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Abstract

We extend the well-known Shannon decomposition of Boolean functions to
more general classes of functions. Such decompositions, which we call piv-
otal decompositions, express the fact that every unary section of a function
only depends upon its values at two given elements. Pivotal decompositions
appear to hold for various function classes, such as the class of lattice poly-
nomial functions or the class of multilinear polynomial functions. We also
define function classes characterized by pivotal decompositions and function
classes characterized by their unary members and investigate links between
these two concepts.
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1. Introduction

A remarkable (though immediate) property of Boolean functions is the
so-called Shannon decomposition, or Shannon expansion (see [20]), also called
pivotal decomposition [2]. This property states that, for every Boolean func-
tion f ∶{0,1}n → {0,1} and every k ∈ [n] = {1, . . . , n}, the following decom-
position formula holds:

f(x) = xk f(x1
k) + xk f(x0

k) , x = (x1, . . . , xn) ∈ {0,1}n, (1)
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where xk = 1 − xk and xa
k is the n-tuple whose i-th coordinate is a, if i = k,

and xi, otherwise. Here the ‘+’ sign represents the classical addition for real
numbers.

Decomposition formula (1) means that we can precompute the function
values for xk = 0 and xk = 1 and then select the appropriate value depending
on the value of xk. By analogy with the cofactor expansion formula for
determinants, here f(x1

k) (resp. f(x0
k)) is called the cofactor of xk (resp. xk)

for f and is derived by setting xk = 1 (resp. xk = 0) in f .
Clearly, the addition operation in (1) can be replaced with the maximum

operation ∨, thus yielding the following alternative formulation of (1):

f(x) = (xk f(x1
k)) ∨ (xk f(x0

k)) , x ∈ {0,1}n, k ∈ [n].

Equivalently, (1) can also be put in the form

f(x) = (xk ∨ f(x0
k)) (xk ∨ f(x1

k)) , x ∈ {0,1}n, k ∈ [n]. (2)

As it is well known, repeated applications of (1) show that any n-ary
Boolean function can always be expressed as the multilinear polynomial func-
tion

f(x) = ∑
S⊆[n]

f(1S)∏
i∈S
xi ∏

i∈[n]∖S
xi , x ∈ {0,1}n, (3)

where 1S is the characteristic vector of S in {0,1}n, that is, the n-tuple whose
i-th coordinate is 1, if i ∈ S, and 0, otherwise.

If f is nondecreasing (i.e., the map z ↦ f(xz
k) is isotone for every x ∈

{0,1}n and every k ∈ [n]), then by expanding (2) we see that the decompo-
sition formula reduces to

f(x) = (xk f(x1
k)) ∨ f(x0

k) , x ∈ {0,1}n, k ∈ [n], (4)

or, equivalently,

f(x) = med(xk, f(x1
k), f(x0

k)) , x ∈ {0,1}n, k ∈ [n], (5)

where med is the ternary median operation defined by

med(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)

and ∧ is the minimum operation.
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Interestingly, the following decomposition formula also holds for nonde-
creasing n-ary Boolean functions:

f(x) = xk (f(x1
k)∨f(x0

k))+xk (f(x1
k)∧f(x0

k)) , x ∈ {0,1}n, k ∈ [n]. (6)

Actually, any of the decomposition formulas (4)–(6) exactly expresses the
fact that f should be nondecreasing and hence characterizes the subclass of
nondecreasing n-ary Boolean functions. We state this result as follows.

Proposition 1.1. A Boolean function f ∶{0,1}n → {0,1} is nondecreasing if
and only if it satisfies any of the decomposition formulas (4)–(6).

Decomposition property (1) also holds for functions f ∶{0,1}n → R, called
n-ary pseudo-Boolean functions. As a consequence, these functions also have
the representation given in (3). Moreover, formula (6) clearly characterizes
the subclass of nondecreasing n-ary pseudo-Boolean functions.

The multilinear extension of a pseudo-Boolean function f ∶{0,1}n → R is
the function f̂ ∶ [0,1]n → R defined by (see Owen [16, 17])

f̂(x) = ∑
S⊆[n]

f(1S)∏
i∈S
xi ∏

i∈[n]∖S
(1 − xi) , x ∈ [0,1]n. (7)

Actually, a function is the multilinear extension of a pseudo-Boolean func-
tion if and only if it is a multilinear polynomial function, i.e., a polynomial
function of degree ⩽ 1 in each variable. Thus defined, one can easily see that
the class of multilinear polynomial functions can be characterized as follows.

Proposition 1.2. A function f ∶ [0,1]n → R is a multilinear polynomial func-
tion if and only if it satisfies

f(x) = xk f(x1
k) + (1 − xk)f(x0

k) , x ∈ [0,1]n, k ∈ [n]. (8)

Interestingly, Eq. (8) provides an immediate proof of the property

∂f(x)
∂xk

= f(x1
k) − f(x0

k),

which holds for every multilinear polynomial function f ∶ [0,1]n → R.
As far as nondecreasing multilinear polynomial functions are concerned,

we have the following characterization, which is a special case of Corollary 4.8.
Recall first that a multilinear polynomial function is nondecreasing if and
only if so is its restriction to {0,1}n (i.e., its defining pseudo-Boolean func-
tion).
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Proposition 1.3. A function f ∶ [0,1]n → R is a nondecreasing multilinear
polynomial function if and only if it satisfies

f(x) = xk (f(x1
k)∨f(x0

k))+xk (f(x1
k)∧f(x0

k)) , x ∈ [0,1]n, k ∈ [n]. (9)

The decomposition formulas considered in this introduction share an in-
teresting common feature, namely the fact that any variable, here denoted xk
and called pivot, can be pulled out of the function, reducing the evaluation of
f(x) to the evaluation of a function of xk, f(x1

k), and f(x0
k).1 This feature

may be useful when for instance the values f(x1
k) and f(x0

k) are much easier
to compute than that of f(x). In addition to this, such (pivotal) decompo-
sitions may facilitate inductive proofs and may lead to canonical forms such
as (3).

In this paper we define a general concept of pivotal decomposition for
various functions f ∶Xn → Y , where X and Y are nonempty sets (Section
2). We also introduce function classes that are characterized by pivotal de-
compositions (Section 3) and function classes that are characterized by their
unary members and investigate relationships between these concepts (Section
4). We also introduce a natural generalization of the concept of pivotal de-
composition, namely componentwise pivotal decomposition (Section 5). We
then end our paper by some concluding remarks (Section 6).

2. Pivotal decompositions

The examples presented in the introduction motivate the following defini-
tion. Let X and Y be nonempty sets and let 0 and 1 be two fixed elements of
X. For every function f ∶Xn → Y , define Rf = {(f(x1

k), f(x0
k)) ∶ x ∈ Xn, k ∈

[n]}. Throughout we assume that n ⩾ 1.

Definition 2.1. We say that a function f ∶Xn → Y is pivotally decomposable
if there exist a subset D of X × Y 2 and a function Π∶D → Y , called pivotal
function, such that D ⊇X ×Rf and

f(x) = Π(xk, f(x1
k), f(x0

k)) , x ∈Xn, k ∈ [n]. (10)

In this case, we say that f is Π-decomposable.

1In applications, such as cooperative game theory or aggregation function theory, this
means that, in a sense, one can isolate the marginal contribution of a factor (attribute,
criterion, etc.) from the others.
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From Definition 2.1 we immediately obtain the following two results.

Fact 2.2. Let f ∶Xn → Y be a Π-decomposable function for some pivotal func-
tion Π. Then, for every (u, v) ∈ Rf , we have Π(1, u, v) = u and Π(0, u, v) = v.

Proposition 2.3 (Uniqueness of the pivotal function). If f ∶Xn → Y is Π-
and Π′-decomposable for some pivotal functions Π and Π′, then Π and Π′

coincide on X ×Rf .

Proof. Let (p, u, v) ∈ X × Rf . By definition of Rf , there exist x ∈ Xn and
k ∈ [n] such that (u, v) = (f(x1

k), f(x0
k)). We then have

Π′(p, u, v) = Π′(p, f(x1
k), f(x0

k)) = f(x
p
k) = Π(p, f(x1

k), f(x0
k)) = Π(p, u, v),

which completes the proof.

Example 2.4. Every Boolean function is Π-decomposable, where Π∶{0,1}3 →
{0,1} is the classical ‘if-then-else’ connective defined by Π(p, u, v) = (p∧u)∨
(p ∧ v). If f is nondecreasing, we can restrict Π to {0,1} × {(u, v) ∈ {0,1}2 ∶
u ⩾ v} or consider Π′(p, u, v) = (p ∧ (u ∨ v)) ∨ (p ∧ (u ∧ v)) on {0,1}3.

Example 2.5. Every multilinear polynomial function f ∶ [0,1]n → R is Π-
decomposable, where Π∶D → R is defined by D = [0,1] ×R2 and Π(p, u, v) =
pu+ (1−p) v. If f is nondecreasing, we can restrict Π to [0,1]×{(u, v) ∈ R2 ∶
u ⩾ v} or consider Π′(p, u, v) = p (u ∨ v) + (1 − p)(u ∧ v) on [0,1]n.

Example 2.6. Let X be a bounded distributive lattice, with 0 and 1 as
bottom and top elements, respectively. A lattice polynomial function on X is
a composition of projections, constant functions, and the fundamental lattice
operations ∧ and ∨; see, e.g., [8, 9, 11]. An n-ary function f ∶Xn → X is a
lattice polynomial function if and only if it can be written in the (disjunctive
normal) form

f(x) = ⋁
S⊆[n]

f(1S) ∧⋀
i∈S
xi , x ∈Xn.

It is known [7, 11, 15] that a function f ∶Xn → X is a lattice polynomial
function if and only if it is Π-decomposable, where Π∶X3 → X is defined by
Π(p, u, v) =med(p, u, v).

Example 2.7. Let X and Y be bounded distributive lattices. We denote by
0 and 1 their bottom and top elements, respectively. A function f ∶Xn → Y is
of the form f = g○(ϕ, . . . , ϕ), where g∶Y n → Y is a lattice polynomial function
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and ϕ∶X → Y is a unary function such that ϕ(x) = med(ϕ(x), ϕ(1), ϕ(0)),
if and only if it is Π-decomposable, where Π∶X × Y 2 → Y is defined by
Π(p, u, v) =med(f(p, . . . , p), u, v); see [10].

Example 2.8. A t-norm is a binary function T ∶ [0,1]2 → [0,1] that is sym-
metric, nondecreasing, associative, and such that T (1, x) = x (see, e.g., [19]).
Every t-norm T ∶ [0,1]2 → [0,1] is Π-decomposable with Π∶ [0,1]3 → R defined
by Π(p, u, v) = T (p, u).

Example 2.9. Consider a function f ∶Xn → Y , a pivotal function Π∶X×Y 2 →
Y , and one-to-one functions ϕ∶X → X and ψ∶Y → Y such that ϕ(0) = 0
and ϕ(1) = 1. One can easily show that f is Π-decomposable if and only
if the function f ′ = ψ ○ f ○ (ϕ, . . . , ϕ) is Π′-decomposable, where Π′ = ψ ○
Π ○ (ϕ,ψ−1, ψ−1). In particular, if Y = X and ψ = ϕ−1, we obtain Π′ =
ϕ−1 ○Π ○ (ϕ,ϕ,ϕ). For instance, quasi-linear functions f ∶Rn → R, defined by
(see, e.g., [1])

f(x) = ϕ−1(
n

∑
i=1
ai ϕ(xi) + b),

where a1, . . . , an, b ∈ R, are pivotally decomposable.

Repeated applications of (10) lead to the following fact.

Fact 2.10. Let Π be a pivotal function. Any Π-decomposable function f ∶Xn →
Y is uniquely determined by Π and the restriction of f to {0,1}n.

A section of f ∶Xn → Y is a function which can be obtained from f by
replacing some of its variables by constants. Formally, for every S ⊆ [n] and
every a ∈ Xn, we define the S-section fa

S ∶XS → Y of f by fa
S(x) = f(ax

S),
where ax

S is the n-tuple whose i-th coordinate is xi, if i ∈ S, and ai, otherwise.
We also denote fa

{k} by f
a
k .

Fact 2.11. Eq. (10) implies that, for every fixed a,b ∈ Xn and k ∈ [n], we
have fa

k = fb
k if and only if (f(a1

k), f(a0
k)) = (f(b1

k), f(b0
k)).

Fact 2.12. If a function f ∶Xn → Y is Π-decomposable for some pivotal
function Π, then every section of f is also Π-decomposable.

Proposition 2.13. A function f ∶Xn → Y is Π-decomposable for some piv-
otal function Π if and only if so are its unary sections.
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Proof. (Necessity) Follows from Fact 2.12.
(Sufficiency) Let f ∶Xn → Y be Π-decomposable. For every x ∈ Xn and

every k ∈ [n], we then have

f(x) = f(xxk

k ) = fx
k (xk) = Π(xk, fx

k (1), fx
k (0)) = Π(xk, f(x1

k), f(x0
k)),

which completes the proof.

3. Pivotally characterized classes of functions

The examples given in the previous sections motivate the consideration
of function classes that are characterized by given pivotal functions. The
fact that any section of a pivotally decomposable function is also pivotally
decomposable with the same pivotal function suggests considering classes of
functions with unbounded arities.

The k-th argument of a function f ∶Xn → Y is said to be inessential if fa
k

is constant for every a ∈ Xn (see [18]). Otherwise, it is said to be essential.
We say that a unary section fa

k of f is essential if the k-th argument of f is
essential.

It is natural to ask that a function class characterized by a pivotal func-
tion be closed under permuting arguments or adding, deleting, or identifying
inessential arguments of functions. We then consider the following definition.

For every function f ∶Xn → Y and every map σ∶ [n] → [m], define the
function fσ ∶Xm → Y by fσ(a) = f(aσ), where aσ denotes the n-tuple
(aσ(1), . . . , aσ(n)). Define also the set U = ⋃n⩾1 Y Xn

.

Definition 3.1. Define an equivalence relation on U as follows. For functions
f ∶Xn → Y and g∶Xm → Y , we say that f and g are equivalent and we write
f ≡ g if f can be obtained from g by permuting arguments or by adding,
deleting, or identifying inessential arguments. Formally, we have f ≡ g if
there exist maps σ∶ [m]→ [n] and µ∶ [n]→ [m] such that f = gσ and g = fµ.

Note that if f ≡ g, then f and g have the same number of essential
arguments. Also, a nonconstant function is always equivalent to a function
with no inessential argument.

An S-section of f ∶Xn → Y is said to be essential if there exists b ∈ Xn

such that fb
S is nonconstant.

Lemma 3.2. Let f, g ∈ U .
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(i) If f ≡ g, then any section of f is equivalent to a section of g.

(ii) If every section of f is equivalent to a section of g and if every section
of g is equivalent to a section of f , then f ≡ g.

(iii) If f and g are nonconstant functions, if every essential section of f
is equivalent to a section of g, and if every essential section of g is
equivalent to a section of f , then f ≡ g.

Proof. Assume that f ∶Xn → Y and g∶Xm → Y.
(i) Let σ∶ [m]→ [n] and µ∶ [n]→ [m] such that f = gσ and g = fµ. If S is a

nonempty subset of [n] and if a ∈Xn, it is easy to prove that fa
S = (gaσσ−1(S))σ

and that gaσ
σ−1(S) = (f

a
S)µ.

(ii) For h ∈ U , let us denote by essh the number of essential arguments
of h. Let S ⊆ [n], T ⊆ [m], a ∈ Xn, b ∈ Xm such that g ≡ fa

S and f ≡ gbT . It
follows that

ess f = ess gbT ⩽ ess g = ess fa
S ⩽ ess f.

We conclude that ess g = ess gbT and so that g ≡ gbT ≡ f .
(iii) Since f and g are nonconstant functions, they are their own essential

sections and we can complete the proof as in (ii).

Definition 3.3. Let Π∶D → Y be a pivotal function. We denote by ΓΠ the
subclass of U of functions which are equivalent to Π-decomposable functions
with no essential argument or no inessential argument. We say that a class
C ⊆ U is pivotally characterized if there exists a pivotal function Π such that
C = ΓΠ. In that case, we say that C is Π-characterized.

Proposition 3.4. Let Π be a pivotal function.

(i) A nonconstant function is in ΓΠ if and only if so are its essential unary
sections.

(ii) A constant function c is in ΓΠ if and only if Π(p, c, c) = c for every
p ∈X.

Proof. Assertion (ii) is trivial. Let us prove assertion (i).
(Necessity) Suppose that the nonconstant function f ∶Xn → Y is in ΓΠ.

Then f is equivalent to a Π-decomposable function g∶Xm → Y with no
inessential argument. Let a ∈ Xn and k ∈ [n] such that fa

k is an essen-
tial unary section of f . By Lemma 3.2 (ii), fa

k is equivalent to a section h of
g, which is Π-decomposable by Fact 2.12. In turn, function h is equivalent
to a Π-decomposable function with no essential or inessential argument.
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(Sufficiency) Let us suppose that every essential unary section of a non-
constant function f ∶Xn → Y is equivalent to a Π-decomposable function and
let us prove that f is also equivalent to a Π-decomposable function.

Let a ∈ Xn and let k ∈ [n] be such that the k-th argument of f is essen-
tial. Then the essential unary section fa

k is equivalent to a Π-decomposable
function g∶Xm → Y with at most one essential argument. Hence, there is a
map µ∶ [1] → [m] such that g(c) = fa

k (cµ) for every c ∈ Xm. For any fixed
c ∈Xm and every p ∈X, we then have

fa
k (p) = g(cp

µ(1)) = Π(p, g(c1µ(1)), g(c0µ(1))) = Π(p, fa
k (1), fa

k (0)),

which shows that every essential unary section of f is Π-decomposable.
Now, let E ⊆ [n] be the nonempty set of labels of essential arguments of f

and let h∶XE → Y be the function obtained from f by deleting its inessential
arguments.2 Thus, h is equivalent to f and has no inessential arguments.
Moreover, its unary sections are essential unary sections of f and hence are
Π-decomposable. By Proposition 2.13 the function h is also Π-decomposable,
which completes the proof.

Example 3.5. (a) The class of Boolean functions is Π-characterized, where
Π∶{0,1}3 → {0,1} is defined by Π(p, u, v) = (p ∧ u) ∨ (p ∧ v).

(b) The class of nondecreasing Boolean functions is Π-characterized, where
Π∶{0,1}3 → {0,1} is defined by Π(p, u, v) = (p∧ (u∨ v))∨ (p∧ (u∧ v)).

(c) The class of multilinear polynomial functions is Π-characterized, where
Π∶ [0,1]3 → R is defined by Π(p, u, v) = pu + (1 − p) v.

(d) The class of nondecreasing multilinear polynomial functions is Π-charac-
terized, where Π∶ [0,1]3 → R is defined by Π(p, u, v) = p (u ∨ v) + (1 −
p)(u ∧ v).

(e) The class of lattice polynomial functions on a bounded distributive
lattice X is Π-characterized, where Π∶X3 →X is defined by Π(p, u, v) =
med(p, u, v).

Example 3.6. The subclass of U = ⋃n⩾1R[0,1]
n
of functions that are equiv-

alent to a function gc,n∶ [0,1]n → R ∶ x↦ 1 + c ∏n
i=1 xi, where c ∈ R and n ∈ N,

2The function h can be defined formally as follows. Let σ∶ [n]→ E be any extension to
[n] of the map ι∶E → [n] ∶ k ↦ k. Then h is defined by h(a) = f(aσ) for every a ∈ XE .
Since f(b) = h(bι) for every b ∈Xn, the functions f and h are equivalent.
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is a subclass of the class of multilinear polynomial functions which is Π-
characterized, where Π∶D → R is the function Π(p, u, v) = pu+(1−p) v defined
on D = [0,1]×R×{1}. Equivalently, we can consider Π′(p, u, v) = pu+(1−p)
on D′ = [0,1] ×R2.

4. Classes characterized by their unary members

Proposition 3.4 shows that a class ΓΠ is characterized by its constant
members and the essential unary sections of its members. This observation
motivates the following definition, which is inspired from [5].

Definition 4.1. We say that a class C ⊆ U is characterized by its unary
members, or is UM-characterized, if it satisfies the following two conditions:

(i) A nonconstant function f is in C if and only if so are its essential unary
sections.

(ii) If f is a constant function in C and g ≡ f , then g is in C.

Equivalently, conditions (i) and (ii) can be replaced by (i) and (ii’), where

(ii’) If f is in C and g ≡ f , then g is in C.

We denote by UMC the family of UM-characterized classes C ⊆ U .
Remark 1. (a) The unary sections considered in condition (i) of Defini-

tion 4.1 must be essential. Indeed, otherwise for instance the class of
multilinear polynomial functions that are strictly increasing in each ar-
gument would be considered as a UM-characterized class. However,
by adding an inessential argument to any member of this class, the
resulting function would no longer be in the class.

(b) The terminology ‘unary members’ is justified by the fact that the non-
constant unary members of a UM-characterized class C are nothing
other than essential unary sections of members of C, namely them-
selves.

Proposition 3.4 shows that every pivotally characterized subclass of U
is UM-characterized. As a consequence, a subclass of U that is not UM-
characterized cannot be pivotally characterized. Note also that there are
UM-characterized subclasses of U that are not pivotally characterized. To
give an example, the subclass of all nondecreasing functions in U is UM-
characterized but not pivotally characterized (see Example 5.3 for an instance
of nondecreasing function with no inessential argument that is not pivotally
decomposable).
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Example 4.2. The (discrete) Sugeno integrals on a bounded distributive
lattice X are those lattice polynomial functions on X (see Example 2.6)
which are reflexive (i.e., f(x, . . . , x) = x for all x ∈ X). Even though the
class of lattice polynomial functions is pivotally characterized, the subclass
of Sugeno integrals is not UM-characterized and hence cannot be pivotally
characterized. Indeed, any unary function f(x) = x ∧ c, c ∈ X, is not a
Sugeno integral but is an essential unary section of the binary Sugeno integral
g(x1, x2) = x1 ∧ x2.

The following lemma is an immediate consequence of Definition 4.1.

Lemma 4.3. Let C ⊆ U be a UM-characterized class and let f ∶Xn → Y
(n ⩾ 1) be a function. Then the following assertions are equivalent.

(i) f ∈ C,
(ii) fσ ∈ C for every permutation σ∶ [n]→ [n],
(iii) every essential section of f is in C.

We now prove that a subclass of a pivotally characterized class is UM-
characterized if and only if it is pivotally characterized (Theorem 4.5). This
result will follow from both Proposition 3.4 and the following proposition.

For every pivotal function Π, every C ⊆ ΓΠ, every integer n ⩾ 1, and every
k ∈ [n], we set

Rn,k
C = {(f(x1

k), f(x0
k)) ∶ x ∈Xn, f ∈ C with arity n}

and we denote by Πn,k
C the restriction of Π to X × Rn,k

C . To simplify the
notation we also set RC = R1,1

C and ΠC = Π1,1
C .

Proposition 4.4. Let Π be a pivotal function and consider a UM-characterized
subclass C of ΓΠ. Then, for every integer n ⩾ 1 and every k ∈ [n], we have
Rn,k

C = RC = ⋃f∈C Rf and Πn,k
C = ΠC. Moreover, C = ΓΠC

.

Proof. Let n ⩾ 1 be an integer. We first show that Rn,k
C = R

n,j
C for all k, j ∈ [n].

Let (u, v) ∈ Rn,k
C . Then there exists an n-ary function f ∈ C and an n-

tuple a ∈ Xn such that (u, v) = (f(a1
k), f(a0

k)). Let σ∶ [n] → [n] be the
transposition (jk) and let b be the n-tuple defined by bi = aj, if i = k, and
bi = ai, otherwise. We then have

(u, v) = (f(a1
k), f(a0

k)) = (f(b1
jσ), f(b0

jσ)) = (fσ(b1
j), fσ(b0

j)).
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By Lemma 4.3 we have fσ ∈ C and hence (u, v) ∈ Rn,j
C . The converse inclusion

follows by symmetry and we can therefore set Rn
C = R

n,1
C = ⋯ = R

n,n
C .

We now prove that Rn
C ⊆ Rm

C for all n,m ⩾ 1. Assume first that n < m.
Any n-ary function f ∈ C is equivalent to an m-ary function g obtained
from f by adding m − n inessential arguments.3 Thus g ∈ C and, therefore,
Rn

C ⊆ Rm
C . Assume now that n >m. The constant functions in Rn

C are also in
Rm

C by condition (ii) of Definition 4.1. For every a ∈Xn−m, let Ea be the set
of functions g∶Xm → Y such that there exists a nonconstant n-ary function
f ∈ C such that

g(x1, . . . , xm) = f(a1, . . . , an−m, x1, . . . , xm)

for every x ∈Xm (up to equivalence, we may assume that the n-th argument
of f is essential). It follows that

Rn
C = Rn,n

C = ⋃
a∈Xn−m

{(g(x1
m), g(x0

m)) ∶ x ∈Xm, g ∈ Ea}. (11)

Since every g ∈ Ea is an m-ary essential section of f , by Lemma 4.3 we have
that g ∈ C. Therefore Eq. (11) means that Rn

C ⊆ Rm
C .

Thus, we have proved that Rn,k
C = Rn

C = RC , and hence Πn,k
C = ΠC for

every integers n ⩾ 1 and k ∈ [n]. Let us now prove that C = ΓΠC
.

Since C ⊆ ΓΠ, every nonconstant (resp. constant) function f ∈ C is equiv-
alent to a Π-decomposable function g with no inessential (resp. no essential)
argument. By condition (ii’) of Definition 4.1, g is ΠC-decomposable. There-
fore, C ⊆ ΓΠC

.
To show the converse inclusion, take h ∈ ΓΠC

of arity n and let g∶Xm → Y
be a ΠC-decomposable function equivalent to h with no inessential argument
or no essential argument. If k ∈ [m] and a ∈ Xm, then (g(a1

k), g(a0
k)) ∈ RC =

R1,1
C . Thus, there exists a unary function f ∈ C such that (g(a1

k), g(a0
k)) =

(f(1), f(0)). Hence
g(ax

k) = ΠC(x, f(1), f(0)) (12)

for every x ∈X.
We have the following two exclusive cases to consider:

3Formally, it suffices to set g = fι, where ι∶ [n] → [m] ∶ k ↦ k. Then f = gσ, where
σ∶ [m]→ [n] is an extension of ι to [m].
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� Suppose that f is a constant function. Since f ∈ C ⊆ ΓΠ, this function
is equivalent to a Π-decomposable constant function c. We then have
c = Π(x, c, c) for every x ∈ X. Since (c, c) ∈ RC , Eq. (12) reduces to
g(ax

k) = ΠC(x, c, c) = c for every x ∈ X. Therefore, the constant section
g(ax

k) is equivalent to a function c in C.

� Suppose that f is a nonconstant function. Then f is its own essential
unary section. Since f is in C, it is ΠC-decomposable. Therefore, the
function defined by the right-hand side of Eq. (12) is exactly f and is
in C.

Thus, we have proved that h is equivalent to a function g whose every unary
section is in C. Hence g, and so h, are in C.

Theorem 4.5. Let Π be a pivotal function. A nonempty subclass C of ΓΠ

is UM-characterized if and only if it is pivotally characterized. Moreover, if
any of these conditions holds, then C = ΓΠC

.

The following corollary immediately follows from Theorem 4.5.

Corollary 4.6. If ΓΠ′ ⊆ ΓΠ for pivotal functions Π∶D → Y and Π′∶D′ → Y ,
then Π′ = Π∣D′′, where D′′ =X ×RΓΠ′ .

It is sometimes possible to provide additional information about the piv-
otal function that characterizes a pivotally characterized subclass of a given
pivotally characterized class. The next proposition and its corollary illustrate
this observation.

Proposition 4.7. Let Π be a pivotal function and let C be a pivotally char-
acterized subclass of ΓΠ. Suppose that there exist functions g, h∶Y 2 → Y such
that

(i) (g(u, v), h(u, v)) ∈ RΓΠ
for all (u, v) ∈ Y 2,

(ii) (g(u, v), h(u, v)) = (u, v) if and only if (u, v) ∈ RC.

Then we have C = ΓΠ′, where Π′∶X × Y 2 → Y is defined by Π′(p, u, v) =
Π(p, g(u, v), h(u, v)).

Proof. Let us prove that C ⊆ ΓΠ′ . Let e ∈ C ⊆ ΓΠ and let f ∶Xn → Y be a Π-
decomposable function with no essential argument or no inessential argument
and equivalent to e. By condition (ii) we have

f(x) = Π(xk, f(x1
k), f(x0

k)) = Π′(xk, f(x1
k), f(x0

k)) , x ∈Xn, k ∈ [n],
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which shows that f is Π′-decomposable and hence that e ∈ ΓΠ′ .
To see that ΓΠ′ ⊆ C, take e ∈ ΓΠ′ and let f ∶Xn → Y be a Π′-decomposable

function with no essential argument or no inessential argument and equivalent
to e. We then have

f(x) = Π(p, g(f(x1
k), f(x0

k)), h(f(x1
k), f(x0

k))) , x ∈Xn, k ∈ [n]. (13)

Combining condition (i) and Fact 2.2, we see that f(x1
k) = g(f(x1

k), f(x0
k))

and f(x0
k) = h(f(x1

k), f(x0
k)) for all x ∈ Xn and k ∈ [n]. It follows that

Eq. (13) reduces to the condition that f is Π-decomposable. Moreover, by
condition (ii) we have (f(x1

k), f(x0
k)) ∈ RC for all x ∈Xn and k ∈ [n]. There-

fore, combining Fact 2.11 and condition (i) of Definition 4.1, we have that f
and hence e are in C.

Corollary 4.8. Assume that U = ⋃n⩾1R[0,1]
n
. Let Π∶ [0,1] × R2 → R be a

pivotal function such that RΓΠ
= R2 and let C be the class of functions f of ΓΠ

such that f(x0
k) ⩽ f(x1

k) for all x ∈ [0,1]n and all integers n ⩾ 1 and k ∈ [n].
Then we have C = ΓΠ′, where Π′(p, u, v) = Π(p, u ∨ v, u ∧ v) on [0,1] ×R2.

Proof. By Theorem 4.5, C is pivotally characterized. The result then follows
from Proposition 4.7.

Theorem 4.5 is also useful to show that the family UMC (see Defini-
tion 4.1) can be endowed with a structure of a complete and atomic Boolean
algebra.

For any subclass V ⊆ U , we denote by CV the class of the functions whose
essential unary sections are in V or that are equivalent to a constant function
in V .

Theorem 4.9. Let UMC = ⟨UMC,∨,∧,0,1⟩ be the algebra of type (2,2,0,0)
defined by C ∧D = C ∩D, C ∨D = ⋂{E ∈ UMC ∶ E ⊇ C ∪D}, 0 = ∅ and
1 = U . The algebra UMC is a complemented distributive lattice, hence, a
Boolean algebra. Moreover, it is complete and atomic. Furthermore, for any
pivotal function Π, the set of subclasses of ΓΠ that are empty or pivotally
characterized is equal to the downset generated by ΓΠ in UMC.

Proof. Let us order UMC by inclusion. Clearly, every family {Ai ∶ i ∈ I} of
elements of UMC has an infimum given by ⋂{Ai ∶ i ∈ I}. Moreover, since U
is an element of UMC, the class ⋂{E ∈ UMC ∶ E ⊇ ⋃i∈I Ai} is the supremum

⋁i∈I Ai of the family {Ai ∶ i ∈ I}. Note that ⋁i∈I Ai contains f if and only
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if either f is a nonconstant function whose essential unary sections are in

⋃i∈I Ai or f is a constant function that is in ⋃i∈I Ai.
Distributivity follows directly from the definitions.
For any A ∈ UMC we denote by A∗ the set of the functions that are either

constant and not equivalent to an element of A or whose every essential unary
section is in U ∖A. Then (i) the essential unary sections of elements of A∗

are in U ∖A and (ii) any nonconstant unary function of U ∖A is in A∗. It
follows that A∗ is in UMC. Indeed, since the case of constant functions is
trivial, it suffices to prove that a nonconstant function f is in A∗ if and only
if every of its essential unary sections is in A∗. First assume that f is in
A∗. By (i) and (ii), its essential unary sections are in A∗. Conversely, if any
essential unary section of f is in A∗, then by (i) and the definition of A∗ we
see that f is in A∗.

Clearly, A ∧A∗ = ∅. By construction, we also have A ∨A∗ = U .
Moreover, UMC is easily seen to be atomic if we note that its atoms are

exactly the classes d/≡ (where d is a constant function) and C{f} (where f is
a nonconstant unary function).

The last statement is a direct consequence of Theorem 4.5.

Corollary 4.10. The map ψ∶2Y X → UMC ∶ V ↦ CV is an isomorphism of
Boolean algebras.

Applying Corollary 4.10 to the special case where X = Y = {0,1}, we ob-
tain that there are exactly 16 UM-characterized classes of Boolean functions.
Each of these classes is of the form CV for a set of unary Boolean functions V .
We provide the description of each of these 16 classes in Appendix Appendix
A.

5. Componentwise pivotal decompositions

In this section we generalize the concept of pivotal decomposition by
allowing the pivotal functions to depend upon the label of the pivot variable.
Let X1, . . . ,Xn and Y be nonempty sets and, for every k ∈ [n], let 0k and 1k
be two fixed elements of Xk. When no confusion arises we simply denote 0k
and 1k by 0 and 1, respectively. For every function f ∶∏n

i=1Xi → Y , define
Rk

f = {(f(x1
k), f(x0

k)) ∶ x ∈∏
n
i=1Xi}.

Definition 5.1. We say that a function f ∶∏n
i=1Xi → Y admits a compo-

nentwise pivotal decomposition, or is c-pivotally decomposable, if there exist
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subsets Dk of Xk × Y 2 and functions Πk∶Dk → Y , k = 1, . . . , n, called pivotal
functions, such that, for every k ∈ [n], we have Dk ⊇Xk ×Rk

f and

f(x) = Πk(xk, f(x1
k), f(x0

k)) , x ∈
n

∏
i=1
Xi. (14)

In this case we say that f is (Π1, . . . ,Πn)-decomposable.

Clearly, Facts 2.2 and 2.10 and Proposition 2.3 can be easily extended to
the case of c-pivotally decomposable functions. We also have the following
fact, which is the counterpart of Fact 2.11.

Fact 5.2. Eq. (14) exactly means that, for every fixed a,b ∈ ∏n
i=1Xi and

k ∈ [n], we have fa
k = fb

k if and only if (f(a1
k), f(a0

k)) = (f(b1
k), f(b0

k)).

A function that is pivotally decomposable is clearly c-pivotally decompos-
able. The following example shows that there are c-pivotally decomposable
functions that are not pivotally decomposable. There are also functions that
are not c-pivotally decomposable.

Example 5.3. The Lovász extension of a pseudo-Boolean function f ∶{0,1}n →
R is the unique function Lf ∶ [0,1]n → R of the form

Lf(x) = ∑
S⊆[n]

aS ⋀
i∈S
xi , aS ∈ R ,

that agrees with f on {0,1}n (see, e.g., [14] and the references therein). We
then have

f(1T ) = ∑
S⊆T

aS and aS = ∑
T⊆S
(−1)∣S∣−∣T ∣ f(1T ).

Every binary Lovász extension Lf ∶ [0,1]2 → R is c-pivotally decompos-
able. Indeed, consider the binary Lovász extension

Lf(x1, x2) = a0 + a1 x1 + a2 x2 + a12 (x1 ∧ x2)

and construct Π1∶ [0,1] × R2 → R as follows (we construct Π2 similarly). If
a2 ≠ 0, then

Π1(p, u, v) = a0 + a1 p + (v − a0) + a12 (p ∧
v − a0
a2
).
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If a2 = 0 and a12 ≠ 0, then

Π1(p, u, v) = a0 + a1 p + a12 (p ∧
u − a0 − a1

a12
).

If a2 = 0 and a12 = 0, then Π1(p, u, v) = a0 + a1 p.
There are ternary Lovász extensions Lf ∶ [0,1]3 → R that are not c-pivotally

decomposable. Indeed, considering for instance Lf(x1, x2, x3) = x1∧x2+x2∧x3
with a = (1/2,1/2,1/2) and b = (1/4,1/2,3/4), we have a2 = 1/2 = b2,
Lf(a1

2) = 1 = Lf(b1
2), Lf(a0

2) = 0 = Lf(b0
2), and Lf(a) = 1 ≠ 3/4 = Lf(b).

By Fact 5.2, this shows that Lf is not c-pivotally decomposable.

The following two examples provide classes of functions that are c-pivotally
decomposable but not necessarily pivotally decomposable.

Example 5.4. Let X1, . . . ,Xn and Y be bounded distributive lattices, with
0 and 1 as bottom and top elements, respectively. A function f ∶∏n

i=1Xi → Y
is of the form f = g ○ (ϕ1, . . . , ϕn), where g∶Y n → Y is a lattice polyno-
mial function and the ϕi∶Xi → Y , i = 1, . . . , n, are unary functions such
that ϕi(x) = med(ϕi(x), ϕi(1), ϕi(0)) for every x ∈ Xi, if and only if it is
(Π1, . . . ,Πn)-decomposable, where Πk∶Xk×Y 2 → Y is defined by Πk(p, u, v) =
med(ϕk(p), u, v); see [13].

Example 5.5. A pseudo-Boolean function f ∶{0,1}n → R is monotone if it is
either isotone or antitone in each of its arguments. It can be easily seen [12,
Theorem 1] that a pseudo-Boolean function is monotone if and only if it is of
the form f = g ○ (ϕ1, . . . , ϕn), where g∶ [0,1]n → R is a nondecreasing pseudo-
Boolean function and each ϕk∶{0,1} → {0,1} is either the identity function
ϕk = id or the negation function ϕk = ¬. Applying Example 5.4 to the special
case where X1 = ⋯ = Xn = {0,1} and Y = R, we see that a pseudo-Boolean
function is monotone if and only if it is (Π1, . . . ,Πn)-decomposable, where
Πk∶{0,1}3 → R is defined by Πk(p, u, v) =med(ϕk(p), u, v).

6. Conclusions and further research

In this paper we have introduced and investigated a generalization of the
Shannon decomposition called pivotal decomposition. Considering the wide
number of applications of the Shannon decomposition for Boolean functions,
the concept of pivotal decomposition can prove to be a useful tool to study
structural properties of classes of functions arising from various areas such
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as fuzzy system theory, fuzzy game theory, and aggregation function theory.
We list a few ideas of possible applications or further investigations.

(a) Repeated applications of the Shannon decomposition lead to median
normal forms of monotone Boolean functions. It is known [6, 7] that
median normal form systems are of lower complexity than the disjunc-
tive and conjunctive normal form systems. Similarly, the existence of a
pivotal decomposition for a class of functions also leads to normal form
representations. Comparing the complexity of these representations
and designing efficient algorithms to obtain them are two important
problems that could be addressed to foster applications of pivotal de-
composition.

(b) It is known [3] that the Shannon decomposition can be used as a tool
to analyze the decomposability of a Boolean function. Recall that a
Boolean function f ∶{0,1}n → {0,1} is decomposable [3] if there exists
a partition {A1, . . . ,Aℓ} of [n] and functions F ∶{0,1}ℓ → {0,1} and
gi∶{0,1}∣Ai∣ → {0,1} for i = 1, . . . , ℓ such that

f(x) = F (g(xi)i∈A1 , . . . , g(xi)i∈Aℓ
) , x ∈ {0,1}n.

Decomposability of Boolean functions corresponds to interpretable prop-
erties in applied areas such as game theory [21] and system reliability
[4]. In various contexts, such as aggregation function theory, gener-
alized versions of the decomposability property can reveal interesting
structural properties of certain classes of functions. The existence of a
pivotal decomposition could then ease the analysis of decomposability.

(c) It would be interesting to generalize Definition 2.1 by considering two
pivots instead of one. Then the quest for functions that are pivotally
decomposable with two pivots and not pivotally decomposable with
one pivot could be an interesting question.

(d) Algebraic properties of UM-characterized classes of functions and con-
nections with clone theory could also be investigated.

Appendix A. UM-characterized classes of Boolean functions

We use the following notation. For any a ∈ {0,1}n we denote by χa the
characteristic function of a, i.e., the Boolean function defined on {0,1}n by
χa(x) = 1 if and only if x = a. In fact, χa(x) = ∏{i∶ai=1} xi. The bottom
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element of {0,1}n is denoted by 0n or by 0 if no confusion arises and the top
by 1n or by 1. We denote by B the class of the Boolean functions.

For any f ∶{0,1}n → {0,1} and any j ∈ [n], we denote by ∂jf and ∆jf
the j-th partial derivatives of f , i.e., the functions defined by

∂jf ∶ {0,1}n → {0,1} ∶ x↦ f(x⊕ δj)⊕ f(x) ,
∆jf ∶ {0,1}n → {−1,0,1} ∶ x↦ f(x1

j) − f(x0
j) ,

where the map δj ∈ {0,1}[n] is defined by δj(k) = 1 if and only if k = j.

Proposition Appendix A.1. Let us denote by 1,0, id and ¬ the 4 unary
Boolean functions defined according to their truth tables:

1 0 id ¬
0 1 0 0 1
1 1 0 1 0.

The 16 UM-characterized classes of Boolean functions can be described as
follows:

(1) C{∅} = ∅
(2) C{0,1,id,¬} = B

(3) C{0} = 0/≡
(4) C{1} = 1/≡
(5) C{id} = id/≡
(6) C{¬} = ¬/≡
(7) C{0,1} = {0,1}/≡
(8) C{0,id} = ⋃{χ1n/≡ ∶ n ⩾ 1} ∪ 0/≡
(9) C{0,¬} = ⋃{χ0n/≡ ∶ n ⩾ 1} ∪ 0/≡
(10) C{1,id} = ⋃{χ0n/≡ ∶ n ⩾ 1} ∪ 1/≡
(11) C{1,¬} = ⋃{χ1n/≡ ∶ n ⩾ 1} ∪ 1/≡
(12) C{id,¬} = {f ∶ ∀j (∂jf = 1 ∨ ∂jf = 0)}
(13) C{0,id,¬} = {f ∶ ∀j (∂jf ⩾ f ∨ ∂jf = 0)}
(14) C{1,id,¬} = {f ∶ ∀j (∂jf ⩽ f ∨ ∂jf = 0)}
(15) C{0,1,id} = {f ∶ ∀j ∆jf ⩾ 0}
(16) C{0,1,¬} = {f ∶ ∀j ∆jf ⩽ 0}
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Proof. (1), (2), (3), and (4) are trivial.
(5) We have to prove that C{id} ⊆ id/≡. First note that C{id} does not

contain any constant function (such a function would be equivalent to a
unary constant function of Cid which does not contain any unary constant
function). Then, let f ∶{0,1}n → {0,1} be an element of Cid and assume
that the k-th argument of f is essential. It follows that fa

k = id for every
a ∈ {0,1}n. If j ≠ k, it follows that, for every a ∈ {0,1}n we have

f
a0
k

j = 0 and f
a1
k

j = 1 ,
which means that the j-th argument of f is inessential. Hence the function
f is equivalent to the identity function.

(6) is obtained similarly as in (5).
(7) We have to prove that C{0,1} ⊆ {0,1}/≡. Since {0,1} ⊆ {0,1}/≡

it suffices to prove that C{0,1} does not contain any nonconstant function.
Assume that f ∶{0,1}n → {0,1} is an element of C{0,1} whose k-th argument
is essential. Then, for every a ∈ {0,1}n, the section fa

k is in {0,1} and hence
is a constant function, a contradiction.

(8) By definition 0 ∈ C{0,id}. The function f = χ1n is in C{0,id} for every
n ⩾ 1 since for every k ∈ [n] and every a ∈ {0,1}n the unary section fa

k is
the zero function if there is a j ≠ k such that aj = 0 and fa

k is the identity
function otherwise. From the fact that C{0,id} is ≡-saturated, we deduce that
⋃{χ1n/≡ ∶ n ⩾ 1} ∪ 0/≡ ⊆ C{0,id}.

Let us prove the converse inclusion. We prove that if the k-th and j-th
arguments (j ≠ k) of an element f ∶{0,1}n → {0,1} of C{0,id} are essential
then fa

k = 0 for every a ∈ {0,1}n such that aj = 0. Indeed, if fa
k = id then

f(a1
k) = f(a10

kj) = 1. It follows that if b = a1
k, then f

b
j ∈ {1,¬} and f cannot

be in C{0,id}.
Hence f(a) vanishes as soon as there is an essential argument of f that

is set to 0. Then, if f(1) = 0, the function f is in 0/≡, and if f(1) = 1, it is
in χ1n/≡.

(9) We proceed similarly as in (8). In this case, if f is in C{0,¬} and if the
k-th and j-th arguments of f (with k ≠ j) are essential then fa

k = 0 if aj = 1.
(10) is obtained from (8) by duality.
(11) is obtained from (9) by duality.
For (12), (13), and (14) we first note that the j-th argument of f ∶{0,1}n →

{0,1} is inessential if and only if ∂jf = 0.
(12) is easy if we note that f is in C{id,¬} if and only if, for every essential

argument j of f , we have ∂jf = 1.
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(13) Assume that f ∶{0,1}n → {0,1} is in {f ∶ ∀j (∂jf ⩾ f ∨ ∂jf = 0)}.
If j ∈ [n] is such that ∂jf ⩾ f then for every a ∈ {0,1}n it follows that
if f(a0

j) = 1 then f(a1
j) = 0 and if f(a1

j) = 1 then f(a0
j) = 0. Hence, any

essential unary section of f can be any unary Boolean function but 1.
Conversely, assume that f ∶{0,1}n → {0,1} is in C{0,id,¬}. If the k-th

argument (k ∈ [n]) of f is essential then for every a ∈ {0,1}n the function
fa
k cannot be equal to 1. It means that if f(a0

k) = 1 then f(a1
k) = 0 and if

f(a1
k) = 1 then f(a0

k) = 0, which proves that ∂jf ⩾ f .
(14) is obtained from (13) by duality.
(15) and (16) are examples that have already been considered (these are

the set of the nondecreasing functions and the set of the nonincreasing func-
tions, respectively).
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