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ABSTRACT
We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distribu-
tions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital
Sky Survey–Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ∼ 0.6. The
clusters are split into nine redshift and richness samples; in each of them, we detect a positive
alignment, showing that clusters point towards density peaks. We interpret the measurements
within the tidal alignment paradigm, allowing for a richness and redshift dependence. The
intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is
A

gen
IA = 12.6+1.5

−1.2. We obtain tentative evidence that the signal increases towards higher richness
and lower redshift. Our measurements agree well with results of maxBCG clusters and with
dark-matter-only simulations. Comparing our results to the IA measurements of luminous red
galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards
higher mass. This suggests that these systems share a common alignment mechanism, which
can be exploited to improve our physical understanding of IA.

Key words: methods: data analysis – methods: statistical – galaxies: clusters: general – dark
matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxies inside dark matter haloes are subject to gravitational tidal
fields from the large-scale distribution of matter. Additionally, new
material is continuously accreted on to the haloes along preferred
directions. The consequence is that galaxy shapes become aligned
with the density field. Neighbouring galaxies are aligned along
similar directions and hence their observed shapes are correlated,
which is known as intrinsic alignment (IA; for recent reviews, see
Joachimi et al. 2015a; Kiessling et al. 2015; Kirk et al. 2015;
Troxel & Ishak 2015). The IA signal contains information about
galaxy formation processes, but is mainly studied for a differ-
ent reason: it is a major contaminant of the cosmic shear signal
in future lensing surveys such as Euclid (Laureijs et al. 2011),
LSST (LSST Science Collaboration et al. 2009) and WFIRST
(Spergel et al. 2015). If unaccounted for, IA will significantly
bias cosmological inferences (Kirk, Bridle & Schneider 2010; Kirk
et al. 2012, 2015; Krause, Eifler & Blazek 2016). Hence, accurate
and precise IA models are needed.

The IA signal has been measured in observations (e.g.
Mandelbaum et al. 2006; Hirata et al. 2007; Okumura, Jing &
Li 2009; Joachimi et al. 2011; Li et al. 2013; Singh, Mandelbaum
& More 2015), in N-body simulations (e.g. Croft & Metzler 2000;
Hopkins, Bahcall & Bode 2005) and in hydrodynamical simulations

� E-mail: vuitert@ucl.ac.uk

(Chisari et al. 2015, 2016; Codis et al. 2015; Velliscig et al. 2015;
Tenneti et al. 2016; Hilbert et al. 2017). The picture that is emerging
is that massive, red galaxies are pointing towards matter overden-
sities, which can be reasonably well described by the tidal align-
ment model (Catelan, Kamionkowski & Blandford 2001; Hirata &
Seljak 2004; Bridle & King 2007; Blazek, McQuinn & Seljak 2011;
Blazek, Vlah & Seljak 2015) at large scales. For blue galaxies, IA
has not yet been clearly detected (Hirata et al. 2007; Mandelbaum
et al. 2011).

To gain further observational input for the IA models and extend
the mass range, we investigate the alignment between the shapes
of galaxy clusters and the density field. If clusters are subject to
the same physical mechanisms that intrinsically align galaxies, they
could be used to improve the IA models of galaxies, to the benefit
of the exploitation of future cosmic shear surveys.

A positive shape–density correlation has been observed in
the Sloan Digital Sky Survey (SDSS) for galaxy groups (Wang
et al. 2009; Paz et al. 2011). For galaxy clusters, Smargon et al.
(2012) obtained a clear detection using two cluster samples up to
transverse separations of 100 Mpc h−1. The amplitude of the corre-
lation was reported to be significantly lower than predictions from
numerical simulations based on a � cold dark matter (CDM) cos-
mology (Hopkins et al. 2005), and Smargon et al. (2012) argued
that various systematic observational uncertainties may lie at the
root of this.

In this work, we use the publicly available redMaPPer cluster
catalogue (Rykoff et al. 2014), which contains over three times
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more clusters than the maxBCG sample used in Smargon et al.
(2012), and extends to higher redshifts. This enables us to study
the cluster shape–density correlation as a function of the number
of cluster members (i.e. the richness) and redshift. Furthermore, it
provides us with a new sample to revisit the previously reported
tension with numerical simulations.

The outline is as follows. We describe the theoretical background
and the estimators that we use in Section 2. The main aspects of
the redMaPPer cluster sample are briefly discussed in Section 3.
We present our measurements and discuss the results in Section 4,
and we conclude in Section 5. Throughout the paper, we assume a
standard �CDM cosmology with �� = 0.73, �M = 0.27, σ 8 = 0.8,
ns = 1.0 and h = 0.7 the dimensionless Hubble parameter, which
is consistent with the best-fitting cosmological parameters from
WMAP9 (Hinshaw et al. 2013). We adopt these slightly outdated
parameters as it eases a comparison with previous papers. All dis-
tances are in comoving (not physical) units and are presented in
units of Mpc h−1.

2 M E T H O D O L O G Y

To measure the correlation between the shapes of galaxy clusters
and the density field (traced by the distribution of the same clusters),
we adopt the following estimator:

ξ̂g+(Rp,�) = S+Dd

DsDd
− S+R

DsR
, (1)

with S+Dd the correlation between cluster shapes and the den-
sity sample, DsDd the number of cluster shape–density pairs, S+R
the correlation between cluster shapes and random points and DsR
the number of cluster shape–random point pairs. Rp and � are the
comoving transverse and line-of-sight distances, respectively. The
S+R term removes potential systematics in the cluster shape sample.
We have checked that this signal is consistent with zero, but still
subtract it as it decreases the measurement error (see also Singh
et al. 2016). We note that this estimator is identical to the ones used
in Joachimi et al. (2011) and Singh et al. (2015), although we write
it differently to explicitly account for the different number of clus-
ters in a shape sample and the number of random points, which is
implicitly assumed in their equations. The total projected IA signal
is obtained by integrating along the line of sight:

ŵg+(Rp) =
∫ �max

�min

d� ξ̂g+(Rp, �). (2)

In practice, this integral turns into a sum over correlation functions
binned in ranges of �. Ideally, one would like to adopt �min = −∞
and �max =∞, but at large line-of-sight separations ξ̂g+(Rp, �) is so
small that effectively only noise is added, which makes the IA signal
increasingly noisy. On the other hand, redshift space distortions and
photometric redshift errors spread the signal in the radial direction,
and the measured signal will be biased if the integration ranges are
not large enough to enclose this smearing. Therefore, it is optimal to
choose �min and �max such that they cover a range that is as small
as possible, under the condition that the induced bias due to any
missed signal is much smaller than the statistical errors. We detail
our choices in Section 3.

We also measure the clustering signal of the redMaPPer clusters
using the LS (Landy & Szalay 1993) estimator, which we need to
constrain the cluster bias:

ξ̂gg(Rp, �) = DdDd − 2DdR + RR

RR
, (3)

where DdDd indicates the number of cluster pairs (our density sam-
ple), DdR the number of cluster–random point pairs and RR the
number of random point pairs. The counts with random points are
scaled with the ratio of the total number of clusters and the total
number of random points. Each random point has a weight to ac-
count for its detection probability (Rykoff et al. 2016), which we
include in the pair counts. We obtain the total projected clustering
signal by integrating along the line of sight,

ŵgg(Rp) =
∫ �max

�min

d� ξ̂gg(Rp, �), (4)

using the same integral limits as in equation (2).
We interpret the intrinsic alignment signal with the following

model (Hirata & Seljak 2004; Joachimi et al. 2011):

wg+(Rp)=−bg

∫
dz W (z)

∫ ∞

0

dk⊥ k⊥
2π

J2(k⊥Rp)PδI (k⊥, z), (5)

with bg the cluster bias, which we assume to be scale-independent,
k⊥ the wavenumber transverse to the line of sight, J2 the second
Bessel function of the first kind, PδI the IA power spectrum and

W (z) = p2(z)

χ2(z)χ ′(z)

[∫
dz

p2(z)

χ2(z)χ ′(z)

]−1

. (6)

Here, p(z) indicates the redshift probability distribution of the
redMaPPer cluster sample, χ (z) denotes the comoving distance
and χ ′(z) the derivative of the comoving distance with respect to
redshift. W(z) accounts for the fact that the number of pairs is pro-
portional to the comoving volume, while the integral is performed
as a function of redshift (Mandelbaum et al. 2011).

We model PδI using the linear alignment model (Catelan
et al. 2001; Hirata & Seljak 2004, 2010):

PδI (k, z) = −AIAC1ρcrit
�M

D(z)
Pδ(k, z), (7)

with D(z) the growth factor, normalized to unity at z = 0, ρcrit the
critical density and Pδ(k, z) the matter power spectrum. The power
spectrum is computed for our fiducial cosmological parameters,
using the transfer function of Eisenstein & Hu (1998) and including
the non-linear correction of Smith et al. (2003); again, we adopt
these slightly outdated prescriptions to ease comparison with results
from the literature. The normalization is absorbed into C1 such that
C1ρcrit ≈ 0.0134. To account for a possible redshift and richness
dependence of the IA signal, we generalize equation (7) to

PδI (k, z)=−A
gen
IA C1ρcrit

�M

D(z)
Pδ(k, z)

(
1 + z

1 + z0

)η(
λ

λ0

)β

, (8)

with λ the mean richness of the sample, z0 a pivot redshift fixed to
0.3 and λ0 a pivot richness fixed to 30.

The amplitude AIA and the bias bg are completely degenerate. To
lift the degeneracy, we fit the clustering signal of the cluster sample,
which provides independent constraints on bg, using the follow-
ing model that accounts for redshift space distortions (Joachimi,
Singh & Mandelbaum 2015b):

wgg(Rp) = 2 b2
g

∫ ∞

0
dz W (z)

2∑
l=0

α2l

[
f (z)

bg

] ∫ �max

0
dχ

× ξδδ,2l

(√
χ2 + R2

p, z
)

L2l

⎛
⎝ χ√

χ2 + R2
p

⎞
⎠+CIC,

(9)
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with f(z) the growth rate, α2l(f(z)/bg) polynomials that are given
in equations 48 – 50 of Baldauf et al. (2010), ξ δδ, 2l(R, z) are the
multipoles of the matter correlation function, which are computed
as

ξδδ,2l(R, z) = (−1)l

2π2

∫ ∞

0
dk k2j2l(kR)Pδ(k, z) , (10)

with j2l the spherical Bessel functions. Furthermore, L2l indicates
the Legendre polynomials and CIC the integral constraint (Roche &
Eales 1999), which accounts for the bias in the observed clustering
signal that is caused by the use of a finite survey area. We estimated
CIC using the random pair counts and found CIC < 1, much smaller
than the observed signal, hence we did not include this term in the
modelling. Since the clustering signal is fit to scales that include
the quasi-linear regime, bg should be regarded as an effective linear
bias.

In summary, the general IA model has three free parameters: Agen
IA ,

η and β. We assume flat, uninformative priors in the fit with ranges
A

gen
IA ∈ [0; 30], η ∈ [−10; 10] and β ∈ [−5; 5]. We also perform

a run in which we fit the AIA of each subsample separately, where
we adopt a flat prior in the range AIA ∈ [0; 100]. The bias of the
density sample, bg, once obtained by fitting the clustering signal, is
held fixed to its best-fitting value when we fit the IA signals. Not
propagating the errors on bg is safe, because they are much smaller
than the errors on the other fit parameters.

3 DATA

To measure the cluster shapes and to define the density field, we
used the redMaPPer cluster catalogue (Rykoff et al. 2014) ver-
sion 6.3, which has been made publicly available.1 In short, the
redMaPPer cluster finder uses photometric data from SDSS-DR8
(Aihara et al. 2011) to find clusters with the red-sequence technique
using an iterative approach. The algorithm first calibrates the model
red sequence as a function of redshift. This calibrated model is used
to identify spatial overdensities of red-sequence candidates, which
in turn is used to calibrate the model red sequence again. A detailed
description of the cluster finder algorithm and its performance can
be found in Rykoff et al. (2014), Rozo & Rykoff (2014) and Rozo
et al. (2015a,b).

The cluster finder assigns probabilities to the top five potential
brightest cluster galaxies (BCGs) of being the cluster centre. Fur-
thermore, each cluster member candidate is assigned a probability
pmem of belonging to the cluster. The cluster redshift is estimated by
combining the red-sequence redshift estimates of cluster members
with pmem > 0.9. Finally, the cluster richness λ is estimated as the
sum of pmem of all candidate members.

The shapes of the clusters are determined using the distribution
of satellites. Satellites are expected to trace the overall dark mat-
ter distribution (Kang et al. 2007; Agustsson & Brainerd 2010;
Dong et al. 2014; Wang et al. 2014) and its orientation (Evans &
Bridle 2009; van Uitert et al. 2017). Hence the shape of clusters as
traced by their satellite distribution is expected to exhibit a similar
IA effect as the dark matter. We determined the projected moments
of the cluster member distribution using all cluster member candi-
dates with pmem > 0.2, and weighing the selected cluster members
with their pmem:

Qij =
∑

k(θi,k−θBCG
i )(θj,k − θBCG

j )pmem,k∑
k pmem,k

, i, j ∈ {1, 2}, (11)

1 http://risa.stanford.edu/redmapper/

Figure 1. Distribution of cluster richnesses and redshifts for the redMaPPer
cluster sample. The red dashed boxes indicate the selection of the nine shape
samples, while the blue filled boxes illustrate the selection of the three
density samples.

where the sum runs over all cluster members, (θ1,k, θ2,k) is the angu-
lar position of cluster member k and (θBCG

1 , θBCG
2 ) is the position of

the most likely BCG. From these moments, we formed the complex
ellipticity of each cluster:

εclus = Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

. (12)

This procedure is similar to the one outlined in Huang et al. (2016).
In Fig. 1, we plot the distribution of cluster richness λ versus

redshift. We split the sample into three redshift bins, and each
redshift bin is further subdivided into three richness subsamples.
The number of clusters of each richness subsample, as well as
the mean redshift, richness and ellipticity, is listed in Table 1. The
shapes of the clusters in each richness subsample are correlated with
the positions of all clusters in the same redshift range. The resulting
nine cluster shape–density correlation signals enable us to study
potential trends with richness and redshift (i.e. constrain η and β

in equation 8). We note that our highest redshift bin is incomplete,
particularly towards low richnesses. This is partly accounted for by
folding in the actual redshift distribution in the model. A remaining
limitation is that we use the mean redshift and richness of each
subsample in equation (8), ignoring potential higher order moments.
Given the current accuracy of our data, we expect this assumption
to be harmless.

To measure the cluster shape–density correlation, we adopted
�max = −�min = 100, 125 and 150 Mpc h−1 in equations (2) and
(4) for our low-, intermediate and high-redshift samples, respec-
tively. The increase in range accounts for the increase of photomet-
ric redshift scatter of the redMaPPer clusters from σ z ≈ 0.006 to
σ z ≈ 0.02 between z ≈ 0.1 and z ≈ 0.5, which spreads the signal
over larger ranges in �. To test whether these integral ranges en-
capsulate all the signal, we extended the line-of-sight range by 25
Mpc h−1 on a side and found that this did not significantly increase
the signals. In practice, we replaced the integrals of equations (2)
and (4) by a sum over 20 line-of-sight bins, each having a width of
(�max − �min)/20 Mpc h−1.
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Table 1. Properties of the cluster sample. The first column indicates the redshift cut, the second column the richness cut, the third column the number of
clusters, the fourth column the mean redshift, the fifth column the mean richness, the sixth column the mean cluster ellipticity, the seventh column the cluster
bias (determined using all the redMaPPer clusters at that redshift) and the eighth column the amplitude of the linear alignment model.

Redshift cut Richness cut Nclus 〈z〉 〈λ〉 〈εclus〉 bg AIA

0.08 < z ≤ 0.16 19.8 < λ ≤ 28 490 0.127 23.7 0.160 16.2 ± 11.8
0.08 < z ≤ 0.16 28 < λ ≤ 40.5 301 0.127 33.2 0.164 4.22 ± 0.35 48.0 ± 22.0
0.08 < z ≤ 0.16 λ > 40.5 206 0.127 58.2 0.134 36.9 ± 11.2

0.16 < z ≤ 0.35 19.8 < λ ≤ 28 4634 0.275 23.4 0.129 10.4 ± 2.6
0.16 < z ≤ 0.35 28 < λ ≤ 40.5 2628 0.273 33.2 0.122 4.25+0.15

−0.16 15.6 ± 3.0
0.16 < z ≤ 0.35 λ > 40.5 1609 0.272 57.9 0.112 19.1 ± 3.2

0.35 < z ≤ 0.60 19.8 < λ ≤ 28 3077 0.383 24.5 0.122 11.0 ± 3.1
0.35 < z ≤ 0.60 28 < λ ≤ 40.5 5371 0.420 33.8 0.116 4.61 ± 0.27 10.9 ± 2.4
0.35 < z ≤ 0.60 λ > 40.5 6460 0.465 59.1 0.112 15.1 ± 2.4

Figure 2. Cluster shape–density correlation of the redMaPPer clusters as a function of transverse distance. Different columns correspond to different richness
cuts, while different rows correspond to different redshift cuts. We find a positive detection in each panel, meaning that clusters point towards neighbouring
clusters. The hashed regions are excluded from the fits, as detailed in the text. The solid black lines are the best-fitting models from the simultaneous fit of the
IA model to all the measurements.

We measured the signal as a function of transverse comov-
ing separation in 10 logarithmically spaced bins between 2.5 and
140 Mpc h−1. To determine the covariance matrix, we used a jack-
knife technique. We defined 45 non-overlapping jackknife patches,
rectangles of approximately 16 × 16 deg, over the entire survey
area. ∼5 per cent of the redMaPPer clusters could not be covered
by our rectangles and were excluded from the analysis. The in-
verse covariance matrix that we used in the fit was corrected for a
bias that is introduced when noisy covariance matrices are inverted
(Kaufmann 1967; Hartlap, Simon & Schneider 2007).

We restricted the analysis to mildly non-linear scales of Rp > 6
Mpc h−1. The upper scale in the fit was set by the lower redshift cut
of each cluster sample. At z = 0.08, z = 0.16 and z = 0.35, 8 deg
(i.e. half the size of a jackknife patch) roughly corresponds to 30,

60 and 120 Mpc h−1, which we adopted as the maximum scale in
the fit. The jackknife errors at larger transverse distances become
increasingly less representative of the true measurement errors.

We used the random catalogue from redMaPPer to measure the
correlations with random points (S+R, DsR, DdR and RR). The ran-
dom catalogue is ∼100 times denser than the real cluster catalogue.
To speed up our calculations, we downsampled the random cata-
logue to an overdensity of ∼5, which is sufficient for our purposes.

4 R ESULTS

We show the cluster shape–density correlation in Fig. 2. At low
redshift, the error bars are large as the number of clusters is
small, but we obtain a tentative detection of a positive alignment.

MNRAS 468, 4502–4512 (2017)
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Figure 3. Clustering signal of the redMaPPer clusters as a function of
transverse separation. Each panel corresponds to a different redshift slice.
Filled diamonds show the clustering signal obtained using the total area,
while the blue open triangles and red open circles show the signal in the
NGC and SGC patch, respectively. The solid lines in each panel show
the best-fitting model, fit to each measurement separately. For the highest
redshift slice, we fitted the clustering signal of the SGC instead of the full
sample, as the signal in the NGC is systematically higher at large scales,
presumably due to systematics. The hashed regions are excluded from the
fits.

At intermediate and high redshifts, we obtain a clear detection in
all our richness subsamples. Detecting a positive signal means that
clusters point towards neighbouring clusters.

The projected clustering signal of the redMaPPer clusters is
shown in Fig. 3. Neighbouring radial bins are correlated, particu-
larly at large scales. The clustering signal of these clusters was also
measured in Baxter et al. (2016), in order to constrain the mass–
richness relation. As they reported differences in the clustering
signal in the North and South Galactic Cap (NGC and SGC, respec-
tively), we also analysed them separately, switching to jackknife
patches of 8 × 8 deg instead of our nominal 16 × 16 deg to guar-
antee a sufficient number of jackknife realizations to estimate the
covariance matrices. The clustering signals of our 0.08 < z ≤ 0.16
and 0.16 < z ≤ 0.35 bins broadly agree, but at 0.35 < z ≤ 0.6, they
differ noticeably at transverse separations Rp > 30 Mpc h−1. The
cluster sample is incomplete at this redshift range, making it more
susceptible to spatially varying systematics that bias the clustering
signal high. Since the signal is comparable at small scales, but sys-
tematically higher in the NGC at large scales (in fact consistent
with a constant additive bias), we expect that those measurements
are affected by systematics. A systematic in the spatial distribution
of galaxy clusters is not expected to affect the wg+ measurements,
as removing or adding cluster shape–density pairs does not affect
the mean signal, only its error.

To obtain the bias of the three density samples, we fitted
equation (9) to the clustering signal of the full samples. For the
low- and intermediate-redshift samples, we obtained good fits with
corresponding reduced χ2 values of 0.21 and 0.25, respectively,
suggesting that we may have overestimated the error bars some-

Figure 4. Marginalized 1D and 2D posteriors of the parameters of the IA
model; A

gen
IA is the amplitude at the pivot location of z = 0.3 and λ = 30,

η describes the redshift dependence and β the richness dependence. The
top panels indicate the 1D marginalized posteriors normalized to a peak
amplitude of 1, the vertical solid lines indicate the best-fitting values and the
vertical dashed lines the 68 per cent confidence intervals. In the 2D posterior
plots, the red stars indicate the best-fitting values, the blue contours are the
1σ and 2σ confidence intervals and the grey-scale indicates the value of the
posterior.

what. For the high-redshift sample, we obtained an unacceptably
high χ2, likely because of the systematics. Fitting the signal of
the SGC patch, however, led to an acceptable fit with χ2

red = 1.56.
Therefore, we decided to use the clustering signal measured in the
SGC in order to determine the bias of our high-redshift sample.
To ensure that the apparent mismatch between model and data on
large scales does not bias our results, we repeated the fits on scales
Rp < 20 Mpc h−1 only. The resulting constraints on the cluster bias
were virtually unchanged. The reason is that the fit is driven by
the innermost radial bins, whose errors are smallest, and because
the points are correlated. The constraints on the biases, which are
listed in Table 1, are in reasonable agreement with the results from
Baxter et al. (2016), who reported biases in the range 3–5 for the
redMaPPer clusters at λ > 20 and 0.1 < z < 0.33.

Having obtained the biases of our density samples, we proceeded
with constraining the amplitude of the IA model. We fitted the
signal in two ways. First, we fitted all measurements simultane-
ously using the IA model with a redshift and richness dependence
(equation 8). The best-fitting models of the combined fit are shown
in Fig. 2 and they describe the data well. The reduced χ2 of the
fit is 31.2/(45 − 3) = 0.74. The 1D and 2D marginalized poste-
riors of the fit parameters are shown in Fig. 4. The overall am-
plitude is A

gen
IA = 12.6+1.5

−1.2, the slope of the redshift dependence
is η = −3.20+1.31

−1.40 and the slope of the richness dependence is
β = 0.60+0.20

−0.27, where the errors correspond to the 68 per cent con-
fidence intervals, obtained by marginalizing over the other parame-
ters. Hence we obtain tentative evidence that the amplitude of the IA
signal increases with richness and towards lower redshift (at 2.2σ

and 2.4σ , respectively, assuming that the likelihood is Gaussian).
We also determined the amplitude of the IA model for each shape

sample separately. Most of the reduced χ2 values of the best-fitting
models are between 0.25 and 1, again suggesting we may have
overestimated our errors somewhat. The corresponding amplitudes
can be found in Table 1.

MNRAS 468, 4502–4512 (2017)
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Figure 5. Amplitude of the systematic signal for the three systematic tests
we performed, determined using the same scales as in the science analysis.
Circles indicate the results of the cross shear–density correlation, trian-
gles indicate the shape–density correlation for line-of-sight separations of
150 < � < 225 Mpc h−1 and stars indicate the cross shear–density correla-
tion for line-of-sight separations of 150 < � < 225 Mpc h−1. The results are
split for the three redshift and three richness slices, as indicated in the fig-
ure. The scaling of the vertical axis is different for each panel. A significant
non-zero signal may indicate the presence of systematics.

4.1 Systematic tests

We performed a number of tests to check for the presence of system-
atics. First, we measured the correlation between the cross-shear
component of the cluster shapes and the density field, wg×. The
cross shear measures a net curl of cluster shapes, which would vi-
olate parity symmetry and is expected to be zero. A non-zero cross
shear would therefore indicate systematics in our cluster shapes.
Note that for the systematic tests, we did not subtract the cluster
shape–random point correlation, as that might remove a systematic
signal, if present.

We measured wg× for each richness and redshift bin. To quantify
the results, we fitted a constant Csys on the same scales that we used
to fit wg+ (i.e. 6 Mpc h−1 < Rp < 30 Mpc h−1 for the lowest redshift
bin). To do the fit, we inverted the jackknife covariance matrix,
using only those radial ranges that correspond to the scales used
in the fit. The results are shown in Fig. 5. The amplitudes deviate
by <2σ from zero, hence none of them indicate the presence of
systematics.

Next, we measured the wg+ and wg× correlations for line-of-sight
separations of 150 < � < 225 Mpc h−1 and −150 < � < −225
Mpc h−1. A non-zero signal could indicate problems with the cluster
redshifts and/or the presence of additive systematics, and also tests
whether there is significant additional signal on scales Rp > 150
Mpc h−1. We show the constraints on Csys for all richness and
redshift bins in Fig. 5. We note that the error bars do not have
the exact same size. This difference is mostly suppressed when we
only use the diagonals of the inverted covariance matrix in the fit,
which we prefer not to do to keep the test as closely as possible
to the science analysis. Hence, we conclude that this difference is

most likely caused by noise in the covariance matrix. As mentioned
earlier, we also measured the clustering and IA signals by increasing
the line-of-sight ranges of the integrals by 25 Mpc h−1 on a side
and found that the resulting changes of the model parameters were
within their 1σ errors and hence insignificant. Furthermore, we
tested the impact of using 8 × 8 jackknife patches to measure the
IA signals, which made no significant impact either.

4.2 Comparison with cluster IA results

The most comparable and recent work on the cluster shape–density
correlation was presented in Smargon et al. (2012), who studied two
cluster samples, the maxBCG catalogue (Koester et al. 2007) and
an adaptive matched filter catalogue (Dong et al. 2008), containing
6625 and 8081 clusters at 0.1 < z < 0.3 and 0.08 < z < 0.44,
respectively. We focus on the maxBCG results, as that sample has
been more widely studied, and because the results of the two samples
are similar.

The shape–density correlation was measured with a different
statistic, 〈cos 2(θp)〉, with θp the angle on the sky between the pro-
jected major axis of the cluster and the transverse separation vector
of cluster pairs. This estimator has an expectation value of 0.5 for
uncorrelated angles, while a value large than 0.5 implies that the
major axes of clusters point on average towards neighbouring clus-
ters. To enable a comparison with our results, we measured the
signal using the same estimator for the full redMaPPer catalogue
(except the clusters outside the jackknife patches).

Smargon et al. (2012) measured the signal for cluster pairs with
a maximum transverse separation of 100 Mpc h−1, and separated
in redshift by less than 0.015, which corresponds to a maximum
line-of-sight separation of ∼50 Mpc h−1. To mimic their selection,
we stack the signal of all cluster pairs with a line-of-sight separation
less than 50 Mpc h−1 in a given transverse separation bin. The results
are shown in Fig. 6. The measurements agree reasonably well on
all scales. Note that our measurement errors at Rp > 30 Mpc h−1

should be interpreted with care, as these separations are larger than
half the size of a jackknife patch at the lowest redMaPPer cluster
redshift, z = 0.08. The measurements themselves should be robust.

Smargon et al. (2012) compared their measurements to the
results of Hopkins et al. (2005), which are based on fiducial
�CDM dark-matter-only simulations with a particle mass of
1.264 × 1011 M� h−1. Only haloes with more than 160 particles
(Mh > 2 × 1013 M� h−1) were considered, hence their shapes are
robustly determined. The 〈cos 2(θp)〉 measured in the data was con-
siderably lower than the one of the simulations, and Smargon et al.
(2012) argued that this might be due to observational systemat-
ics. However, while our measurements and those of Smargon et al.
(2012) project 〈cos 2(θp)〉 along the line of sight, Hopkins et al.
(2005) measured 〈cos 2(θp)〉 as a function of 3D separation and
only projected the ellipticities.2 Therefore, to enable a fair compar-
ison, we projected the results from Hopkins et al. (2005) by aver-

aging them in the range from Rp to
√

R2
p + �2

max, with �max = 50

Mpc h−1. The results are shown in Fig. 6. The model predictions
describe the data well at Rp > 4 Mpc h−1, particularly considering
that it is not a fit.

At Rp < 4 Mpc h−1, our measurements are higher than the model.
A possible cause is contamination; some of the cluster members in

2 Figs 7 and 9 of Hopkins et al. (2005) are labeled with ‘2-D Projection’,
but that only referred to the ellipticities, which caused the confusion.
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Figure 6. Cluster pointing angle alignment 〈cos 2(θp)〉 (top) and cluster
correlation angle alignment 〈cos 2(θ c)〉 (bottom ) as a function of transverse
separation, determined using all cluster pairs with a line-of-sight separation
less than 50 Mpc h−1. The vertical dashed line indicates half the size of
our jackknife patch at the minimum cluster redshift; the measurement errors
at larger scales become increasingly less reliable. Our results are indicated
by filled black diamonds, the open circles show the measurement for the
maxBCG clusters from Smargon et al. (2012) and the blue dotted line the
simulation results for projected cluster shapes from Hopkins et al. (2005),
projected along the line of sight.

the redMaPPer membership catalogues may be interlopers (see e.g.
Zu et al. 2016). Even if they have a low membership probability, they
are not excluded when we estimate the cluster ellipticity and could
cause a bias, particularly if these interlopers come from a neighbour-
ing cluster. To estimate whether this effect is large, we determined
the cluster ellipticities using cluster members with pmem > 0.5 only
(instead of pmem > 0.2). Applying this cut shifts the first point down
by 1σ , which makes it consistent with the simulation results. A
more conservative cut of pmem > 0.8 was found necessary in Zu
et al. (2016) to remove the impact of projection effects altogether
(to within the errors). Such a cut is not feasible here, as the decrease
in usable satellite galaxies would increase the Poisson noise of the
cluster’s major axis estimate, diluting the signal on all scales. To
make sure projection effects are not important, we implemented
another test in which we removed all clusters from the shape sam-
ple that have a neighbouring cluster with a transverse separation
<3 Mpc h−1 and with a redshift difference smaller than 0.03. This
removes clusters whose shape are most likely to be affected by pro-
jection effects (∼9 per cent of the total). The 〈cos 2(θp)〉 signal at
Rp > 3 Mpc h−1 is not affected by this cut.

A number of observational errors were identified in Smargon et al.
(2012), which might have suppressed 〈cos 2(θp)〉 in the data, such as
photometric redshift errors, Poisson noise in estimating the cluster
major axis due to the availability of a low number of satellites,
cluster centroiding errors and errors in the major axis estimates of
clusters whose member distribution is intrinsically nearly round.

The impact of the first two of these, that is photometric redshift
errors and Poisson noise of the cluster major axis, was estimated to
have lowered their measurements by ∼20 per cent. We also tested
the impact of a number of systematics; we list them below and
describe how we estimated their impact on the measurements. The
results of these tests are summarized afterwards.

(i) Photo-z errors. The redMaPPer clusters have a photometric
redshift error, which shifts them along the line of sight, diluting
the signal. We cannot undo that, but we can estimate whether our
results are sensitive to it. To do that, we scatter the cluster redshifts,
by adding a number that is randomly drawn from a Gaussian with a
standard deviation of 0.01, which is the typical photo-z error of the
redMaPPer clusters.

(ii) Miscentring. If the cluster centre is not correctly identified,
the inferred cluster ellipticity and hence the major axis becomes
biased, which reduces 〈cos 2(θp)〉. Comparing the BCG location
with the X-ray centre from overlapping X-ray catalogues, Rozo &
Rykoff (2014) estimated that ∼14 per cent of the redMaPPer clusters
are miscentred. The cumulative distribution of the miscentring radii
of those clusters increases roughly linear to Rp = 0.8 Mpc h−1, which
corresponds well with a Rayleigh distribution with a width of 0.3
Mpc h−1 (Simet et al. 2017). We cannot undo the miscentring in
redMaPPer, but we can estimate whether our results are sensitive to
it by introducing an additional miscentring. We randomly displaced
the cluster centre for 14 per cent of the clusters, by an amount
that is randomly drawn from a Rayleigh distribution with a width
of 0.3 Mpc h−1. We remeasured the ellipticities of these clusters
and repeated the measurement with the updated ellipticities and
positions.

(iii) Major axis errors. To estimate the effect of major axis errors
for nearly round clusters, we removed all clusters with ε ≤ 0.05 and
repeated the measurements with the remaining sample. In principle,
one should also update the predictions from simulations by applying
the same cut. None the less, it gives us an estimate what the potential
impact of this effect is.

(iv) Merging clusters. Some highly elongated or merging clusters
may be split by the redMaPPer cluster finder into two separate parts
with different, biased position angles. To test for such an effect,
we removed all clusters with a neighbour at Rp < 5 Mpc h−1 and
� < 100 Mpc h−1 from the shape sample (but not the density
sample). These cuts removed 7 322 clusters.

(v) Completeness. Fig. 1 shows that the cluster sample becomes
increasingly incomplete towards higher redshift. To test whether
that has an effect, we repeated the measurement using clusters at
z ≤ 0.35, where the sample is nearly complete.

We assessed the impact of each test separately. The only sys-
tematic that had a large impact on the measurement was photo-z
errors, which shifted all points down by 0.5σ–1σ . The impact of all
other effects was considerably smaller and can be safely ignored in
this comparison. A crude correction for the effect of photo-z errors
would be to shift our measurements upwards by 0.5σ–1σ , which
would improve the agreement at Rp > 10 Mpc h−1, but cause an
increased overestimation of the signal at smaller scales. For com-
pleteness, we note that Hopkins et al. (2005) tested whether their
results depend on the scales used to measure the ellipticity and re-
ported only a minor effect for the least massive haloes, making it
unlikely that the use of different ellipticity estimators has a signifi-
cant impact on the comparison.

Studies of luminous red galaxy (LRG) samples have reported
highly significant detections of the IA signal (e.g. Mandelbaum
et al. 2006; Joachimi et al. 2011; Singh et al. 2015). These
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observations have been compared with results from simulations,
which revealed that simulations predict larger signals than what has
been observed. To reconcile the two, Okumura et al. (2009) pro-
posed the presence of a significant amount of misalignment between
the orientations of LRGs and their dark matter haloes. A detailed
comparison between observations and simulations is complicated,
however, by the fact that the IA signal sensitively depends on the
shape measurement method used to measure LRG shapes, with
methods giving more weight to larger distances from the LRG’s
centre producing larger IA signals (Singh & Mandelbaum 2016).

Similar trends have been reported in hydrodynamical simula-
tions. Velliscig et al. (2015) measured the IA signal in the EAGLE
simulations (Schaye et al. 2015) and found that when all star parti-
cles in each halo were used to estimate the shapes of galaxies, the
IA signal of an LRG-like sample was overpredicted; however, by
only using star particles inside a radius that contained half the stellar
mass of the halo, the observations could roughly be matched. Ten-
neti et al. (2015) measured the IA signal of an LRG-like sample in
the MassiveBlack-II simulations (Khandai et al. 2015) and reported
good agreement with observations for SDSS LRGs; however, they
used a reduced inertia tensor to define the galaxy ellipticities, down-
weighting particles further away from the centre, effectively similar
to what was done in Velliscig et al. (2015). It is not yet clear how the
shapes of galaxies in hydrodynamical simulations compare to the
shapes of LRGs that are measured in the data. It seems unlikely that
these two aforementioned effects affect the cluster IA signal much,
as a very misaligned satellite distribution would not be dynamically
stable, and because the details of how we measure cluster shapes
are unlikely to affect the major axis much. Hence, comparing the IA
signal of clusters with simulations should be more straightforward,
which makes it a powerful probe of large-scale structure.

We also measure 〈cos 2(θ c)〉, with θ c the angle between the pro-
jected major axes of a pair of clusters. The measurements are shown
in the lower panel of Fig. 6. As before, we projected the sim-
ulation results of Hopkins et al. (2005) to enable a comparison.
Since 〈cos 2(θ c)〉 has much smaller values in the simulation than
〈cos 2(θp)〉, and since it decreases faster with 3D separation as well,
the projected signal is very small, implying that it cannot be detected
with current cluster samples, unless photometric redshifts improve
or spectroscopic redshifts are used. Our results on Rp < 30 Mpc h−1

do seem to suggest the presence of a signal, with an amplitude that
is larger than the model, but the errors of our measurements are still
fairly large.

4.3 Trend with halo mass

The amplitude of the IA signal of LRGs increases with luminosity
(Joachimi et al. 2011; Singh et al. 2015). It is interesting to check
whether this trend continues with galaxy clusters: if clusters can be
viewed as higher luminosity (or mass) extensions of LRGs, the clus-
ter shape–density correlation could be used to improve IA models
for galaxies, which would benefit future cosmic shear surveys.

In order to compare our results with those obtained for LRGs,
we converted both the LRG luminosities and the cluster richnesses
to halo mass. All halo masses we derived are defined as the mass
inside a sphere where the density exceeds 200 times the mean matter
density at z = 0. To convert cluster richnesses to halo mass, we used
the mass–richness relation from Simet et al. (2017), which was
derived from a weak lensing analysis of the same redMaPPer cluster
sample. Parametrizing this relation as M = M0(λ/λ0)α , Simet et al.
(2017) reported log10(M0) = 14.344 ± 0.031 (where we added the
statistical and systematic errors in quadrature) and α = 1.33+0.09

−0.10

Figure 7. Amplitude of the linear alignment model as a function of halo
mass. Our results are indicated by the stars. We also show literature results
for LRGs from Singh et al. (2015) and Joachimi et al. (2011); the masses
for these samples were determined from their mean luminosities using the
luminosity-to-halo mass relation from van Uitert et al. (2015). The solid line
indicates the best-fitting linear relation between log10 of halo mass and the
IA amplitude, and the orange contours indicate the 1σ model uncertainty of
this fit. Two of our redMaPPer low-redshift results fall outside the plotted
range, but both of them are within 2σ of the best-fitting relation.

for a pivot richness λ0 = 40, with little correlation between M0 and
α. We computed the mean halo masses using the mean richnesses
listed in Table 1. We note that Simet et al. (2017) used only clusters
at 0.1 ≤ z ≤ 0.33, hence the masses of our high-redshift sample
may be somewhat biased if the mass–richness relation evolves at
z > 0.33. Furthermore, the halo masses from Simet et al. (2017)
are defined with respect to the mean matter density at the cluster’s
redshift, and we converted them to our definition, which increased
the masses by ∼15 per cent. We show our constraints on AIA of
the individual shape samples as a function of halo mass in Fig. 7.
The horizontal error bars correspond to the propagated uncertainties
from the mass–richness relation.

We compare these constraints with results for LRGs from two
studies. Singh et al. (2015) measured the IA signal for LOWZ
LRGs. To convert their luminosities to halo mass,3 we used the
luminosity-to-halo mass relation from van Uitert et al. (2015),
which was determined for LOWZ and CMASS galaxies (Daw-
son et al. 2013) in two separate, non-overlapping redshift bins
each (hence four redshift bins in total), covering a redshift range
from 〈z〉 = 0.2 to 〈z〉 = 0.6. The relation in each redshift bin

3 Singh et al. (2015) also provide mass estimates for their LRG samples,
derived from a weak lensing analysis. We did not use them for a number
of reasons: they are defined with respect to a different overdensity, they
were derived using a different mass–concentration relation, and they did
not account for the scatter in the luminosity-to-halo mass relation. Since we
needed to convert the luminosities of Joachimi et al. (2011) with the scaling
relations from van Uitert et al. (2015) anyway, we decided to use the same
scaling relations to convert the luminosities from Singh et al. (2015), for
consistency and for easing a comparison of results.
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was parametrized as M = M0,L(L/L0)βL , with a pivot luminosity
L0 = 1011 h−2

70 L�. We took a weighted mean of the amplitude and
slope of the luminosity-to-halo mass relation for the two LOWZ red-
shift bins (at 0.15 < z < 0.29 and 0.29 < z < 0.43) from van Uitert
et al. (2015), resulting in M0,L = 5.68 ± 0.34 × 1013h−1

70 M� and
βL = 1.50 ± 0.20. We propagated the uncertainties of these power-
law parameters to uncertainties in halo mass. These results are also
shown in Fig. 7.

Next, we compare with the results from Joachimi et al. (2011),
who measured the shape–density correlation signal of LRGs from
the MegaZ-LRG sample (Collister et al. 2007) and from the SDSS
(Eisenstein et al. 2001). Joachimi et al. (2011) applied an additional
colour cut to the MegaZ-LRG sample to make its colour–magnitude
relation resemble the one of SDSS LRGs, for consistency. To con-
vert the luminosities to halo mass, we used the luminosity-to-halo
mass relation from van Uitert et al. (2015) that was nearest in red-
shift. For the z < 0.529 and z > 0.529 MegaZ-LRG samples, we
used the scaling relation for CMASS galaxies at 0.43 < z < 0.55
and 0.55 < z < 0.7, respectively, while for the z < 0.27 and z > 0.27
SDSS-LRG samples, we used the scaling relation for LOWZ galax-
ies at 0.15 < z < 0.29 and 0.29 < z < 0.43, respectively. The mean
redshift of the LRG samples from Joachimi et al. (2011) differs at
most by 0.05 from the mean redshift at which the scaling relations
from van Uitert et al. (2015) were determined, hence we do not
expect a significant redshift evolution over such a small redshift
range. The results are shown in Fig. 7.

We find a fairly tight relation between halo mass and IA ampli-
tude, with our results for the redMaPPer clusters smoothly extending
the trend of LRGs. We quantify this relation using

AIA = BIA log10(M200m/Mpiv) + CIA, (13)

and fit for BIA and CIA, adopting Mpiv = 1013.8 M� h−1 as that
nearly decorrelates the fit parameters. In the fit, we only account for
the errors on AIA, because the errors on the mass are smaller than
the errors on the IA amplitude. We separately assess the impact
of the mass errors below (which is complicated by the fact that
the masses that were derived by the same scaling relation are fully
correlated). We obtain BIA = 11.5 ± 1.1 and CIA = 6.3 ± 0.3. The
reduced χ2 of the best-fitting model is 26.4/(21 − 2) = 1.4, hence
this model provides a reasonable description of this combined data
set. Excluding our 0.08 < z ≤ 0.16 results from the fit leads to an
improved reduced χ2 of 1.2, without significantly changing the fit
parameters.

To estimate the impact of the mass errors, we used Monte Carlo
simulations in which we reassigned the masses of the samples by
scattering the scaling relation parameters that we used to convert
richness and luminosity to halo mass, and repeating the fit between
IA amplitude and (scattered) mass. This procedure, which preserves
the correlation in the masses, was repeated 10 000 times, and the
spread in the best-fitting values of BIA and CIA was taken to be
the error caused by the errors on mass. Combining the thus ob-
tained errors with the ones quoted above (i.e. assuming that they
are completely independent), we found that the errors increased
by ∼20 per cent, a fairly small change but not entirely negligible.
Finally, we note that the small differences in the adopted values of
�M and σ 8 in the works we compared to are not expected to have a
significant impact on the comparison.

This smooth and continuous trend of IA amplitude from LRGs
to galaxy clusters is somewhat surprising. Cluster satellites are ex-
pected to trace the overall distribution of dark matter, while the
orientation of LRGs traces the matter distribution deep inside the

halo. Various studies have reported the presence of ellipticity gra-
dients in dark matter haloes. Haloes become rounder towards larger
scales (e.g. Allgood et al. 2006; Despali et al. 2017) and their orien-
tations change as well. For example, the mean misalignment angle
between the dark matter distribution at the halo’s centre and at
the virial radius is ∼20◦ for LRG-sized haloes in the dark-matter-
only simulations of Despali et al. (2017), while Wang et al. (2014)
and Velliscig et al. (2015) report a mean 3D misalignment angle
between central galaxies and their haloes within the virial radius
of ∼35◦ using hydrodynamical simulations; the misalignment an-
gle decreases for more massive haloes but does not become zero.
These values are in line with the results from Huang et al. (2016),
who found mean misalignment angles between the position angle
of the redMaPPer BCGs and their satellite distributions of 32–35◦,
depending on which shape measurement technique was employed.
Further evidence of this scenario comes from a halo ellipticity study
of galaxy groups (van Uitert et al. 2017), in which it was found that
the measured BCG ellipticity traces the projected mass distribution
at scales <0.5 × r200, while the projected distribution of satellites
traces the projected mass distribution at the virial radius.

A misalignment between the LRGs and their haloes reduces the
IA signal of LRGs, and one would expect the IA signal of LRGs to be
systematically lower than those of clusters. However, haloes become
rounder at large scales; the average ellipticity of the redMaPPer
clusters is ∼0.12 (see Table 1), a factor of ∼2 smaller than what
is typically measured for the BCGs (Velliscig et al. 2015; Huang
et al. 2016). This causes a similar reduction of the IA amplitude.
The smooth and continuous trend that we find thus suggests that
the ellipticity component projected towards the density peaks is
similar for the central part of haloes (traced by the LRGs) and
for the haloes as a whole (traced by the satellites). It would be
interesting to check whether a similar trend is observed in large
N-body, or ideally, hydrodynamical simulations. In particular, such
simulations could address whether the trend we observe is purely a
physical effect, or whether it is partly shaped by systematics, such
as measurement noise, selection effects of the redMaPPer cluster
finder (i.e. redMaPPer detects clusters in circular apertures, which
might bias their ellipticities low) and interlopers.

5 C O N C L U S I O N S

We measured the correlation between cluster shapes and the den-
sity field using the redMaPPer cluster catalogue in the SDSS, which
contains 26 111 clusters and more than 1.7 million candidate cluster
members. The cluster shapes were estimated using the projected dis-
tribution of cluster members, while the density field was traced by
the spatial distribution of the same clusters. We separately analysed
clusters at low, intermediate and high redshifts, and split each red-
shift slice in three richness subsamples, enabling us to distinguish
potential trends with cluster redshift and richness.

We detected a positive alignment in all cluster shape samples,
showing that clusters point on average towards neighbouring clus-
ters. To interpret the data, we first determined the bias by fitting a
model to the clustering signal of the redMaPPer clusters. For our
low- and intermediate-redshift samples, we obtained good fits, but
for our high-redshift sample, we noticed an excess of clustering
signal at large scales in the NGC patch compared to the SGC patch,
indicative of a systematic. Therefore, we used the clustering signal
in the SGC for this redshift bin. Fixing the thus obtained biases
to their best-fitting values, we fitted our wg+ measurements using a
linear alignment model, explicitly allowing for a redshift and a rich-
ness dependence (equation 8). We constrained the amplitude at the
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pivot redshift z = 0.3 and pivot richness λ = 30 to A
gen
IA = 12.6+1.5

−1.2.
The slope of the redshift dependence is given by η = −3.20+1.31

−1.40

and the slope of the richness dependence is β = 0.60+0.20
−0.27, hence we

obtained tentative evidence of an increase in the IA signal towards
higher richness and towards lower redshift.

Our measurements agree well with an earlier study of the
maxBCG clusters (Smargon et al. 2012). We identified the source
of the tension with the N-body simulation results from Hopkins
et al. (2005) as a previously misidentified projection effect. After
accounting for this, the simulation results and our measurements
agree.

We compared our measurements to constraints obtained for LRGs
and found that the amplitude of the IA model increases smoothly and
monotonically with halo mass, from low-mass LRGs up to massive
galaxy clusters. A relation that is linear in log10 of halo mass and IA
amplitude provides a satisfactory fit for over more than an order of
magnitude in halo mass. This agreement is surprising, as LRGs trace
the dark matter distribution at small scales, which is misaligned with
the overall dark matter distribution. However, clusters are rounder
than LRGs, which causes a similar reduction of the cluster IA signal.
Our results suggest that the ellipticity component projected towards
density peaks is similar for LRGs and clusters. As the cluster IA
signal should be less affected by misalignments and depends less on
the details of the shape measurement technique, it is likely a more
pure probe of the alignment of haloes with the tidal field. Cluster IA
is therefore a great complementary probe to derive precise physical
models for galaxy IA, to the benefit of the cosmological exploitation
of upcoming lensing surveys such as Euclid and LSST.

As an aside, we note that our results could be used to improve
cluster finding algorithms. For a given cluster, it is more likely to
find another one along its major axis than along its minor axis. If
two physically close clusters do not point to each other, it is more
likely that one of them is a false detection, compared to when they
do point to each other.
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