7,343 research outputs found

    Deployment Strategies of Multiple Aerial BSs for User Coverage and Power Efficiency Maximization

    Get PDF
    Unmanned aerial vehicle (UAV) based aerial base stations (BSs) can provide rapid communication services to ground users and are thus promising for future communication systems. In this paper, we consider a scenario where no functional terrestrial BSs are available and the aim is deploying multiple aerial BSs to cover a maximum number of users within a certain target area. To this end, we first propose a naive successive deployment method, which converts the non-convex constraints in the involved optimization into a combination of linear constraints through geometrical relaxation. Then we investigate a deployment method based on K-means clustering. The method divides the target area into K convex subareas, where within each subarea, a mixed integer non-linear problem (MINLP) is solved. An iterative power efficient technique is further proposed to improve coverage probability with reduced power. Finally, we propose a robust technique for compensating the loss of coverage probability in the existence of inaccurate user location information (ULI). Our simulation results show that, the proposed techniques achieve an up to 30% higher coverage probability when users are not distributed uniformly. In addition, the proposed simultaneous deployment techniques, especially the one using iterative algorithm improve power-efficiency by up to 15% compared to the benchmark circle packing theory

    New and little-known Cheilostomata (Bryozoa, Gymnolaemata) from the NE Atlantic

    Get PDF
    Based on newly designated type material, four poorly known NE Atlantic cheilostome bryozoan species are redescribed and imaged: Cellaria harmelini d’Hondt from the northern Bay of Biscay, Hippomenella mucronelliformis (Waters) from Madeira, Myriapora bugei d’Hondt from the Azores, and Characodoma strangulatum, occurring from Mauritania to southern Portugal. Moreover, Notoplites saojorgensis sp. nov. from the Azores, formerly reported as Notoplites marsupiatus (Jullien), is newly described. The genus Hippomenella Canu & Bassler is transferred from the lepraliomorph family Escharinidae Tilbrook to the umbonulomorph family Romancheinidae Jullien

    A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints

    Get PDF
    We consider caching in cellular networks in which each base station is equipped with a cache that can store a limited number of files. The popularity of the files is known and the goal is to place files in the caches such that the probability that a user at an arbitrary location in the plane will find the file that she requires in one of the covering caches is maximized. We develop distributed asynchronous algorithms for deciding which contents to store in which cache. Such cooperative algorithms require communication only between caches with overlapping coverage areas and can operate in asynchronous manner. The development of the algorithms is principally based on an observation that the problem can be viewed as a potential game. Our basic algorithm is derived from the best response dynamics. We demonstrate that the complexity of each best response step is independent of the number of files, linear in the cache capacity and linear in the maximum number of base stations that cover a certain area. Then, we show that the overall algorithm complexity for a discrete cache placement is polynomial in both network size and catalog size. In practical examples, the algorithm converges in just a few iterations. Also, in most cases of interest, the basic algorithm finds the best Nash equilibrium corresponding to the global optimum. We provide two extensions of our basic algorithm based on stochastic and deterministic simulated annealing which find the global optimum. Finally, we demonstrate the hit probability evolution on real and synthetic networks numerically and show that our distributed caching algorithm performs significantly better than storing the most popular content, probabilistic content placement policy and Multi-LRU caching policies.Comment: 24 pages, 9 figures, presented at SIGMETRICS'1

    Glowing Seashells: Diversity of Fossilized Coloration Patterns on Coral Reef-Associated Cone Snail (Gastropoda: Conidae) Shells from the Neogene of the Dominican Republic

    Get PDF
    The biology of modern Conidae (cone snails)—which includes the hyperdiverse genus Conus—has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework. Here, ultraviolet light is used to reveal and characterize the original shell coloration patterns of 28 species of cone snails from three Neogene coral reef-associated deposits from the Cibao Valley, northern Dominican Republic. These fossils come from the upper Miocene Cercado Fm. and lower Pliocene Gurabo Fm., and range in age from about 6.6-4.8 Ma. Comparison of the revealed coloration patterns with those of extant species allow the taxa to be assigned to three genera of cone snails (Profundiconus, Conasprella, and Conus) and at least nine subgenera. Thirteen members of these phylogenetically diverse reef faunas are described as new species. These include: Profundiconus? hennigi, Conasprella (Ximeniconus) ageri, Conus anningae, Conus lyelli, Conus (Atlanticonus?) franklinae, Conus (Stephanoconus) gouldi, Conus (Stephanoconus) bellacoensis, Conus (Ductoconus) cashi, Conus (Dauciconus) garrisoni, Conus (Dauciconus?) zambaensis, Conus (Spuriconus?) kaesleri, Conus (Spuriconus?) lombardii, and Conus (Lautoconus?) carlottae. Each of the three reef deposits contain a minimum of 14–16 cone snail species, levels of diversity that are similar to modern Indo-Pacific reef systems. Finally, most of the 28 species can be assigned to modern clades and thus have important implications for understanding the biogeographic and temporal histories of these clades in tropical America

    Coverage and Connectivity in Three-Dimensional Networks

    Full text link
    Most wireless terrestrial networks are designed based on the assumption that the nodes are deployed on a two-dimensional (2D) plane. However, this 2D assumption is not valid in underwater, atmospheric, or space communications. In fact, recent interest in underwater acoustic ad hoc and sensor networks hints at the need to understand how to design networks in 3D. Unfortunately, the design of 3D networks is surprisingly more difficult than the design of 2D networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture required centuries of research to achieve breakthroughs, whereas their 2D counterparts are trivial to solve. In this paper, we consider the coverage and connectivity issues of 3D networks, where the goal is to find a node placement strategy with 100% sensing coverage of a 3D space, while minimizing the number of nodes required for surveillance. Our results indicate that the use of the Voronoi tessellation of 3D space to create truncated octahedral cells results in the best strategy. In this truncated octahedron placement strategy, the transmission range must be at least 1.7889 times the sensing range in order to maintain connectivity among nodes. If the transmission range is between 1.4142 and 1.7889 times the sensing range, then a hexagonal prism placement strategy or a rhombic dodecahedron placement strategy should be used. Although the required number of nodes in the hexagonal prism and the rhombic dodecahedron placement strategies is the same, this number is 43.25% higher than the number of nodes required by the truncated octahedron placement strategy. We verify by simulation that our placement strategies indeed guarantee ubiquitous coverage. We believe that our approach and our results presented in this paper could be used for extending the processes of 2D network design to 3D networks.Comment: To appear in ACM Mobicom 200

    Guard placement for efficient pointin-polygon proofs

    Get PDF
    {eppstein, goodrich, nodari} (at) ics.uci.edu We consider the problem of placing a small number of angle guards inside a simple polygon P so as to provide efficient proofs that any given point is inside P. Each angle guard views an infinite wedge of the plane, and a point can prove membership in P if it is inside the wedges for a set of guards whose common intersection contains no points outside the polygon. This model leads to a broad class of new art gallery type problems, which we call “sculpture garden ” problems and for which we provide upper and lower bounds. In particular, we show there is a polygon P such that a “natural” angle-guard vertex placement cannot fully distinguish between points on the inside and outside of P (even if we place a guard at every vertex of P), which implies that Steinerpoint guards are sometimes necessary. More generally, we show that, for any polygon P, there is a set of n + 2(h − 1) angle guards that solve the sculpture garden problem for P, where h is the number of holes in P (so a simple polygon can be defined with n − 2 guards). In addition, we show that, for any orthogonal polygon P, the sculpture garden problem can be solved using n angle guards. We also give an 2 example of a class of simple (non-general-position) polygons that have sculpture garden solutions using O ( √ n) guards, and we show this bound is optimal to within a constant factor. Finally, while optimizing the number of guards solving a sculpture garden problem for a particular P is of unknown complexity, we show how to find in polynomial time a guard placement whose size is within a factor of 2 of the optimal number for any particular polygon
    • 

    corecore