3,273 research outputs found

    Pivotal decompositions of functions

    Get PDF
    We extend the well-known Shannon decomposition of Boolean functions to more general classes of functions. Such decompositions, which we call pivotal decompositions, express the fact that every unary section of a function only depends upon its values at two given elements. Pivotal decompositions appear to hold for various function classes, such as the class of lattice polynomial functions or the class of multilinear polynomial functions. We also define function classes characterized by pivotal decompositions and function classes characterized by their unary members and investigate links between these two concepts

    Generalized Lattice Gauge Theory, Spin Foams and State Sum Invariants

    Get PDF
    We construct a generalization of pure lattice gauge theory (LGT) where the role of the gauge group is played by a tensor category. The type of tensor category admissible (spherical, ribbon, symmetric) depends on the dimension of the underlying manifold (<=3, <=4, any). Ordinary LGT is recovered if the category is the (symmetric) category of representations of a compact Lie group. In the weak coupling limit we recover discretized BF-theory in terms of a coordinate free version of the spin foam formulation. We work on general cellular decompositions of the underlying manifold. In particular, we are able to formulate LGT as well as spin foam models of BF-type with quantum gauge group (in dimension <=4) and with supersymmetric gauge group (in any dimension). Technically, we express the partition function as a sum over diagrams denoting morphisms in the underlying category. On the LGT side this enables us to introduce a generalized notion of gauge fixing corresponding to a topological move between cellular decompositions of the underlying manifold. On the BF-theory side this allows a rather geometric understanding of the state sum invariants of Turaev/Viro, Barrett/Westbury and Crane/Yetter which we recover. The construction is extended to include Wilson loop and spin network type observables as well as manifolds with boundaries. In the topological (weak coupling) case this leads to TQFTs with or without embedded spin networks.Comment: 58 pages, LaTeX with AMS and XY-Pic macros; typos corrected and references update

    A Two Weight Inequality for the Hilbert transform Assuming an Energy Hypothesis

    Get PDF
    Subject to a range of side conditions, the two weight inequality for the Hilbert transform is characterized in terms of (1) a Poisson A_2 condition on the weights (2) A forward testing condition, in which the two weight inequality is tested on intervals (3) and a backwards testing condition, dual to (2). A critical new concept in the proof is an Energy Condition, which incorporates information about the distribution of the weights in question inside intervals. This condition is a consequence of the three conditions above. The Side Conditions are termed 'Energy Hypotheses'. At one endpoint they are necessary for the two weight inequality, and at the other, they are the Pivotal Conditions of Nazarov-Treil-Volberg. This new concept is combined with a known proof strategy devised by Nazarov-Treil-Volberg. A counterexample shows that the Pivotal Condition are not necessary for the two weight inequality.Comment: 60 pages, 1 figure. v3. An important revision: The Energy Condition is reformulated, a key concept of the proof, is reformulated. The main result is unchanged. v4. important display corrected. v6: The earlier versions incorrectly claimed a characterization, as was pointed out to us by S. Treil v7. Corrections in Section

    Fermion condensation and super pivotal categories

    Get PDF
    We study fermionic topological phases using the technique of fermion condensation. We give a prescription for performing fermion condensation in bosonic topological phases which contain a fermion. Our approach to fermion condensation can roughly be understood as coupling the parent bosonic topological phase to a phase of physical fermions, and condensing pairs of physical and emergent fermions. There are two distinct types of objects in fermionic theories, which we call "m-type" and "q-type" particles. The endomorphism algebras of q-type particles are complex Clifford algebras, and they have no analogues in bosonic theories. We construct a fermionic generalization of the tube category, which allows us to compute the quasiparticle excitations in fermionic topological phases. We then prove a series of results relating data in condensed theories to data in their parent theories; for example, if C\mathcal{C} is a modular tensor category containing a fermion, then the tube category of the condensed theory satisfies Tube(C/ψ)≅C×(C/ψ)\textbf{Tube}(\mathcal{C}/\psi) \cong \mathcal{C} \times (\mathcal{C}/\psi). We also study how modular transformations, fusion rules, and coherence relations are modified in the fermionic setting, prove a fermionic version of the Verlinde dimension formula, construct a commuting projector lattice Hamiltonian for fermionic theories, and write down a fermionic version of the Turaev-Viro-Barrett-Westbury state sum. A large portion of this work is devoted to three detailed examples of performing fermion condensation to produce fermionic topological phases: we condense fermions in the Ising theory, the SO(3)6SO(3)_6 theory, and the 12E6\frac{1}{2}\text{E}_6 theory, and compute the quasiparticle excitation spectrum in each of these examples.Comment: 161 pages; v2: corrected typos (including 18 instances of "the the") and added some reference

    The blob complex

    Full text link
    Given an n-manifold M and an n-category C, we define a chain complex (the "blob complex") B_*(M;C). The blob complex can be thought of as a derived category analogue of the Hilbert space of a TQFT, and as a generalization of Hochschild homology to n-categories and n-manifolds. It enjoys a number of nice formal properties, including a higher dimensional generalization of Deligne's conjecture about the action of the little disks operad on Hochschild cochains. Along the way, we give a definition of a weak n-category with strong duality which is particularly well suited for work with TQFTs.Comment: 106 pages. Version 3 contains many improvements following suggestions from the referee and others, and some additional materia
    • …
    corecore