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Robust Switch Selection in Radial Distribution
Systems Using Combinatorial Optimization

Hani Mavalizadeh, Omid Homaee, Reza Dashti, Josep M. Guerrero, Fellow, IEEE, Hassan Haes Alhelou,
Senior Member, IEEE, and Pierluigi Siano, Senior Member, IEEE

Abstract—Selecting the best type of equipment among available
switches with different prices and reliability levels is a significant
challenge in distribution system planning. In this paper, the
optimal type of switches in a radial distribution system is
selected by considering the total cost and reliability criterion
and using the weighted augmented epsilon constraint method
and combinatorial optimization. A new index is calculated to
assess the robustness of each Pareto solution. Moreover, for
each failure, repair time is considered based on historical data.
Monte Carlo simulations are used to consider the switch failure
uncertainty and fault repair time uncertainty in the model. The
proposed framework is applied to an RTBS Bus-2 test system.
Furthermore, the model is also applied to an industrial system
to verify the proposed method’s excellent performance in larger
practical engineering problems.

Index Terms—Combinatorial optimization, Monte Carlo
Simulation, multi-objective optimization, radial distribution
system, reliability, robustness.

NOMENCLATURE

A. Indices

s Index for scenarios.
sw Index for switches.
y Index for switch types.
f Index for faults.
i Index for busses.
l Index for intervals in Monte Carlo simulation.
t Index for uncertain parameters.
q Index for Pareto optimal solutions in a Pareto front.
u Index for objective functions.

B. Parameters

rry Reliability of switch type y.
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λsw Failures Rate for location sw.
rf Repair time for fault f .
Loadi Load at bus i.
dy Dependability of switch type y.
Fsw,y Switch price.
αl,t The probability of selecting interval l in Monte

Carlo simulation for uncertain parameter t.
Nq Number of objective functions.
OWu The weighting factor for objective function u.

C. Variables

ENS Energy not supplied.
usw,y Binary decision variable for switch selection.
Wl,t,s Decision variable for constructing scenarios in

Monte Carlo simulation.
Prob(s) probability of each scenario.
PFRS Robustness of the whole Pareto front obtained in

scenario s.
RIq Robustness index for Pareto solution q.
µq
u membership function for objective function u

Pareto solution q.
fq
u Value of objective function u for Pareto solu-

tion q.
fSN
u Value of pseudo-Nadir point for objective func-

tion u for Pareto solution q.
fU
u Value of utopia point for objective function u for

Pareto solution q.
µq membership function Pareto solution q.
POS Code for each Pareto optimal solution.

I. INTRODUCTION

THE occurrence of outages is widespread in distribution
systems [1]. Equipment failure usually occurs due to

improper maintenance or environmental situations. Most of
the outages occur in distribution systems because the amount
of equipment is enormous in these systems compared to the
generation and transmission sectors. This makes the mainte-
nance in distribution systems much harder. In addition, since
distribution systems’ failures are not as critical as in trans-
mission/generation systems, reliability is often not seriously
considered. However, reliability improvement in distribution
systems may considerably improve the overall power system
reliability. Therefore, it is essential to find an economically
feasible way to improve distribution system reliability.

In previous research, the main objective of distribution
system planning was to minimize the total cost [2]. However,
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this approach is not acceptable from a social viewpoint. In an
optimal distribution system, reliability assessment, the inter-
ruption costs that the industrial and residential customers pay
due to interruption in production or decrease in welfare, should
be considered. In [3], the interruption costs are considered as
an objective function to solve the switch selection problem in
a radial system. In [4], the effects of using remote switches
instead of regular disconnecting switches is presented. In [5], a
reliability model based on Monte Carlo simulation is presented
to measure the system’s reliability indices. The system failures
are categorized into temporary and permanent faults.

Several methods are presented in literature to address the
distribution system reliability. In [6], remote switches’ number
and location are selected in a distribution system and DG
sources. The presented model is solved using an oppositional
differential search algorithm. In addition to DG placement,
in [7], a capacitor placement is suggested to improve the
radial distribution system. To solve this problem, a heuristic
algorithm, called fish electro-location optimization, is intro-
duced. In [8], a service restoration strategy is presented for
service restoration in distribution systems with DG sources.
An efficient Matrix-based reliability evaluation method is used
in [9]. In the proposed method, each fault event’s influence is
shown on each load interruption, providing beneficial insight
when dealing with reliability improvement in distribution
systems.

The optimal selection of equipment in the planning sector’s
distribution systems is essential to improve system reliability.
Nonoptimal device selection will force the distribution system
operator to change the equipment before their useful remaining
life (URL) is finished, which significantly increases the total
operational costs.

One of the most crucial pieces of equipment that should
be selected in a distribution system is switches, since they
have a considerable effect on distribution system reliability.
An extensive study on circuit breaker reliability is presented
in [10]. The sectionalizing switches are essential in an au-
tomated distribution network. In [11], a genetic algorithm is
used to determine the optimal location for sectionalizers and
tie points in distribution systems. The goal is to minimize the
cost of switches and outage costs and simultaneously improve
the reliability criterion.

The optimal switch placement in distribution systems with
high penetration of a DG source is addressed in [12] to achieve
a certain level of reliability while considering investment
and operational cost. It is shown that DG can be used to
provide improvement in reliability indices. In [13], the optimal
placement of sectionalizing switches and protective devices
in distribution networks is used as a successful strategy to
enhance system reliability in DG units’ presence.

In [14], a novel method is presented to select the switches
that should be upgraded in the distribution systems to improve
their reliability and decrease their losses. The variations in
daily and hourly demand are incorporated into the model to
make the model more realistic.

Another model is presented in [15] to determine the remote
switch location to enhance the distribution system reliabil-
ity. A PSO-based multi-objective optimization technique is

introduced in [16] to solve the switch placement problem
in radial distribution systems, reducing capital costs, and
simultaneously improving reliability. The selection of a switch
type despite its considerable impact on total cost and reliability
criterion is not addressed thoroughly in the technical literature.
An appropriate switch selection should simultaneously mini-
mize the total cost and improve the reliability index. Reliability
and cost are usually in conflict with each other, which means
an improvement in one of them results in a decrease in the
other, and vice versa. This calls for the usage of multi-objective
optimization techniques [17].

Since it is impossible to forecast the exact time and location
of faults in the system, the distribution system planner should
take some measures to guarantee that the solutions he/she has
made are optimal for a wide range of credible scenarios. In
other words, the results should be robust against inaccuracy in
forecasted parameters of the system, such as equipment failure
rate, etc. In [18], the information gap decision theory is used
to develop a robust framework for short-term hydrothermal
scheduling to deal with severe load uncertainties. In [19], the
authors use a flexible virtual power plant to increase the system
robustness against uncertainty in distributed energy sources
output. In [20], a new technique to improve the distribution
system’s robustness against extreme weather events is pre-
sented. The paper aims to minimize the total load shedding
cost and damage repair cost in the case of low probability,
and high impact extreme weather events.

In the published papers, the optimal switch selection to
simultaneously minimize cost and improve reliability is not
considered. Furthermore, robustness analysis in switch selec-
tion in distribution systems is not addressed.

Optimal switch selection considerably decreases the op-
erational costs in the long-term horizon, especially during
the design stage of large manufacturing plants or distribution
systems. It also increases the system reliability and reduces
the load shedding and its consequent expenses. In this paper,
a new model is presented, determining the optimal type of
switches considering the total cost, reliability, and robustness.
The model obtains the system data, and the candidate switches
data as input.

The main contributions of this paper are as follows:
• A multi-objective framework for optimal switch selection

in distribution systems is proposed using the augmented
weighted epsilon constraint method and fuzzy decision-
making and combinatorial optimization to simultaneously
optimize the total cost and reliability index.

• A new index is proposed to assess Pareto optimal solu-
tions’ robustness and the robustness of the entire Pareto
front. The decision-maker uses this index in order to
quantify the robustness of each solution. This index is
used together with the total cost and reliability index
in the fuzzy decision-making method to find the final
solution.

• The uncertainty in the reliability of the switch and repair
time of the fault is considered using the Monte Carlo sim-
ulation. The repair time uncertainty is usually neglected
in the technical literature, although it significantly affects
the final solutions’ optimality.
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• The undesired tripping of the circuit breaker is considered
in the model. This will make the model more realistic.

II. MODEL CHARACTERISTICS

A. Deterministic Optimal Switch Selection Formulation

Total energy not supplied is calculated using equation (1):

ENS =
∑
y

∑
sw

∑
i∈LEMs

rry × λsw × usw,y × rf × Loadi+∑
y

∑
sw

∑
i∈LEM2

s

(1− rry)× λsw × usw,y × rf × Loadi+∑
y

∑
sw

∑
i∈LEMs

dy × rf × usw,y × Loadi (1)

where ENS is the total energy not supplied during one year,
rry is the reliability of switch type y, λsw is the number of
failures per year for the line, where switch sw is located, rf
is the repair time for fault f in hours, and usw,y is a binary
decision variable, which is 1 when the model decides to select
type y for switch sw. In this paper, the switch’s location is
considered to be known, and the problem is solely focused on
determining the type of switches.

The utmost important characteristic of a radial power dis-
tribution network is that the power flow is in only one
direction. In this condition, when a switch is operated, its
entire downstream loads will be de-energized. In (1), ENS
consists of three components. The first term calculates the total
energy not supplied when a fault has occurred, and the switch
has operated to clear the fault. The second line considers
the situation when the fault has occurred, but the switch has
failed to operate, and therefore the upstream switch has to
clear the fault, which means in this case that more loads
are disconnected. In this paper, the simultaneous failure of
two switches is not considered. Consideration of simultaneous
failures can be easily added to the model but is very unlikely
to happen. The third line calculates the amount of ENS
caused by the switch’s incorrect operation, which means the
operation of the switch when there is no command. This can
happen because of the mechanical problems of a switch or
an incorrect setting. Loadi,f is the disconnected load in the
bus i during fault f . LEMs determines the disconnected loads
when the switch sw is opened. LEM2

s shows the disconnected
loads when switch sw is supposed to open but fails to work
correctly, and its upstream switch operates. dsw,y determines
the probability of the unintended operation of switch sw with
type y.

As mentioned earlier, there are different types of switches
available with different reliability and prices. The total cost of
switches can be easily obtained, as follows:

cos t =
∑
sw

∑
y

usw,y × Fsw,y (2)

where Fsw,y is the price of switch sw with type y. The switch
price depends on several features, such as its level reliability,
voltage level, current making, and breaking capability.

The single constraint of this optimization model is related
to the capital cost of the selected switches. This capital cost
should be less than the predetermined available investment.

B. Stochastic Formulation

The reliability of each switch is assessed on its profound
uncertainties and is usually predicted based on historical data.
Neglecting the uncertainty will lead to divergence from the
optimal solution due to forecasting error. To avoid this, a
stochastic model is implemented using a Monte Carlo simula-
tion. Another source of uncertainty is repair time. For example,
the fault of a feeder in a transformer can vary from several
hours to several weeks. It is necessary to consider this when
modeling the distribution system.

To solve these stochastic problems, the problem is first
converted to a set of deterministic problems called scenarios.
This can be achieved by defining a discrete probability distri-
bution function for each uncertain parameter. The procedure of
scenario generation is described in the following Sub-Section.

C. Robust Multi-objective Combinatorial Optimization

In this Section, the presented framework is described, and a
new robustness index is introduced, as described in [21]. The
procedure consists of the following steps:

1) Generating the reference Pareto front
The deterministic multi-objective problem is solved, and the

reference Pareto front is generated.

2) Determining the number of scenarios
The number of scenarios (S) is determined. This number

is set based on a compromise between compilation time
and accuracy in uncertainty modeling. A larger number of
scenarios leads to more accurate uncertainty modeling, but a
large value will make the problem very difficult to solve.

3) Scenario generation
S scenarios are generated using the Monte Carlo simulation.

First, the probability function is discretized, and the probability
for each section is determined. This can be seen in Fig. 1 [23].
The probability of each interval is calculated according to
Fig. 2. Scenario generation is performed using the roulette
wheel method [22]. In this method, for each parameter, a
random point in Fig. 2. is selected [23], and based on the
position of the point, the percentage of forecast error is
determined.

This is done for all the uncertain parameters of the problem.
By knowing the forecasting error for each parameter and its
forecasted value, each scenario’s parameters are calculated.
Finally, to generate the scenario S, the calculated values of

stage 1

stage 3 stage 2

stage 4stage 5

stage 7

P
ro

b
ab

il
it

y

stage 6

Fig. 1. Dividing the probability distribution function into several intervals.
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Fig. 2. Calculation of accumulative distribution function.

uncertain parameters are selected as shown in (3):

S = {W1,t,s, · · · ,W7,t,s} (3)

where Wl,t,s is a binary variable determining which interval
is used for uncertain parameter t in scenario s.

The mentioned steps are repeated for the determined number
of scenarios (S) in step 2. The probability of each scenario is
calculated using Eq. (4).

Prob(s) =

∏T
t=1

(∑7
l=1(Wl, t, sαl,t)

)
∑S

s=1

∏T
t=1

(∑7
l=1(Wl, t, sαl,t)

) (4)

From Fig. 2, the following equation can be induced:

7∑
l=1

αl,t = 1 ∀t (5)

where T is the total number of uncertain parameters in the
model.
4) Solving the deterministic multi-objective problem

For each scenario, a deterministic bi-objective optimization
problem is solved to simultaneously minimize the total cost
and ENS, which is calculated using (1) and the total cost
is calculated using (2). The augmented weighted Epsilon
constraint method is used in this paper to find the Pareto front
for each scenario. This method is well described in [24].
5) Calculation of robustness indices

To consider the robustness during switch selection, a robust-
ness index should be calculated for each solution [21]. Using
this index, the solutions with high sensitivity to forecasting
errors will be less likely to be selected in the decision-making
process.

After solving multi-objective optimization problems for S
times, S Pareto fronts and S×QPareto optimal solutions (POS)
are generated where Q is the size of each Pareto front. For each
POS in the reference Pareto front, its frequency over S Pareto
fronts is counted (Nq). This shows that each POS has appeared
in how many Pareto fronts. Then the robustness index (RI) is
calculated for each POS as follows [21]:

RIq =
Nq

S
(6)

After calculating RI for each POS, the whole Pareto front’s
robustness can be calculated as the average Nq of Pareto
optimal solutions [21].

PFRS =

∑Q
q=1 RIP

Q
(7)

These indices are used as an additional criterion in the
decision-making process.

6) Decision making
In multi-objective optimization, the final step is to find

the most preferred solution among Pareto optimal solutions.
Fuzzy Decision Making (FDM) is one of the most popular
tools to perform this task [25]. In FDM, a linear fuzzy
membership function is calculated for each objective function,
which indicates the degree of optimality for the uth objective
function in the qth Pareto-optimal solution. The membership
function is calculated as follows for objective functions that
should be minimized [25]:

µq
u =


1 fq

u ≤ fU
u

fq
u − fSN

u

fSN
u − fU

u

fU
u ≤ fq

u ≤ fSN
u

0 fSN
u ≤ fq

u

(8)

where fSN
u and fU

u are the worst and best values for the uth

objective as obtained in the payoff table. It should be noted
that values of fSN

u and fU
u are different for each scenario. In

addition to objective functions, the RI of each solution is also
considered to find the final solution in decision-making. The
total membership function (µq) of each solution is computed
using the relative importance of the criteria (OWu) as follows:

µq =

(
2∑

u=1

OWu × µq
u

)
+OW3 ×RIq (9)

The best compromise solution is the solution with the
maximum total membership function. A higher membership
function for a solution means the closer an objective function
value is to its utopia value.

III. NUMERICAL RESULTS

In this Section, the presented model is implemented on a
RBTS Bus-2 [26]test system and in a real industrial plant to
verify the proposed robust multi-objective stochastic model’s
excellent performance.

Load data and failure rates are taken from [27]. The
reliability of the fuses is considered 100 % for the sake of
simplicity. It can be easily added to the model. Six types of
switches with different failure rates and prices are considered
in this paper. The results for different situations are presented
in the remainder of this section.

All simulations are performed using the CPLEX 12.3 solver
of the general algebraic modeling system (GAMS) software
package.

A. RTBS BUS-2
In this Section, the proposed model is implemented on

a simple RTBS bus-2 system, and the obtained results are
discussed. The test system includes 22 load points and ten
switches. The candidate switch data are presented in Table I.

The reference Pareto front is shown in Fig. 3. The results
are shown in Table II. In the last column, the type of
selected switches in each POS is presented. For example,
6666616666 means that SW6 is type 1, and other switches
are type 6. This can be mathematically formulated as follows:

POS =

y=Y∑
y=1

(
us,y × Ord(y)×

S∑
s=1

10(Ord(s)−1)

)
(10)
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TABLE I
CANDIDATE SWITCH PROPERTIES

Type Cost ($) Failure Rate
1 6419 0.9999
2 5000 0.99
3 3600 0.98
4 2469 0.97
5 2393 0.96
6 1280 0.95

TABLE II
LOAD CURTAILMENT IN MW FOR EACH SWITCH FAILURE

SW No. Load curtailment (MW) SW No. Load curtailment (MW)
SW1 2.575 SW6 1.586
SW2 1.474 SW7 0.454
SW3 0.454 SW8 2.486
SW4 1.15 SW9 1.586
SW5 2.571 SW10 1.02

15
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40

10000 20000 30000 40000 50000

E
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S
 (

M
W

·h
)

Cost ($)

Fig. 3. Reference Pareto front.

As shown in Table III, in solution 1, the cheapest switches
are selected for all locations. Since less expensive switches
have lower reliability, solution 1 has the highest ENS. To
improve reliability, e.g., decreasing the ENS, the total cost
is increased. The increase in cost is because of selecting more
expensive switches, as evident in Table III.

TABLE III
REFERENCE PARETO FRONT

No. Cost ENS POS
1 12800 38.21858 6666666666
2 15102 35.5122 6666646665
3 17709 32.92297 6626646666
4 18745 30.61917 6446446664
5 22389 28.29563 6446426654
6 25840 25.69515 6436434652
7 28716 23.3976 6426424642
8 33298 21.03364 4326324632
9 40048 18.52557 4226223621
10 47795 16.20464 3214212421

Table II shows the amount of curtailed load caused by the
failure of each switch. As seen in Table II, the effect of each
switch on the system reliability is not identical. It is clear from
Table II that failure in switches 1, 5, and 8 will lead to more
load outage than other switches. Therefore, when deciding to
improve the reliability of the system, these switches should be
the priority. For example, in solution 10, the most expensive
switches are selected for locations 1, 5 and 8, and for locations
3 and 7, less expensive switches of type 4 are selected.

In the next step, using a Monte Carlo simulation, 20 sce-
narios are generated as described above. The reference Pareto

front with robustness information is presented below. As seen
in Fig. 4, solutions 1–4 and 7 are more robust. Solution 10 is
not shown in the results since it exists in none of the scenarios.
It is clear from Fig. 4 that, in general, the results with low
ENS are less robust against uncertainty in switch failure and
repair time. This means increasing the system reliability is
more vulnerable to inaccuracy in parameter forecasting.

15

20

25

30

35

40

10000 20000 30000 40000

E
N

S
 (

M
W

·h
)

Cost ($)

Fig. 4. Pareto front with robustness information.

It should be noted that fault repair time is independent of
switch type and, therefore, does not influence the selection
of switch types. In other words, if the fault repair time
takes more than expected, the cost of the selected switch is
not increased. On the contrary, repair time adversely affects
reliability. Longer repair time causes more load shedding and
more ENS.

After finding the Pareto front, FDM is used to find the
best solution. Cost, reliability, and robustness are considered
to find the final solution. The weighting factors are equal,
because, without loss of any generality, the importance of
cost, reliability and robustness are considered to be equal in
this study. The total membership functions are presented in
Table IV.

TABLE IV
MEMBERSHIP FUNCTION

No. MF No. MF
1 0.667 6 0.699
2 0.686 7 0.739
3 0.7 8 0.715
4 0.725 9 0.672
5 0.692 10 0.333

The best solution is solution 7, with 23.4 MW·h ENS and
a cost equal to $28,716. As seen in Fig. 4, the robustness of
the selected solution is high. For more critical locations, i.e.,
locations 1, 5, and 8, switch type 2 is selected in this solution.
For locations 3 and 7, which are less critical, according to
Table III, the lower cost switches are selected.

B. A Real Industrial Distribution System

The proposed model is applied to a real industrial distribu-
tion system to further investigate its performance. The under-
study distribution system in Ahvaz city includes 37 Medium
voltage loads, two 33/11 kV transformers, four 132/33 kV in-
coming transformers, and twenty-five 33/6.3 kV transformers.
The 49 MV switches are used throughout the system. The total
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demand is about 152 MW. The layout of the system is shown
in Fig. 5.

It should be noted that despite urban distribution systems,
in industrial plants, each load’s effect on the process should
be considered. For example, in some cases, a trip in a
small motor can result in a plant shut down. Therefore, it
is crucial to consider the importance of each motor from the
process operation point of view. This importance should be
determined. Comparisons of Figs. 6 and 7 show that improving
reliability is due to the process operator. The results are shown
below in Fig. 6., which is in conflict with the robustness of
the model. Also, it can be seen that in comparison to Fig. 4,
the robust regions in the Pareto front are decreased.

The results obtained by the FDM method are shown in
Table V. As made clear in Table V, solution 2 with $98,073
and 1,730 MW·h is selected as the final solution. Fig. 6 shows
that the robustness of the selected solution is acceptable.

The model provides information about robustness for each

solution. This information can be used for optimal switch se-
lection. This is very important, usually during the design stage
of large manufacturing factories or distribution networks. Such
distribution networks include many switches with different
ratings. Appropriate selection of these switches can reduce
the costs associated with involuntarily load shedding [3]. In
addition, it will lead to less operational costs in the long-term
period.

IV. CONCLUSION

This paper has presented a new model to incorporate
uncertainty in multi-objective switch selection in distribution
systems. The presented model considers uncertainty in re-
pair time and uncertainty in switch failure as the primary
uncertainty sources. Errors in the forecasting of uncertain
parameters can lead to non-optimal solutions. Therefore, it is
necessary to determine the robust areas of the Pareto front. To
do this, a new robustness index is calculated for each Pareto
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Fig. 5. The system layout of the real industrial distribution system in Ahvaz.
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TABLE V
MEMBERSHIP FUNCTION FOR THE REAL INDUSTRIAL

DISTRIBUTION SYSTEM IN AHVAZ

No. MF No. MF
1 0.667 6 0.447
2 0.696 7 0.451
3 0.470 8 0.437
4 0.490 9 0.405
5 0.436 10 0.333
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Fig. 6. Reference Pareto front for the real industrial distribution system in
Ahvaz.
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Fig. 7. Pareto front with robustness information for the real industrial
distribution system in Ahvaz.

optimal solution. Using the proposed method, the solutions
with high sensitivity to forecasting errors are neglected in the
decision-making process. This will help the decision-maker to
avoid non-robust solutions. The effect of uncertainty on model
robustness is analyzed using two test cases.

The future study will be calculating the cost from the per-
spective of the whole life cycle and considering the anticipated
future changes in the understudy distributions system, such as
reconfiguration of the substation, load growth, etc.
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