon nitride (SiN) waveguides can switch light between 2 stacked photonic circuit layers with zero energy consumption in a steady switch state. In combination with low-loss interlayer waveguide crossovers they enable large scale non-volatile switch circuits with low loss. The fabricated vertical LCC has a loss less than 2.0 dB in bar state and less than 2.6 dB in cross state over the telecommunication wavelength range 1260 nm to 1630 nm. Interlayer waveguide crossovers with the same interlayer oxide thickness as the LCC have a loss less than 0.06 dB over the same wavelength range. The crosstalk of the LCC is less than 21 dB over the wavelength range 1500 nm to 1630 nm for both bar and cross state. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Laser scanning imaging and local characterization of superconducting properties in high-Tc thin film multiturn coil

    Get PDF
    Low-temperature scanning laser microscopy has been used to investigate the spatial variation of the critical temperature Tc and critical current Ic in thin-film high-Tc multilayer structures that include dielectric layers. The method is described and measurements are presented on an YBa2Cu3O7-x-based multiturn coil with SrTiO3 insulating layer. We found that the critical temperature Tc of the YBa2Cu3O7-x top layer, from which the return strip of the coil is formed, is higher than that of the YBa2Cu3O7-x base layer. The critical current of the coil is limited by the quality of the YBa2Cu3O7-x base layer and not by the edges of the crossovers

    PushPush is NP-hard in 2D

    Get PDF
    We prove that a particular pushing-blocks puzzle is intractable in 2D, improving an earlier result that established intractability in 3D [OS99]. The puzzle, inspired by the game *PushPush*, consists of unit square blocks on an integer lattice. An agent may push blocks (but never pull them) in attempting to move between given start and goal positions. In the PushPush version, the agent can only push one block at a time, and moreover, each block, when pushed, slides the maximal extent of its free range. We prove this version is NP-hard in 2D by reduction from SAT.Comment: 18 pages, 13 figures, 1 table. Improves cs.CG/991101

    A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots

    Get PDF
    This work explores a new approach in using genetic algorithm to predict RNA secondary structures with pseudoknots. Since only a small portion of most RNA structures is comprised of pseudoknots, the majority of structural elements from an optimal pseudoknot-free structure are likely to be part of the true structure. Thus seeding the genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the true structure than a randomly generated population. The genetic algorithm uses the known energy models with an additional augmentation to allow complex pseudoknots. The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase shows that it out performs some of the current popular algorithms

    The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables

    Get PDF
    This study aims at comparing non-linear modal interactions in shallow horizontal cables with kinematically non-condensed vs. condensed modeling, under simultaneous primary external and internal resonances. Planar 1:1 or 2:1 internal resonance is considered. The governing partial-differential equations of motion of non-condensed model account for spatio-temporal modification of dynamic tension, and explicitly capture non-linear coupling of longitudinal/ vertical displacements. On the contrary, in the condensed model, a single integro-differential equation is obtained by eliminating the longitudinal inertia according to a quasi-static cable stretching assumption, which entails spatially uniform dynamic tension. This model is largely considered in the literature. Based on a multi-modal discretization and a second-order multiple scales solution accounting for higher-order quadratic effects of a infinite number of modes, coupled/uncoupled dynamic responses and the associated stability are evaluated by means of frequency- and force-response diagrams. Direct numerical integrations confirm the occurrence of amplitude-steady or -modulated responses. Non-linear dynamic configurations and tensions are also examined. Depending on internal resonance condition, system elasto-geometric and control parameters, the condensed model may lead to significant quantitative and/or qualitative discrepancies, against the non-condensed model, in the evaluation of resonant dynamic responses, bifurcations and maximal/minimal stresses. Results of even shallow cables reveal meaningful drawbacks of the kinematic condensation and allow us to detect cases where the more accurate non-condensed model has to be used

    Nearly Antiferromagnetic Fermi Liquids: A Progress Report

    Full text link
    I describe recent theoretical and experimental progress in understanding the physical properties of the two dimensional nearly antiferromagnetic Fermi liquids (NAFL's) found in the normal state of the cuprate superconductors. In such NAFL's, the magnetic interaction between planar quasiparticles is strong and peaked at or near the commensurate wave vector, Q≡(π,π)Q \equiv (\pi,\pi). For the optimally doped and underdoped systems, the resulting strong antiferromagnetic correlations produce three distinct magnetic phases in the normal state: mean field above TcrT_{cr}, pseudoscaling between TcrT_{cr} and T∗T_*, and pseudogap below T∗T_*. I present arguments which suggest that the physical origin of the pseudogap found in the quasiparticle spectrum below TcrT_{cr} is the formation of a precursor to a spin-density-wave-state, describe the calculations based on this scenario of the dynamical spin susceptibility, Fermi surface evolution, transport, and Hall effect, and summarize the experimental evidence in its support.Comment: LATEX + PS figures. To appear in the proceedings of the Euroconference on "Correlations in Unconventional Quantum Liquids," Evora, Portugal, October 199

    Nearly Antiferromagnetic Fermi Liquids: A Progress Report

    Full text link
    I describe recent theoretical and experimental progress in understanding the physical properties of the two dimensional nearly antiferromagnetic Fermi liquids (NAFL's) found in the normal state of the cuprate superconductors. In such NAFL's, the magnetic interaction between planar quasiparticles is strong and peaked at or near the commensurate wave vector, Q≡(π,π)Q \equiv (\pi,\pi). For the optimally doped and underdoped systems, the resulting strong antiferromagnetic correlations produce three distinct magnetic phases in the normal state: mean field above TcrT_{cr}, pseudoscaling between TcrT_{cr} and T∗T_*, and pseudogap below T∗T_*. I present arguments which suggest that the physical origin of the pseudogap found in the quasiparticle spectrum below TcrT_{cr} is the formation of a precursor to a spin-density-wave-state, describe the calculations based on this scenario of the dynamical spin susceptibility, Fermi surface evolution, transport, and Hall effect, and summarize the experimental evidence in its support.Comment: LATEX + PS figures. To appear in the proceedings of the Euroconference on "Correlations in Unconventional Quantum Liquids," Evora, Portugal, October 199

    Josephson effect in double-barrier superconductor-ferromagnet junctions

    Full text link
    We study the Josephson effect in ballistic double-barrier SIFIS planar junctions, consisting of bulk superconductors (S), a clean metallic ferromagnet (F), and insulating interfaces (I). We solve the scattering problem based on the Bogoliubov--de Gennes equations and derive a general expression for the dc Josephson current, valid for arbitrary interfacial transparency and Fermi wave vectors mismatch (FWVM). We consider the coherent regime in which quasiparticle transmission resonances contribute significantly to the Andreev process. The Josephson current is calculated for various parameters of the junction, and the influence of both interfacial transparency and FWVM is analyzed. For thin layers of strong ferromagnet and finite interfacial transparency, we find that coherent (geometrical) oscillations of the maximum Josephson current are superimposed on the oscillations related to the crossover between 0 and π\pi states. For the same case we find that the temperature-induced 0−π0-\pi transition occurs if the junction is very close to the crossovers at zero temperature.Comment: 13 pages, 6 figure

    Genetic embedded matching approach to ground states in continuous-spin systems

    Full text link
    Due to an extremely rugged structure of the free energy landscape, the determination of spin-glass ground states is among the hardest known optimization problems, found to be NP-hard in the most general case. Owing to the specific structure of local (free) energy minima, general-purpose optimization strategies perform relatively poorly on these problems, and a number of specially tailored optimization techniques have been developed in particular for the Ising spin glass and similar discrete systems. Here, an efficient optimization heuristic for the much less discussed case of continuous spins is introduced, based on the combination of an embedding of Ising spins into the continuous rotators and an appropriate variant of a genetic algorithm. Statistical techniques for insuring high reliability in finding (numerically) exact ground states are discussed, and the method is benchmarked against the simulated annealing approach.Comment: 17 pages, 12 figures, 1 tabl
    • …
    corecore