10,578 research outputs found

    Sparsity-Based Error Detection in DC Power Flow State Estimation

    Full text link
    This paper presents a new approach for identifying the measurement error in the DC power flow state estimation problem. The proposed algorithm exploits the singularity of the impedance matrix and the sparsity of the error vector by posing the DC power flow problem as a sparse vector recovery problem that leverages the structure of the power system and uses l1l_1-norm minimization for state estimation. This approach can provably compute the measurement errors exactly, and its performance is robust to the arbitrary magnitudes of the measurement errors. Hence, the proposed approach can detect the noisy elements if the measurements are contaminated with additive white Gaussian noise plus sparse noise with large magnitude. The effectiveness of the proposed sparsity-based decomposition-DC power flow approach is demonstrated on the IEEE 118-bus and 300-bus test systems

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Performance tradeoffs of dynamically controlled grid-connected inverters in low inertia power systems

    Full text link
    Implementing frequency response using grid-connected inverters is one of the popular proposed alternatives to mitigate the dynamic degradation experienced in low inertia power systems. However, such solution faces several challenges as inverters do not intrinsically possess the natural response to power fluctuations that synchronous generators have. Thus, to synthetically generate this response, inverters need to take frequency measurements, which are usually noisy, and subsequently make changes in the output power, which are therefore delayed. This paper explores the system-wide performance tradeoffs that arise when measurement noise, power disturbances, and delayed actions are considered in the design of dynamic controllers for grid-connected inverters. Using a recently proposed dynamic droop (iDroop) control for grid-connected inverters, which is inspired by classical first order lead-lag compensation, we show that the sets of parameters that result in highest noise attenuation, power disturbance mitigation, and delay robustness do not necessarily have a common intersection. In particular, lead compensation is desired in systems where power disturbances are the predominant source of degradation, while lag compensation is a better alternative when the system is dominated by delays or frequency noise. Our analysis further shows that iDroop can outperform the standard droop alternative in both joint noise and disturbance mitigation, and delay robustness

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    Spatial and performance optimality in power distribution networks

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Complex network theory has been widely used in vulnerability analysis of power networks, especially for power transmission ones. With the development of the smart grid concept, power distribution networks are becoming increasingly relevant. In this paper, we model power distribution systems as spatial networks. Topological and spatial properties of 14 European power distribution networks are analyzed, together with the relationship between geographical constraints and performance optimization, taking into account economic and vulnerability issues. Supported by empirical reliability data, our results suggest that power distribution networks are influenced by spatial constraints which clearly affect their overall performance.Peer ReviewedPostprint (author's final draft

    Advancements in Enhancing Resilience of Electrical Distribution Systems: A Review on Frameworks, Metrics, and Technological Innovations

    Full text link
    This comprehensive review paper explores power system resilience, emphasizing its evolution, comparison with reliability, and conducting a thorough analysis of the definition and characteristics of resilience. The paper presents the resilience frameworks and the application of quantitative power system resilience metrics to assess and quantify resilience. Additionally, it investigates the relevance of complex network theory in the context of power system resilience. An integral part of this review involves examining the incorporation of data-driven techniques in enhancing power system resilience. This includes the role of data-driven methods in enhancing power system resilience and predictive analytics. Further, the paper explores the recent techniques employed for resilience enhancement, which includes planning and operational techniques. Also, a detailed explanation of microgrid (MG) deployment, renewable energy integration, and peer-to-peer (P2P) energy trading in fortifying power systems against disruptions is provided. An analysis of existing research gaps and challenges is discussed for future directions toward improvements in power system resilience. Thus, a comprehensive understanding of power system resilience is provided, which helps in improving the ability of distribution systems to withstand and recover from extreme events and disruptions
    • …
    corecore