38 research outputs found

    Design and Implementation of a Robot Force and Motion Server

    Get PDF
    A robot manipulator is a force and motion server for a robot. The robot, interpreting sensor information in terms of a world model and a task plan, issues instructions to the manipulator to carry out tasks. The control of a manipulator first involves motion trajectory generation needed when the manipulator is instructed to move to desired positions. The procedure of generating the trajectory must be flexible and efficient. When the manipulator comes into contact with the environment such as during assembly, it must be able to comply with the geometric constraints presented by the contact in order to perform tasks successfully. The control strategies for motion and compliance are executed in real time by the control computer, which must be powerful enough to carry out the necessary computations. This thesis first presents an efficient method for manipulator motion planning. Two fundamental modes of motion, Cartesian and joint, are considered and transition between motion segments is uniformly treated to obtain an efficient and simple system. A modified hybrid control method for manipulator compliance is then proposed and implemented. The method overcomes the problems existing in previous approaches such as stiffness control and hybrid control. Finally, a controller architecture is studied to distribute computations into a number of processors to satisfy the computational requirement in a cost-effective manner. The implementation using Intel\u27s single board computers is also discussed. Finally, to demonstrate the system, the motion trajectory. and the modified forced/motion control scheme are implemented on the controller and a PUMA 260 manipulator controlled from a multi-user VAX/Unix system through an Ethernet interface

    Transputer-based robot controller

    Get PDF
    A cost-effective architecture for the control of robot manipulators based on functional decomposition of the equations of motion is described. The Lagrange-Euler( LE) and the Newton-Euler( NE) formulations are used for decomposition. According to real-time control criterion, the LE equations are not suitable for implementation using currently available hardware because the required number of computations is too high, even after taking the inherent parallelism into account. However, the recursive nature of the Newton-Euler equations of motion lend themselves to being decomposed to terms used to generate the recursive forward and backward formulations. A special architecture implemented on a network of transputers is proposed which takes advantage of both the parallelism and seriallism of the NE equations and the ease of building communication channel provided by the transputers and Occam language. This proposed controller model can be best defined as a macro level pipeline. Based on this model, both floating point computation and fixed point computation results are presented for performance comparison

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    Get PDF
    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area
    corecore