32,962 research outputs found

    Remote pivot decoupler pylon: Wing/store flutter suppressor

    Get PDF
    A device for suspending a store from an aerodynamic support surface, such an an aircraft wing, and more specifically, for improving upon singlet pivot decoupler pylons by reducing both frequency of active store, alignment, and alignment system space and power requirements. Two links suspend a lower pylon/rack section and releasable attached store from an upper pylon section mounted under the wing. The links allow the lower pylon section to rotate in pitch about a remote pivot point. A leaf spring connected between the lower section and electrical alignment system servomechanism provides pitch alignment of the lower section/store combination. The servomechanism utilizes an electric servomotor to drive the gear train and reversibly move the leaf spring, thereby maintaining the pitch attitude of the store within acceptable limits. The damper strokes when the lower section rotates to damp large oscillations of store

    J-hook latching device

    Get PDF
    Described here is a latching device for latching two items together that has a housing and a shaft mounted to one item such that rotation of the shaft by a sprocket causes the shaft to move longitudinally up and down. The shaft has one end extending beyond the housing with an alignment cone attached to this end for engaging a receptor on the other item. A latch mounted to a shaft by a traveling nut provides a pivot point for the latch so that rotation of the shaft causes the pivot point of the latch to translate along the longitudinal axis of the shaft. Camming surfaces and a camming spring are used for rotating the latch so that the latch will engage and disengage a receptor on the other item

    Design and Fabrication of the NASA Decoupler Pylon for the F-16 Aircraft

    Get PDF
    The NASA Decoupler Pylon is a passive means of suppressing wing-store flutter. The feasibility of demonstrating this concept on the F-16 aircraft was established through model wind tunnel tests and analyses. As a result of these tests and studies a ship set of Decoupler Pylons was designed and fabricated for a flight test demonstration on the F-16 aircraft. Basic design criteria were developed during the analysis study pertaining to pylon pitch stiffness, alignment system requirements, and damping requirements. A design was developed which utilized an electrical motor for the pylon alignment system. The design uses a four pin, two link pivot design which results in a remote pivot located at the center of gravity of the store when the store is in the aligned position. The pitch spring was fabricated from a tapered constant stress cantilevered beam. The pylon has the same external lines as the existing production pylon and is designed to use a MAU-12 ejection rack which is the same as the one used with the production pylon. The detailed design and fabrication was supported with a complete ground test of the pylon prior to shipment to NASA

    Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    Get PDF
    The study and revision of the gimbal design of the Three-Meter Balloon Borne Telescope (TMBBT) is discussed. Efforts were made to eliminate the alignment and limited rotation problems inherent in the flex-pivot design. A new design using ball bearings to replace the flex-pivots was designed and its performance analyzed. An error analysis for the entire gondola pointing system was also prepared

    Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation

    Get PDF
    We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital Sky Survey–Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ∼ 0.6. The clusters are split into nine redshift and richness samples; in each of them, we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is AgenIA=12.6+1.5−1.2 AIAgen=12.6−1.2+1.5 . We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to the IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA

    Joint for deployable structures

    Get PDF
    A joint is described for connecting a pair of beams to pivot them between positions in alignment or beside one another, which is of light weight and which operates in a controlled manner. The joint includes a pair of fittings and at least one center link having opposite ends pivotally connected to opposite fittings and having axes that pass through centerplates of the fittings. A control link having opposite ends pivotally connected to the different fittings controls their relative orientations, and a toggle assemly holds the fittings in the deployed configuration wherein they are aligned. The fittings have stops that lie on one side of the centerplane opposite the toggle assembly
    • …
    corecore