
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1986

Design and Implementation of a Robot Force and Motion Server Design and Implementation of a Robot Force and Motion Server

Hong Zhang
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Hong Zhang, "Design and Implementation of a Robot Force and Motion Server", . September 1986.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-86-73.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/672
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/672
mailto:repository@pobox.upenn.edu

Design and Implementation of a Robot Force and Motion Server Design and Implementation of a Robot Force and Motion Server

Abstract Abstract
A robot manipulator is a force and motion server for a robot. The robot, interpreting sensor information in
terms of a world model and a task plan, issues instructions to the manipulator to carry out tasks.

The control of a manipulator first involves motion trajectory generation needed when the manipulator is
instructed to move to desired positions. The procedure of generating the trajectory must be flexible and
efficient. When the manipulator comes into contact with the environment such as during assembly, it
must be able to comply with the geometric constraints presented by the contact in order to perform tasks
successfully. The control strategies for motion and compliance are executed in real time by the control
computer, which must be powerful enough to carry out the necessary computations.

This thesis first presents an efficient method for manipulator motion planning. Two fundamental modes
of motion, Cartesian and joint, are considered and transition between motion segments is uniformly
treated to obtain an efficient and simple system. A modified hybrid control method for manipulator
compliance is then proposed and implemented. The method overcomes the problems existing in previous
approaches such as stiffness control and hybrid control. Finally, a controller architecture is studied to
distribute computations into a number of processors to satisfy the computational requirement in a cost-
effective manner. The implementation using Intel's single board computers is also discussed. Finally, to
demonstrate the system, the motion trajectory. and the modified forced/motion control scheme are
implemented on the controller and a PUMA 260 manipulator controlled from a multi-user VAX/Unix
system through an Ethernet interface.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-86-73.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/672

https://repository.upenn.edu/cis_reports/672

DESIGN AND IMPLEMENTATION
OF A ROBOT FORCE

AND MOTION SERVER

Hong Zhang
MS-CIS-8 6-73

GRASP LAB 77

Department Of Computer and Information Science
Moore School

University of Pennsylvania
Philadelphia, PA 191 04

September 1986

Acknowledgements: This research was supported in part by DARPA grants NO001 4-85-K-0018
and NO001 4-85-K-0807, NSF grants DMC-8411879, DMC-85-12838, DCR-86-07156, DCR8501482,
MCS8219196-CER, MCS-82-07294,l R01-HL-29985-01, U.S. Army grants DAA6-29-84-K-0061,
DAAB07-84-K-FO77, U.S. Air Force grant 82-NM-299, Al Center grants NSF-MCS-83-05221, U.S. Army
Research office grant ARO-DAA29-84-9-0027, Lord Corporation, RCA and Digital Equipment
Corporation.

DESIGN AND IMPLEMENTATION

OF

A ROBOT FORCE AND MOTION SERVER

by

Hong Zhang

A Thesis

Submitted to the Faculty

- of.

Purdue University

In Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

May 1986

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my appreciations to those who

have helped me throughout my gadbate study to make this work possible. Professor

Richard P. Paul, the Chairman of my graduate committee, has initiated the ideas on

which the research described in this writting is based. His direction, encouragement

and inspiration are essential to the success of the research and, at the same time, have

made these years such a pleasant experience.

My special thanks go to National Science Foundation for its financial support, to

the Computer Integrated and Design Manufacture Automation Center of Purdue

University for providing the facilities in the Robotics Laboratory and the financial sup-

port, and to General Robotics and Active Sensory Perception Laboratory and the

Department of Computer and Information Science, University of Pennsylvania, for

providing access to the facilities in conducting the research and preparing of this

manuscript.

I thank my committee members, Professors Shaheen Allmad, Owen Mitchell, and

Daniel Gottlieb, in spending their time on suggesting research alternatives and reading

the thesis.

Finally, I would like to thank all professors whom I have been educated by and to

the students and colleagues whom I have been associated with, directly and indirectly,

at the School of Electrical Engineering and other Schools of Purdue University, for the

times of sharing, learning, and making a dream come true.

TABLE OF CONTENTS

Page
LIST OF TABLES .. vi

.. LIST OF FIGURES ... vii

LIST OF SYMBOLS .. ix

. ABSTRACT .. i xi1

CHAPTER I . INTRODUCTION ... 1

1 . Introduction .. 1
2 . Manipulator Motion Control .. 2
3 . Force Control by Manipulators .. 4
4 . Controller Architecture .. 6
5 . Research Objectives ... 7
6 . Organization .. 7

. ...,................ CHAPTER KI BACKGROUND -9

1 . Introduction .. 9
2 . Homogeneous Transformations ... 9
3 . Kinematics of Robot Manipulators ... 11
4 . Differential Relationships .. 14
5 . Static Force and Torque Transformation ... 16

................... CHAPTER El . MOTION CONTROL OF ROBOT MANIPULATORS 18

I . Introduction .. 1 8
.. 2 . Previous Approaches 19

... 3 . A Unified Motion Control Strategy 22
3.1. Coordinate Systems ... 23
3.2. Description of Position .. 24
3.3. Description of Motion .. 25

Page

... 3.4. Trajectory Generation 26
....................................... 3.4.1. General Consideration A 7

.. 3.4.2. Joint Coordinate Motion 29
... 3.4.3. Cartesian Coordinate Motion 32

............................. 3.5. Discussion 6
. ... 4 Conclusion 42

CHAPTER IV . CALCULATION OF MANPULATOR DYNAMICS 43

.. 1 . Introduction 43
2 . Formulation of Dynamics Equations ... 44

.. 3 . Comparisons of the Two ~orrnulations 47
.......... 4 . Simplification of Lagrangian Dynamics Equations .. 48

... 4.1. Gravity Loadings .. 49
4.2. Effective Inertias 49
4.3. Coupling Inertias ... 50

5 . Determination of the Dynamics Constants ... 50
... 5.1. Joint Torque Calibration 51

.. 5.2. Determination of Gravity Loadings 53
.. 5.3. Effective Inertias 56

6 . Conclusion .. 60

CHAPTER V . COMFLIANCE AND J-IYBRID CONTROL 61

.. 1 . Introduction 61
2 . Compliance Specification ... 63

... 3 . Representatives of Active Force Control 65
.. 4 . Modified Hybrid Control Method 71

.. 5 . Implementation 75
6 . Stability Consideration ... 79

.. 6.1. State Space Formulation 80
.. 6.2. Special Case 83

6.3. Discussion .. 87
.. 7 . Conclusion 87

CHAPTER VI . INTEGRATION OF THE RFMS

1 . Introduction ... 89
2 . General Consideration 92

Page

.. 3 . Identification of the RFMS Processes 94
3.1. User Process 96
3.2. Communication Process .. 99

... 3.3. Kinematic Process 100
.. 3.4. Dynamic Process ,101

.. . 4 Implementation of the RFMS -102
... 4.1. User Level 106

...................................... 4.2. Ethernet Communication ... 106
.. 4.3. Supervisor 107

4.4. Joint Processors .. 1 1
4.5. Math Process ... 113

... 4.6. Direct Memory Access A : 114
... 4.7 Performance Evaluation 114

.. 5 . Conclusion 115

CHAPTER VII . CONCLUSION AND FUTURE WORK 118

. 1 Summary .. 118
2 . Future Work ... 119

.. LIST OF REFERENCES -121

APPENDICES

Appendix A: Kinematics of PUMA 250 Manipulator .. 127
Appendix B: Dynamics Equations of PUMA 560 Manipulator 141

................ Appendix C: Distributed Trajectory Generator and Hybrid Controller 144

VITA ... 152

LIST OF TABLES

Table Page

3.1. Boundary Conditions for h ... -30

... 3.2. Boundary Conditions for 0 31

3.3. Motion Control Summary ... 37

4.1. Joint Torque Calibration of PUMA 560 .. 53

4.2. Configurations for c~ Measurement .. 55

6.1. Multibus Address Assignment .. 104

6.2. Supervisor-Joint Interaction .. 111

Appendix
Table

A 1 . PUMA 260 Link and Joint Parameters .. -127

A2 . Differential Transformations .. 133

A3 . Radii of Gyration for the PUMA 560 ... -141

vii

LIST OF FIGURES

Figure Page

1.1. Peg-in-hole Operation ... 2

2.1. Interpretation of a Homogeneous Transformation ... -10

3.1. Segments of Motion .. -27

3.2. Transition Polynomials .. -29

3.3. Trajectories of Joint One in Joint Mode ... 39

3.4. Joint Mode Trajectories with Longer t,, ... 40

3.5. Trajectories of Joint One in Cartesian Mode ... 41

4.1. Joint Torque versus Motor Current ... 52

4.2. Joint Torque Calibration for the PUMA 560 ... -54

.. 5.1. Tracing a Corner -65

5.2. A Pure Position Controller ... 66

. ... 5.3. Stiffness Control Method i. 67

.. 5.4. Free-joint Method 68

5.5. Hybrid Control Method .. -70

5.6. A Simple Manipulator .. -71

.. 5.7. Modified Hybrid Control Method -74

5 .8 . MHCM Controller Design ... -76

... 6.1. Levels of Control in the RFMS 95

6.2. The RFMS Implementation ... -103

6.3. Development System .. 105

Page

6.4. Memory Organization .. 108

.. 6.5. Position Ring Structure 1 10

... 6.6. Process Scheduling ...I 16

LIST OF SYMBOLS

Symbol Description

A i Matrices relating the position and orientation of link i of the manipula-
tor to link i+l.

approach vector of a homogeneous transformation

length of link i.

joint compliance matrix = J-'SJ

drive transformation used in deriving straight-line motion of a manipu-
lator.

gravity loading of joint i in the Lagrangian dynamics equation of a
manipulator.

coupling inertia between joints i and j when i#j; effective inertia of
joint i when i=j.

centripetal and Coriolis coefficients.

distance between two neighboring joints.

force vector representing Cartesian forces of the manipulator with three
scalar force components and three torque components.

desired Cartesian biased force vector of six elements representing three
forces along and three torques about x, y, and z axes, respectively.

sample frequency in Hertz.

motion parameter and a function of time.

X

actuator inertia of a joint.

Jacobian matrix of the manipulator, which is 6xn where n is the number
of joints.

inverse Jacobian matrix.

diagonal Cartesian stiffness matrix.

diagonal joint stiffness or positional gain matrix.

joint stiffness matrix in Salisbury's stiffness control.

mode structure describing how a motion is to be achieved.

point mass of the load being carried by the manipulator.

normal vector of a homogeneous transformation

orientation vector of a homogeneous transformation

labels identifying position equations.

position vector of a homogeneous transformation

1 - h

a six-by-six Cartesian compliance selection matrix.

a four-by-four matrix representing the position of the manipulator end
relative to its base.

time variable.

Cartesian velocity = [v,, vy, vz, ax, 9, mZlT obtained by taking deriva-
tives of x with respect to time.

Cartesian position of the manipulator when represented as a vector three
translational and three rotational variables.

twist angle between two neighboring links.

sampling period of the joint servos.

procedure to solve a position equation for T 6 .

kinematics of the manipulator.

Cartesian rotational velocity vector = [&, coy, cozF.

joint torque vector representing torques being exerted by the joints.

joint position vector = [e l , B2, . ?BnlT.

d 8
joint velocity = -.

dt

di)
joint acceleration = -.

dt

d e joint jerk = -.
dt

joint position error vector = [dB1, d Bz, . ,dBn]*.

real position error used in the hybrid control.

ABSTRACT

Zhang, Hong. Ph.D., Purdue University, May 1986. Design And Implementation Of A
Robot Force And Motion Server. Major Professor: Richard P. Paul.

A robot manipulator is a force and motion server for a robot. The robot, interpre-

tating sensor information in terms of a world model and a task plan, issues instructions

to the manipulator to carry out tasks.

The control of a manipulator first involves motion trajectory generation needed

when the manipulator is instructed to move to desired positions. The procedure of gen-

erating the trajectory must be flexible and efficient. When the manipulator comes into

contact with the environment such as during assembly, it must be able to comply with

the geometric constraints presented by the contact in order to perform tasks success-

fully. The control strategies for motion and compliance are executed in real time by

the control computer, which must be powerful enough to carry out the necessary com-

putations.

This thesis first presents an efficient method for manipulator motion planning.

Two fundamental modes of motion, Cartesian and joint, are considered and transition

between motion segments is uniformly treated to obtain an efficient and simple system.

A modified hybrid control method for manipulator compliance is then proposed and

implemented. The method overcomes the problems existing in previous approaches

such as stiffness control and hybrid control. Finally, a controller architecture is studied

to distribute computations into a number of processors to satisfy the computational

requirement in a cost-effective manner. The implementation using Intel's single board

computers is also discussed. Finally, to demonstrate the system, the motion trajectory.

and the modified forcelmotion control scheme are implemented on the controller and a

PUMA 260 manipulator controlled from a multi-user VAXPUnix system through an

Ethernet interface.

CHAPTER I

1. Introduction

The study of robotics deals with the intelligent interaction between machines and . .

the physical world. Through such interactions, a robot performs useful tasks, collect-

ing information from the world, understanding it, and altering the world as required by

the task. A manipulator acts as a force and motion server (RFMS) to a robot in task

executions. It moves with or without objects along defined paths, manipulates objects

in the world, and applies forces or torques to objects.

It is fundamental that a manipulator is able to move to an arbitrary position within

the workspace and change between positions along desired paths, and that it is able to

apply forces and torques in arbitrary directions during the motion. It is equally impor-

tant that during a motion a manipulator be able to react to changes observed by the

sensors such as contacts forces between the manipulator and the environment or posi-

tions of objects being manipulated. These requirements are necessary for a robot

manipulator to assist a robot system to interact with the world effectively.

Consider, for example, a peg-in-hole operation (Figure 1.1) in an assembly task,

the robot calls for the vision system to locate the peg and the hole and then asks the

manipulator to pick up the peg, move it to an appropriate approach position, make con-

tact with hole with an approach angle with a force sensor monitoring if the contact is

made, and, once making the contact, tilt the peg toward the principle axis of the hole

-

while maintaining zero force and zero torques in the plane perpendicular to the hole

axis. If, however, the hole is moved accidentally, the vision system tracking positions

immediately informs the robot system and the approach and final positions are prop-

erly adjusted before the manipulator is instructed to proceed.

Figure 1.1. Peg-in-hole Operation

2. Manipulator Motion Control

The earlist manipulators were controlled in a master-slave manner with the opera-

tor positioning the master and a slave imitating the action of the operator [Goertz

19521. This mechanism was widely applied to handling of dangerous materials in hos-

tile environment to protect people from direct contact with hazards; unfortunately, the

manipulator requires the full-time attendance of an operator. The idea supporting such

manipulators, nevertheless, is still used today in remotely controlled robot

manipulators in space or underwater exploration.

The use of computers in manipulator controllers enabled teach-and-repeat opera-

tion in which the manipulator remembers what it is taught by recording the successive

joint positions and then repeats the trajectory thereafter. This kind of operations can be

performed by the manipulators accurately, because errors can be reduced to minimum

during the calibration procedure and robot manipulators have a good repeatability. In

the case of mass production such as on an assembly line, these robot manipulators have

proved to be extremely useful due to their accuracy, reliability and durability. How-

ever, these robot manipulators are inadequate in situations where tasks are of the

small-batch nature, or when the manipulators are required to be sensitive to external

changes while performing tasks.

In recent years, the increased requirement on the sophistication of robot manipu-

lator performance and rapid growth of computer technology gave rise to the construc-

tion of many programming systems for robot manipulator control. These control sys-

tems, although different in implementation, provide important features necessary for

programming robot manipulators to undertake complicated tasks. Manipulator level

robot programming systems have been extensively studied and applied to robot mani-

pulator control [Shimano, Geschke, and Spalding 19841 mayward and Paul 19841.

Task level systems are receiving more and more attentions and many systems exist

[Lieberman and Wesley 19761. In general, such a control system provides program-

ming languages in which tasks can be mathematically expressed, provides sensor inter-

faces to modify a motion while the motion is being executed, and provides tools for

program development and simulation [Karel] .

There are a number of issues which must be addressed by every manipulator con-

trol system. It must be able to specify all motions achievable by the manipulator in a

consistent and concise fashion. It must be able to generate specified motion trajectories

in terms of the coordinates in which a manipulator is controlled. Methods used must

be computationally efficient for real-time execution.

3. Force Control by Manipulators

For a robot manipulator to be useful, it must be able to control not only positions

and but also forces. It must be able to comply to geometric constraints while perform-

ing a task. Such an ability is important when forces need be applied by the manipula-

tor or when geometric constraints presented by a task make it impossible for the mani-

pulator to succeed with its limited positional accuracy. A majority of the industrial

robots working in factories today perform repetitive tasks such as spray painting or

spot welding what require relatively low positional accuracy. When contact is inevit-

able such as in assembly operation, they employ passive mechanical compliance dev-

ices [Whitney 19821 or special jigs and textures to overcome the inability. However,

such a method is not applicable nor cost-effective if a robot needs to perform many

tasks of different constraints.

An alternative approach for a manipulator to be able to comply to geometric con-

straints is to program it to react to motion constraints when they occur. The manipula-

tor complies in directions where geometric constraints are observed and remains rigid

in the other directions. Since local relative measurements are used and, more impor-

tantly, since the manipulator uses force, which is usually of larger magnitude and

therefore easier to detect than the positional errors, control performance can be

improved significantly. Difficulty arises, though, when a manipulator is actuated at

joints and the compliance behavior is required in the Cartesian space. A solution must

be found to convert Cartesian compliance specification to joint actuation adjustments.

Adequate mathematical formulation and successful force control methods, such

as active stiffness control [Salisbury 19801 and hybrid control [Raibert and Craig

19811, have been developed in the past few years. Based on many previous works,

Mason formally summerized the problem of compliance [Mason 19791. He makes use

of ideal compliance surface and introduces selection matrix to partition the degrees of

freedom available into two orthogonal complementary sets. One set corresponds to

directions of natural constraints, those presented by the task; the other corresponds to

directions of artificial constraints, those imposed by the control system to achieve a

desired trajectory.

Based on these theoretical developments, the stiffness control was proposed by

Salisbury [I9821 who argued that a manipulator can be programmed to act as a six

dimensional spring with respect to the compliance frame, having high stiffnesses in

unconstrained directions and low stiffnesses in constrained directions. Cartesian reac-

tion forces are computed based on the stiffnesses and Cartesian positional errors. Joint

reaction forces then are easily obtained by converting the Cartesian reaction forces.

This approach allows variable stiffness specification as a task proceeds, and proves to

be satisfactory in many applications.

Hybrid control method proposed by Craig and Raibert [I9811 considers a robot

manipulator as a positioner, except that position errors in constrained directions should

be tolerated or ignored. The selection matrix specifies just what errors should be

ignored. One can then compute Real Cartesian position errors, from which real joint

position errors are easily obtained for the joint servos. This method is computational

more expensive than the stiffness method since the inverse Jacobian matrix is needed,

but eliminates some of the problems that exist in the stiffness method.

Most of the implementations of force controllers were of experimental nature,

controlling a subset of the three dimensional space or ignoring some important con-

siderations such as computation efficiency of the control algorithms and their impact

on the stability of the resulting systems.

4. Controller Architecture

The computations required to control a robot manipulator are performed by com-

puters in the manipulator controller. The advances of microprocessor technology have

made it possible to design cost-effective yet powerful computing systems to meet the

needs of controllers employing sophisticated control algorithms.

Parallel computer architecture is widely used in designs of robot manipulator con-

trollers. Almost all the industrial robots are equipped with multi-processor controllers

to distribute computations to a number of processors wnimation 19801. These control

systems employ a low Caftesian set-point loop and a high joint servo rate to perform

inverse kinematics and interpolate the solutions. Such a design can generate smooth

motions, which are desired for pick-and-place operations in industry, but it leads to

long time delay from a modified Cartesian set-point to adjusted joint actuations. Fast

sensor-driven motions is unstable in such systems and the control system designs usu-

ally do not fully consider the issue of sensor integration. Controllers have also been

designed in research laboratories to control robot manipulators for specific applica-

tions. These attempts are of experimental nature without considering the cost-

effectiveness.

The progresses in micro-processor technology have made it possible now to

design robot manipulator controllers of powerful processing capability at a moderate

cost. More research attentions are also being paid to integration of a completion robot

system equipped with a number of sensors, as opposed to an independent robot mani-

pulator [Giralt 1984, Taylor 19851 [Paul and Durrant-Whyte 19861. The role of a

manipulator in the robot system and its control are yet to be studied.

5. Research Objective

This research studies motion and force control strategies for a robot manipulator.

It examines basic formalisms for manipulator motion control and force control and

proposes and implements new methods. The method for obtaining the simplified model

of the manipulator dynamics is also introduced. All control techniques developed

emphasize the computational efficiency for real-time control applications. Finally, the

problem of system integration is investigated. A manipulator control system capable of

providing force and motion services to a robot system is constructed based on a distri-

buted computer architecture. The system executes commands received from the robot

coordinator. The system is designed to facilitate sensor-driven motions.

6. Organization

Chapter I1 surnmerizes background mathematics necessary for developing

theories in later chapters. The useful properties of homogeneous transformation are

studied and homogeneous transformation is then used as a basic tool for representation

of relationships between objects and definitions of positions in the robot environment.

The Chapter provides important relationships and formulas that are used throughout

the later chapters.

Chapter III describes the trajectory generation or motion planning. It starts with

the classification of motions and their specifications. An efficient method of trajectory

generation is then introduced, to provide two fundamental types of motion, Cartesian

and joint, and uniformly treats transitions between two segments of motion.

Chapter IV examines the dynamics of a robot manipulator. The relative signifi-

cance of dynamics coefficients in Lagrangian formulation of dynamics equations is

studied. Based on the conclusion that gravity loadings, effective and some coupling

inertias represent a dynamics model with sufficient accuracy, a method is introduced to

experimentally determine the constants in those terms in the simplified dynamics equa-

tions. The method can be easily applied to all electric actuated manipulators.

Compliance and hybrid control is discussed in Chapter V. Different force control

methods are reviewed and compared. Some existing problems are also pointed out.

Based on the discussions, a modified hybrid control method is presented. The method

is efficient computationally and is implemented to control a PUMA 560 manipulator.

Stability analysis is performed to show the problem associated with this method and

many other Cartesian control techniques when the remote center of compliance is

required. Solution to the problem is also explored.

Chapter VI integrates the manipulator control system and studies its construction

as a robot force and motion server (RFMS), using a distributed computer architecture.

The processes for the RFMS are specified and then classified into dynamic, kinematic,

and static modules. An assignment of processes to processors can proceed based on the

real-time computation requirements of the processes. Finally the Chapter describes the

implementation of this server using Intel single board computers.

In the last chapter, major conclusions of the the research described in the thesis

are outlined and future work based on the research is suggested.

CHAPTER I1

BACKGROUND

1. Introduction

It is important to highlight some aspects of mathematical basis for the study of

robot manipulation before the presentation of the thesis. Although various theories of

mathematics have been applied for different purposes, a system based on homogeneous

transformations has proved to be the most appropriate in terms of its completeness and

efficiency Paul 19831. All the discussions in this chapter will make use of such a sys-

tem.

A coordinate frame can be associated with an object in the robot work space.

Control of a robot consists of determining the geometric relationships between objects

and changing the relationships in the way defined by tasks. There are six degrees of

freedom in a three dimensional space, three translational and three rotational. These

relationships must then be descriptions of the six degrees of freedom.

2. Homogeneous Transformations

A relationship between two coordinate frames can be represented by a homogene-

ous transj6ormation of the form:

home components of p correspond to changes in translation in x, y, and z directions.

The n, o, a directional unit vectors in three directions of the new coordinate frame rela-

tive to the first frame. This is illustrated in Figure 2.1.

Figure 2.1. Interpretation of a Homogeneous Transformation

Homogeneous transformations provide the property instrumental in coordinate

frame composition: the composition of two coordinate relationships corresponds to the

matrix product of the two homogeneous transformations. If TI describes coordinate

frame B with respect to frame A and TZ describes frame C with respect to frame B,

then T describes frame C with respect to frame A where

In addition, the composition of two homogeneous transformations is also a homogene-

ous transformation. The inverse of a homogeneous transformation describes a relation-

ship in the reverse direction to the forward transformation and it can be calculated

easily by

where "." stands for vector dot product.

3. Kinematics of Robot Manipulators

A manipulator is a mechanical linkage consisting of a set of links connected by

one of the lower pairs. The most common lower pairs used in manipulators today are

prismatic or translational and revolute or rotary, each one of which provides one

degree of freedom translating along or rotating about a joint.

If a manipulator is to be positioned and oriented arbitrarily, it must possess at

least six joints to match the degrees of freedom in three dimensional space. The

description of the position and orientation of the last link, T, or the Cartesian position

of the manipulator, can be obtained symbolically from the parameters and variables

defining the n links and n joints [Hartenburg and Denavit 19641. The procedure to

obtain T, consists of assigning a coordinate frame to each link, formulating matrices,

conventionally called Ai for each ith link, which define the relationship between ith

and.(i-1)th link, and performing coordinate frame composition by multiplying the A

matrices.

For a revolute manipulator, each ith link is defined by the link length a; and the

link twist angle ai, and the ith joint is defined by the joint distance di and the joint

angle 8; Paul 19811. A prismatic joint can be defined similarly with joint angle ei
being a constant and joint distant di being variable.

Once the parameters qnd variables are obtained, Ai matrix is defined as

The Cartesian position and orientation of a manipulator is then

The process of determining the Cartesian position of a manipulator from joint positions

is referred to as the direct kinematics and the joint positions uniquely determine T,.

Each element of T, is, in general, a function of all joint variables.

where 8 = [€I1, €I2, . . . ,en]. However, most of the manipulators have six joints

arranged as a three joint positioning mechanism followed by an orienting mechanism

or a wrist of another three joints in order to simplify the design and control. Conse-

quently, the position vector p = lfI4, f24, fg41T are functions of only the first three

positioning joints, i.e.,

The inverse kinematic solution is defined as the process of determining joint posi-

tions fiom a given T,. This solution is important as a manipulator task, specified in

Cartesian positions, must be transformed into joint coordinates where the control is

exercised. The inverse solution, different from the direct solution, is not unique in gen-

eral, i.e., a given Cartesian position can be satisfied with more than one set of joint

positions in general, each set corresponding to one manipulator configuration. Furth-

ermore, not all the manipulators have closed-form solutions to explicitly express joint

variables in terms of the elements of T,. When this happens, the inverse kinematics

must be solved numerically using the 12 equations

This is a non-linear overdetermined system, which can be solved by various numeric

techniques[Angeles 19851. The solution, however, is usually much more computation-

ally expensive than a closed-fonn solution pieper 19681.

Systematic procedures exist for solving inverse kinematics for manipulators for

which there exist closed-form solutions [Paul, R.P. and Zhang, H. 19861. For a six joint

manipulator, the procedure .solves the joints recursively from joint one to joint six

using the following equations

where Ui = AiAi+l . . . Ag . In these equations, quantities on the left-hand side are

known and ith equation solves for joint i. Such. a solution is usually very efficient

compared to the numeric solutions.

Given in Appendix A are the modeling of a PUMA 250 manipulator in terms of

its link and joint parameters, its direct kinematic solution, and its inverse kinematic

solution. The manipulator, typical of industrial robot manipulator, consists of six revo-

lute joints, possesses three configurations, and has a closed-form inverse kinematics

[Paul and Zhang 19861.

4. Differential Relationships

The time derivatives of positions and orientations of a coordinate system

correspond to its linear and angular velocities in and about respectively axes. Given
. .

velocities or differential changes in one coordinate system, their equivalent in another

coordinate system can be calculated if the transformation relating the two systems is

known. Assume velocities are expressed in a vector with three linear components and

three angular components

then the velocities in the coordinator frame which relates to the f ~ s t by T can be found

by:

where the n, o, a, and p vectors are the respective columns of the transformation relat-

ing the two frames, "x" stands for vector cross product, and the leading superscript

stands for the frame being referenced [Paul 198 11.

- The above equation can be used to obtain the relationship between joint velocities

and the velocities seen at the last link of the manipulator. This relationship, commonly

known as Jacobian matrix J, can be calculated by determining the relationship of the

velocities at the last coordinate frame to each of n joints, one at a time. Since the

transformation from any joint to the end coordinate frame can be known from the A

matrices and a joint has a one dimensional velocity, either angular or linear, the resul-

tant velocities at the end coordinate frame due this joint velocity can be directly com-

puted using Eq. (2.11). Once the individual results are obtained, the Jacobian matrix is

simply the combination with its ith column for ith joint and has the general form

The Cartesian velocities of a manipulator can then be obtained with

. .
where 0 = [el, 02, . . , &lT. The inverse problem that, given the Cartesian veloci-

ties, find corresponding joint velocities can be solved obviously by

The J-' is the inverse of J, which is defined uniquely if J is square and detJg0. The

case of non-squared J is not considered here. When detJ = 0, J-I does not exist. This

implies the manipulator loses one or more degrees of freedom at that position and is

unable to move in certain Cartesian directions. Such configurations are defined as

singularity or degeneracy points of the manipulator. In regions about the singularity

points, excessive manipulator joint rates are required, making its control unstable.

A differential change vector

can be represented in the form of a transformation as

When A is multiplied on the right by a transformation T representing a coordinate

frame, the resulting transformation is the new differential change with respect to T,

i.e.,

A T = T ~ A (2.17)

If there are a number of differential changes, the total differential change is equal to

multiplication of their transformation representations,

5. Static Force and Torque Transformation

A generalized force vector can be applied to a coordinate frame with three forces

along and three moments about the x, y, and z directions, respectively, corresponding

to the six degrees of freedom in three dimensional space. The vector has the form

F = lA,fY,fz, m ~ , my, mZlT (2.19)

The generalized force exerted at one coordinator frame can be transformed into an

equivalent in another frame. Torques applied by the joints of the manipulator can also

be transformed to a force vector at end of the manipulator or any other coordinate sys-

tem in the manipulator. The transformation is derived using the concept of virtual

work, work done by a force vector to cause differential displacements. The relation-

ship is simple and expressed by the following equation.

where z = [z~, 72, - - . , 7.1~ is the joint torque vector [Paul 19811.

CHAPTER 111

MOTION CONTROL OF ROBOT MANIPULATORS

1. Introduction

A robot manipulator needs to be able to be arbitrarily positioned along desired

paths and reach desired destinations within its work space. This Chapter studies the

control of manipulator motions, their specification, generation, and execution. A

method based on Paul 19791 is proposed and implemented to uniformly deal with the

various transitions between motion segments, resuIting in an efficient and simpler sys-

tem.

A robot manipulator motion is described as a sequence of positions through which

the end of the manipulator is to pass. The description of the positions may be simple,

as when manipulator joint coordinates are used, or complex, as, for example, when

motion is referenced to some functionally defined coordinate frame. Motion between

positions may be specified in detail or in general terms. When only the end points of

the motion are of importance, the motion may be specified as joint coordinate or Carte-

sian coordinate motion. When the intermediate positions are of importance, then the

motion may be specified by a procedure or by a table of coordinates.

A motion can be free of any actions when, for example, a manipulator moves

parts or tools, or itself to a new position. A motion can also be accompanied by

actions as a manipulator moves between positions. Spray painting and the application

of sealants might be specified by a table of coordinates through which the applicator

must pass. Seam welding along complex geometric paths, such as along the joint

between two cylinders, might be functionally defined. Straight line seam welds could

be defined by a coordinated Cartesian motion to which a sinusoidal weaving pattern is

. added. Motions to bring parts together in assembly operations might be defined simply

by Cartesian coordinate motions. End effector actions take place while the manipula-

tor is at rest. Finally, any of the above activities might be performed on a work piece

which is in motion, such as on a conveyor.

Once a task is defined, the motion control system of a manipulator plans the

motion so as to satisfy the motion specification. The evaluation of a motion planner is

based on a number of criteria: adequate specification must exist to allow motions to be

defined accurately and conveniently; the planning process must be efficient in compu-

tation and execution; concatenation between segments of motion must be provided to

guarantee the continuity of the motion; and motions must be able to be modifiable by

sensors during execution. The key considerations in designing a motion planning sys-

tem have been generality and simplicity - it must be general enough to accommodate

other control algorithms such as sensor-guided motion and compliant motion and must

be efficient enough for real-time applications.

2. Previous Approaches

Various methods have been developed for obtaining trajectory generators. Whit-

ney introduced resolved motion rate control [Whitney 19721, which makes use of

inverse Jacobian matrix to continuously convert interpolated Cartesian positions to

joint positions. Given an initial and a goal position, their Cartesian coordinates x in

terms of three positions and three rotations can be derived. The choice of the coordi-

nates for positions is obvious whereas the choice for rotations is not. When the initial

and goal position are computed as xi(Oi) and xf(Bf), the difference

Ax=xf-xi (3.1)

can be computed. Given the segment time T of the motion, the Cartesian rate or velo-

city of the segment is computed as

The joint rates are computed using the differential relationship J, i.e.,

where J takes the tool frame into consideration. The joint positions are obtained by

either reading the joint positions or integrating the velocity with respect to time as

t

To find proper rotation axis about which the Cartesian angular velocities are defined,

he uses the eigenvector with the unit eigenvalue, o , of the rotational transformation

relating the initial and final Cartesian transformations, which remains unchanged dur-

ing the rotation. The amount of rotation, a , is derived by projecting the x axes of the

initial and final positions unto the plane perpendicular to o. The angular velocities or

o a the last three components of x can be defined as -
T

. The above calculation is made

closed loop by defining a new ei periodically along the trajectory, hence a new T, o

and a.

Equation (3.2) requires a total of 6xn multiplications and 5xn additions for an n

joint manipulator, when the inverse Jacobian is available. This approach has a number

of drawbacks. The approach is not general enough to accommodate some other appli-

cations such as manipulator compliance. The transition between motion segments is

not provided. The joint rate is computed using the current and final positions but the

sampling period of the system is always a finite number. As the result, joint position

deviates from the desired trajectory constantly.

Paul [I9791 introduced a general approach to Cartesian trajectory generation

based on homogeneous transformations. A drive transform, D(h), computed from the

initial and goal position equations, is added to an equation describing the initial posi-

tion in terms of the transformations in goal position and, as the motion variable h

varies linearly from 0 to 1, the manipulator is brought from the initial position to the

goal along a straight line and with two rotations. The successive Cartesian positions

are converted to the joint coordinates through the inverse kinematics.

The p vector of the drive transform is the difference between .the goal and the ini-

tial p vectors, i.e.,

PD = Pf - P i ; (3-4)

if this is interpolated by a scalar h linear with respect to time, a linear Cartesian motion

is generated. The rotation part of the D transform represents a rotation of two linear

components; the first is about a fixed axis and the second about the approach direction,

a, of the tool transformation. The constants in D(h) are computed once only at the

beginning of the motion and the intermediate positions need only to evaluate D(h) with

the appropriate h. The intermediate positions require fewer numeric calculations than

does updating an inverse Jacobian matrix used in resolved motion rate control. The

frame in which motion occurs can be controlled easily by the location of D(h) in the

position equation.

Transitions are considered in this approach separately for Cartesian and joint

motions. There are four different kinds of transition in terms of the current and the

next mode of motion since there are two possible modes. A transition to a Cartesian

motion is performed in Cartesian space by a smoothing polynomial blending the

current motion parameters in D(h) into the next segment. A transition to joint motion

is performed separately by each joint by a joint space smoothing polynomial blending

the two sets of boundary motion parameters in terms of joint positions, velocities,

accelerations. Any transition involving two different modes is performed by first con-

verting the current motion to a motion with the mode of the next motion so that the

transition can be treated as the one of the previous two cases.

Taylor later refined Paul's method in several aspects [Taylor 19771. Quaternion

representation is used for the rotational transformation in order to reduce the amount of

computation. For motions with constant initial and goal positions, intermediate posi-

tions can be precalculated sufficiently close to meet bounded deviation criteria. In real

time, interpolation techniques can be then applied time using precalculated positions.

The degeneracy problem is also treated to certain extent within the context of his

approach.

3. A Unified Motion Control Strategy [Paul and Zhang 19851

In Whitney's method large errors result when the manipulator moves at high

speed, since the evaluation of the inverse Jacobian matrix requires too much computa-

tion. It is also difficult to use his method to generate sensor-driven motions. The tran-

sition in Paul's and complex and inefficient. In addition, the joint motion in his

approach does not provide tracking of the final position as it should when the position

is moving. A new approach is proposed and implemented in the following discussion.

It maintains the generality in Paul's method, deals with the transition in an efficient

manner, and provides tracking in the joint motion.

Transition occurs when a manipulator is about to complete the motion to the

current destination position. Continuity of the motion is assured by the transition pro-

cess in which the motion parameters change continuously to those of next motion seg-

ment. Transition can take place in joint space, in which case it is computed on a per

joint basis, or in Cartesian space, in which case the Cartesian position of the

manipulator is under control during the transition. The transition is very efficient in

joint space while it is not in Cartesian space [Paul 19811. However, if changes during

the transition in joint space are kept small, changes in Cartesian space will also be

small, confining the the Cartesian position to a bounded region, provided the manipu-

lator is not close to a singularity. When the manipulator is close to the singularity, the

motion as well as the transition is numerically unstable [Paul and Stevenson 1984bl. If

transitions are handled exclusively in the joint space, however, the complexity of the

transition is reduced. This observation thus serves as a basis for dealing with the tran-

sition in the following motion generation method. Further if joint motion is generated

from the destination position back to the initial position, the tracking of the final posi-

tion can be easily provided.

3.1. Coordinate Systems

There are two fundamental coordinate systems to describe manipulator positions,

joint coordinates and Cartesian coordinates. The position of a manipulator is uniquely

specified by the joint coordinates and it is in joint coordinates that a manipulator is

controlled. Joint coordinates are, however, generally non-orthogonal with respect to

Cartesian directions and, therefore, do not provide a convenient set of coordinates in

which to perform the coordinate transformations used in the specification of manipula-

tion. Cartesian coordinates, on the other hand, are convenient in this respect, but they

must be mapped to joint coordinates to exercise control. The mapping process is done

in real time and is computationally expensive. Converting Cartesian coordinates to

joint coordinates, also known as inverse kinematics, is usually a one-to-many mapping,

with one kinematically equivalent Cartesian configuration corresponding to a set of

different joint configurations. In specifying a task, therefore, choices' of desired confi-

gurations must be considered so that the inverse kinematics is reduced to a one-to-one

mapping.

3.2. Description of Position

The end of an n joint robot manipulator is specified by the joint coordinates 8, or

by a homogeneous transformation T, which specifies the Cartesian position and orien-

tation of the end of the manipulator with respect to its base. A manipulator position

may be specified by a position equation, which, in its simplest form, equates T, to a

homogeneous transformation of desired position:

T, = A.

It is convenient to add more transformations to a position equation in order to express

the structure of the position. For example,

T, Tool = Obj A (3.6)

indicates that a tool is attached to the end of the manipulator and the destination posi-

tion is described relative to an object. This description makes the representation flexi-

ble, but the solution difficult as the equation must be manipulated to solve for T, first

before joint coordinates can be obtained.

The transformations in a position equation can be of different types. The

transformation T, is read-only. It is meaningless to assign values to it, for it is defined

by the rest of the transformations in the position equation. A transformation can also

be of type value. A value transformation is passed to the motion process with its

present values, which will not change once a motion is commenced even if it may be

assigned different values. The use of value transformations enables the motion control

system to premultiply these transformations in a position equation, thus reducing the

computational load during execution when the equation must be repeatedly evaluated.

Transformations whose values need be chaged while motions involving these

transformations are being executed correspond to another type, ref for reference.

These transformations are used to provide a mechanism to incorporate sensory
-

feedback, by which position and orientation of the'manipulator is corrected or modi-

fied while it is in motion. A camera, for example, monitors the approach of the mani-

pulator to position A in the above equation by correcting the values of Obj. The refer-

ence to a transformation can take place in the form of function evaluations, i.e., the

components of the transformation are defined as functions of motion parameters so

that, at different stages of the motion, the transformation renders different values.

3.3. Description of Motion

A manipulator task is defined by a sequence of position equations through which

the manipulator must be moved. A label is associated with each equation and, when

all the positions are solved, an ordered sequence of motions results and each of them is

of the form:

Manipulator tasks are specified by these positions in terms of Cartesian coordi-

nates. Motions between these positions, however, can be either in joint coordinates or

in Cartesian coordinates. After initial and goal positions are specified, other motion

parameters determine characteristics of a motion. These parameters are related to time

such as velocities and accelerations in Cartesian space or in joint space. Motion can

proceed at a constant velocity or at a constant acceleration followed by constant

deceleration. If motion parameters are specified as a structure of necessary attributes,

M, a motion can then be initiated by a move function.

which means to move to position pi with mode Mi- This function returns a sequence

number with a move request in order to simplify task synchronization.

3.4. Trajectory Generation

A trajectory of a manipulator is defined as a time sequence of manipulator posi-

tions in joint coordinates which brings the manipulator from its initial position to the

goal position. These positions must be sufficiently close to each other, forming input

to the manipulator servo system to control the manipulator smoothly and accurately. A

trajectory planner or trajectory generator is defined as the process which generates

these positions for a manipulator so as to satisfy such move requests as (3.7).

One fundamental requirement on a trajectory planner is the minimum rate at

which the planner must supply set-points to the joint servos. Set-points include infor-

mation on desired manipulator state in terms of joint positions, velocities, and

accelerations. The joint coordinate motions involve moderate amount of computations

for initial and goal joint positions, for interpolation of the intermediate joint positions,

and for the inverse kinematics when tracking of the final position is required. Carte-

sian coordinate motions, on the other hand, are much more difficult to compute

because of the complexity of inverse kinematics solved not only for the initial and goal

positions, but also for all intermediate positions. Motion of either mode requires addi-

tional computations if the transformations in the destination position equation are not

of value type, thus requiring evaluation of the goal position equation all the time. Effi-

ciency of the employed technique for the trajectory planner is important for a system

performance. An inefficient algorithm results in a decreased servo rate and a degraded

sy s tem.

In addition to generating set-points for the intermediate positions, a trajectory

planner must provide means for transition between segments of motion. Motion

parameters such as mode and acceleration time for the current motion are usually not

those for the next and, therefore, a blending trajectory must be generated to assure the

continuity of position, velocity and acceleration of the trajectory.

3.4.1. General Consideration

The kinematics of a motion between two positions can be defined in terms of

relative motion parameter h. The Cartesian position vector x , which consists of three

translational components and three rotational components, is computed by a function,

The motion is mostly a constant velocity motion by virtue of h varying linearly with

time, except for its beginning and end where transition takes place, as h varies in such

a way that the motion dynamics are taken into account by

The constant velocity may apply either to joint space, as in joint motion, or to Carte-

sian space, as in Cartesian motion, Assume a general case illustrated in Figure 3.1, in

which the manipulator is at position A at time t = -t, and a motion is to be generated

from the current destination position B to the next destination position C.

Figure 3.1. Segments of Motion

A segment of motion trajectory consists of two stages: in the first stage, the

motion starts from rest at -t,, and accelerates until t,,,, at which time the trajectory

has attained the desired velocity; in the second stage, the motion proceeds with the

specified constant velocity until transition to the next segment of motion starts. This

applies to both joint and Cartesian space. The motion trajectory consists of two parts:

the first part, BjNi in case of joint motion and Bcui in case of a Cartesian motion, speci-

fies a motion starting from rest and finally moving at the specified velocity. If the

manipulator is already in motion, a transition is required. At -tm, as the manipulator

begins the execution of the first part, the second part, a matching polynomialemhi, is

derived to remove any motion discontinuities between the current motion and next

motion to C. The transition is performed in the joint space and the discontinuities are

defined in the joint space regardless of the mode of motion in the next motion segment.

The two parts of the trajectory between -tat and t,, are illustrated in Figure 3.2 for

both Cartesian and joint motion.

Figure 3.2. Transition Polynomials

To develop the mathematics for generating the above trajectories, let

where the argument (-fa) indicates both positions are to be evaluated at the beginning

the transition.

3.4.2. Joint Coordinate Motion

The motion from B to C may be defined in joint cdrdinates as a function of h by

obtaining the joint coordinates corresponding to positions B and C, eB and Bc, as:

ejM = reBc+solve (E ~ p r ~ + ~ (t)) , (3.12)

where OBC = solve (B)-solve (C) and r = 1-h.

The variable r changes from 1 to 0 as the motion is made. When r = 1 at the

beginning of the motion, € I j M = € I B , the initial position. When r = 0 at the end of the

motion, 0 j ~ = solve (E ~ p r ~ + ~), the desired goal position.

The motion parameter h is defined as a polynomial function of time to provide for

continuity of position, velocity, acceleration, and jerk (the third derivative of position

with respect to time). A motion of constant velocity and of the above continuity

specification requires the boundary conditions on h shown in Table 3.1.

Table 3.1 Boundary Conditions for h

The number of boundary conditions calls for a 7th order polynomial, but the symmetry

of the conditions reduces the order to six. Assume the polynomial to have the form

where p is defined linear to time as

time

h

h ..
h
. . .
h

Using Table 3.1, the coefficients can be easily determined so that h is defined as, for

f lfacc,

h = ((2p-61p+51p4 tm/tseg,

facc

tacc ltseg

llfseg
0

0

-tact

0

0

0

0

and, for t>t,,,

fseg

1

llfseg
0

0

As noted above that at position A, a discontinuity of OA-€IB in position and a
. .

discontinuity of OA-Bc in velocity are compensated for by a second matching polyno-

mial. This polynomial will be defined only for -t,,lt<t,, to reduce the discontinui-

ties to zero by t,,. The initial acceleration and jerk of this matching polynomial are

zero, as are the final acceleration and jerk. To obtain $, at one sample period before

the transition begins, Eq. (3.1 1) is evaluated to obtain Oc(- t , ,5) , where z is the Sam-

ple period of the control system. ec is then estimated by

eC = (Oc (-tmC)-Oc (- taC-~))h. (3.17)

The boundary conditions of the matching polynomial are shown in Table 3.2.

Table 3.2 Boundary Conditions for 8

To find its coefficients, assume the polynomial of the following form:

emch = ((((a7~+a6) P + ~ s)P+a4 IP +a1)p+ao (3.18)

time

8

it ..
8
...
8

and, using the boundary conditions in Table 3.2, the coefficients are obtained as

- t a ~ ~

8 , -9,

i - i &

0

0

ta~c

0

0

0

0

The joint motion from position B to C is defined by Eq. (3.12) as a function of r,

which in turn is a function of the path motion parameter h. The time dependence of

the motion is specified by Eq. (3.13), where h is defined. This motion starts from rest,

acceleites to the desired path velocity and then moves at constant velocity. The

discontinuity in position and velocity between the tw; motions at the beginning of the

path is removed by the addition of the second matching polynomial, defined by Eq.

(3.18), during the accelerating portion of the path segment.

3.4.3. Cartesian Coordinate Motion

If a Cartesian motion is desired from B to C, the position Eq. (3.11) must be

modified to include a drive transform D(r) [Paul and Zhang 19841 in Expr. The drive

transform represents a translation p and rotation y about an axis e in space, both pro-

portional to r. When the argument r is zero, representing the end of the motion, D(r)

reduces to an identity transform. The position of the drive transform in the equation

determines the frame in which the rotation is defined.

To define D, rewrite Eq. (3.11) with the drive transform included in the form

Here Li represents the transform expression to the left of D and Ri represents the

transform expression to the right. At the beginning of the motion, position B is defined

by Eq. (3.12). This position is also defined with respect to position C in terms of D(r)

with r=l .

B = Lc(-fm) D(1) Rc(-t,c>,

which is solved for D(l), or

From Eq. (3.22), p, e, and y can be obtained and the Cartesian motion fromposition B

to C may then be described by

as r=l-h varies from 1 to 0, where motion parameter h is defined in Eqs. (3.15) and

(3.16). The transform D(r) represents a rotation of an angle r y about a unit vector e

and a translation rp. The unit vector e is defined in terms of the first two Euler angles,

@ and 8, as:

where Ole<lc. C + , S $, Ce, etc. stand for cos(@), sin(+), cos(0), etc. The translation is

defined to be p = rxi + ryj + rzk. With p and e, D(r) is defined by [Paul 19811:

where Crv, SrW7 andVrv, stand for cos (ry), sin (ry), and (1-C,,,,), respectively.

To solve for x, y, r, y , @, 8, define the elements of LF' (-t,,) B RZ' (-taccl from

Eq. (3.21) to be

One then solves the matrix equation with D(l) on one side and the right hand side of

Eq. (3.26) on the other, directly for the parameters x, y, z, y , @, 8.

As matrix equality implies element- by -element equality, the following may be ob-

tained directly from Eq. (3.27):

x =px, y =py, and z =p,. (3.28)

Equating the sum of the diagonal elements from Eq. (3.27),

and thus

C,,, = %(nx+oy+a,-1). (3.30)

Equating the difference of the off-diagonal pairs of the elements of Eq. (3.27),

and, as the rotation angle y is always less than n,

S,,, = +'/nl(ny-ox)z+(ax-nz)2+(oz-ay)z .

Finally, an expression for y from Eqs. (3.30) and (3.32) is obtained as

Equating off-diagonal pairs from Eq. (3.27) ,

Squaring and adding the 2nd and 3rd Equations in (3.34),

As OIe<x, Se is obtained as

Ce is obtained directly from Eq. (3.34) as

and thus

Q can be solved for from 2nd and 3rd Equations of (3.34):

As O ~ e < x and OIv<n, Q is obtained uniquely as

(ax-n,) + = tan-
(0,-ay >

Note that the definitions for the angular drive parameters break down as the angle of

rotation v approaches x. This lack of stability of the solution reflects reality, as

reorientations of approximately x are extremely unstable with the direction or rotation

of the manipulator wrist reversing as the angle moves through x. It is therefore reason-

able to restrict reorientations to less than approximately 0 . 8 ~ . With this restriction, the

definitions of the drive parameters are valid. Rotations of greater than 0 . 8 ~ can be

executed by a sequence of rotations, each of less than 0 . 8 ~ .

If the manipulator is already in motion when motion from B to C starts, a match-

ing polynomial must be added to the trajectory to remove any discontinuity. Since

Equation (3.23) is derived independently of the previous motion, the matching polyno-

mial given by Eq. (3.1 8) is calculated with the same boundary conditions in Table 3.1.

3.5. Discussion

The proposed method uses a distinct strategy to handle transitions all in joint

space, so that the four possible cases are dealt with by one method. This is made pos-

sible by the property that the matching polynomial is independent from the next mode

of motion. As summarized in Table 3.3, transition may start at t=tW-t,,-2 from joint

or Cartesian motion to joint or Cartesian motion. This greatly simplies the program-

ming and underitanding of the method, as demonstrated by the trajectory generating

program in Appendix C.

The computational complexity of the method varies from one sampling period to

another. If a uniform sampling period is used, the achievable sampling rate depends

only on the worst period in terms of time. In the above trajectory generator, the worst

case occurs in Cartesian motion at beginning of a transition to a Cartesian motion

regardless of the mode of the current motion, when the current set-point, the next drive

transform, as well as the coefficients of the matching polynomial are all computed.

This corresponds to one T6 derivation, two inverse kinematic solutions, and a drive

transform calculation. This contrasts with [Paul 19811, in which transition to a Carte-

sian motion is computed in Cartesian space. If the current motion is a joint motion, it

must be converted to a Cartesian motion first, requiring a direct kinematic solution. In

addition, two drive transforms, coefficients of the matching polynomial, and an inverse

kinematic solution are also computed. ore importantly, since the transition takes

place in Cartesian space, the computation of the matching polynomial with vector vari-

ables cannot be distributed, as opposed to to a scalar polynomial in the proposed

Table 3.3 Motion Control Summary

method above, where computatiofi of the matching polynomial can be distributed to

the joints.
-

 artesian Motion

h = tlt,,

r = 1-h

8 = solve (Li-l (h, t) D(r) Ri-l (h,t))

0 = deldt

h = tlt,,

r = 1-h

8 = solve (Li-l (h, t) D(r) Ri-l (h,t))

0 = deldt

OTMP = solve (EXPRi(O, t))

e = e + e ~

B = EXPRi-l(l,t)

ec = solve (EXPR,(O, t))

i3 ,~ = &solve (B)

Solve for x,y, z, W, +, 8 from

~ (1) = ~ ~ l (o , t) B R T ~ (0, t))

ec = (eC-eTMP)~~ . .
eAc = 0 - 0 ~

al = 2 t a c ~ e ~ c
a7 = 10a1+20%

a6 = -36al -70%

as = 45al+84a,,

a4 = -20al-35%

t = -t,,+Z

P = (t+t,c)l(2t,c)
h = ((2~-6)p+51p4*t,,lt,,,

r = 1-h

8 = solve (Li(h,t) D(r) Ri(h,t))

+((((a7~+a6)~+a~I~+a4)p~+a~)p+a~

0 = d eldt

Time

t,,<t<t,,-t,,-t

t = tseg-tat-2

t = tSeg-taC

-tat < t l twc

Joint Motion

h = tlt,,

r = 1-h

8 = rBBc+solve (EXPRi-,(h, t))

i = deldt

h = tlt,,,

r = 1-h

8 = rOBc+solve (EXPRi-1 (h, t))

9 = deldt

emP = solve (EXPRi(O, t))

e = 8tti~
eB = solve (EXPRi-1 (1, t))

Oc = solve (EXPRi(O, t))

i3 ,~ = &(IB

eBc = eB-eC

ec = (eC-eTMp)~~
iAc = &tic
a1 = 2 ~ a c c e A C

a7 = 10a1+20ao

;b = -36al-70ao

as = 45a1+84ao

= -20al - 3 5 ~

t = -t,,+Z

P = (t+4zcc)l(2t,c)
h = ((2~-6)p+5)p4*t,,lt,,,

r = 1-h

8 = reBc+solve (EXPRi(h, t))

+((((a,~+a6l~+a51~+a4)~~+a1)~+ao

0 = deldt

In a manner similar to [Paul 19811, sensor-guided motions are implemented by

defining ref transforms in position equations and compliant motion is achieved by

adding a COMPLY matrix at the appropriate location in the position equation. The

terminal cases from rest to motion or from motion to rest are not explicit in the above

algorithm. However, both can be considered as special cases of the general scheme in

Figure 3.1. A motion from rest requires an initialization process which sets 8 to

current position and velocity to zero and computes a 8, from the destination position

as if it were one sampling period before the transition at -fa,. A motion to rest can be

considered as one with the next destination position the same as the current one so that

a transition to the current destination is performed with the segment time set to t,,

Since there is no position nor velocity difference between the current and the next

positions, the manipulator automatically comes to a stop.

When a move to a position is started, the manipulator will not pass through that

position because a transition to a trajectory of the next goal position occurs before the

first goal position is reached. The manipulator must come to a stop at each interrnedi-

ate position along a path in order to reach each position exactly. It is also possible to

compute deviation of the actual trajectory from the goal [Paul 19811.

As examples, the above trajectory generator has been implemented for motion

control of PUMA 250 manipulator wnimation 19801. Its kinematics can be found in

Appendix A. Figure 3.3 shows a joint motion trajectory of joint 1, its position, velo-

city, acceleration, and jerk plots. Figure 3.4 shows the same motion with longer t,,.

Figure 3.5 shows the trajectory of joint one in executing a Cartesian motion. Notice in

this case, velocity is no longer linear in Joint space.

5 10 15 26
tlrncs (sac)

Figure 3.3. Trajectories of Joi-nt One in Joint Mode

0 8 10 15
t lme (ssc)

- vsleclry

0 5 10 15
t lme (sac)

Figure 3.4. Joint Mode Trajectories with Longer t,,

0 2 4
tlma (see)

- -

- -

- -

- -

I I I .-
0 2 4

tlma (ssc)

Figure 3.5. Trajectories of Joint One in Cartesian Mode

i " " l " " I " " l ' J

I
-

-

- 3

-

-

-

-

-

-
1 I I 1 :

-

4. Conclusion

This section has discussed the specification of motion for a robot manipulator,

reviewed different methods which satisfy the motion specification, and introduced a

unified approach to motion trajectory generation. The approach supports both Carte-

sian mode of motion and joint mode of motion, either of which can be functionally

defined, and treats the transition in a simple and efficient manner. The Table 3.3 sum-

merizes the approach.

CHAPTER IV

CALCULATION OF MANIPULATOR DYNAMICS

1. Introduction

The problem of the dynamics of a robot manipulator is given the Cartesian posi-

tion, velocity, and desired acceleration of the end of the manipulator (x, x, x), find the

joint torque vector z necessary to generate the desired acceleration. The problem is

important for a number of reasons. The control system that does not take the dynamics

into consideration will always have its trajectory deviating from the desired trajectory

due to joint torque errors. When a manipulator is to apply forces, the dynamics also

plays an essential part in the accuracy of the force application.

Even though the theoretical problems in manipulator dynamics have been solved

[Bejczy and Lee 1983, Hughes 1977, and Luh, Walker and Paul 19801, the question of

how to apply the theories to manipulator control still remains to be answered. This

chapter first examines the two basic formulations of manipulator dynamics, the

Lagrangian formulation and the Newton-Euler formulation, and establishes the

superiority of the Lagrangian method in the context of manipulator control. Based on

significance analysis, the centripetal and Coriolis coefficients in the symbolic Lagran-

gian equations are ignored and the remaining coefficients derived, as an example, for

PUMA 560 manipulator. An experimental method is then proposed and used to deter-

mine the constants in the simplified dynamics equations.

2. Formulations of Dynamics Equations

There have been efforts in recent years on the study of the manipulator dynamics

and much progress has been made [Khan 1969, Bejczy 1974, ~ a u l 1981, Hollerbach

1980, Hughes 1977, and Luh, Walker and Paul 19801. Two major approaches in terms

of formulation of the dynamics equations are the Newton-Euler method [Luh, Walker

and Paul 19801 and the Lagrangian formulation[Bejczy 19741. As in the case of solv-

ing the linear system x = Ay, given an x, there are two ways of obtaining y: one can

either use Gaussian elimination to obtain components of y one by one or find the

inverse of matrix A to obtain y all at once. The Newton-Euler method solves the prob-

lem recursively to find joint torques one by one whereas the Lagrangian method solves

it by closed-form equations. Newton-Euler method requires less computation per itera-

tion of the solution than does the Lagrangian method. However, once the closed-form

equations are obtained in Lagrangian method, they remain valid provided the manipu-

lator configuration remains unchanged.

The Lagrangian formulation was first developed to compute closed-form manipu-

lator dynamics [Uicker 1966 and Kahn 19691. The formulation is based on the Lagran-

gian equation

where L = K - P is the Lagrangian and K and P are kinetic energy and potential energy

of the manipulator. Using the expressions for K and P in terms of manipulator pararne-

ters, the dynamics equation for joint i is obtained as

where

6
DG = C Trace

p=max i , j

In the above equations, Tp = A1& . . Ap, mi is the mass of link i, 'c is the

center of mi with respect to the base of link i, Ji is the pseudo inertia matrix of link i,

and lai is the actuator inertia of link i.

This formulation explicitly expresses the dynamics in terms of gravity loading Di,

effective inertia Dii and coupling inertias Dii where igj, and Coriolis and centripetal

coefficients Dijk. The evaluation of the dynamic terms requires tens of thousands of

arithmetic operations [Brady, et al. 19821 for each update. One common practice to

reduce the complexity of Lagrangian dynamics equations is to derive the dynamics

terms symbolically. The method of symbolic derivation of dynamics model was fust

introduced by Bejczy 119741 [Bejczy and Lee 19831. The dynamics model of a mani-

pulator carrying a load was also derived by Izaguirre [1984]. Many efficient pro-

cedures for generating dynamics models of robot manipulators have also been devised

and automatic systems built [Murray 1983, and Cesareo 19831.

The Newton-Euler method is based on Newton's law of linear motion and Euler's

equation of angular motion that for a rigid body i, a linear movement or an angular

rotation requires force fi = mii: or net torque 2i = Jimi + COixJiCOi, where r is the center

of mass, J is the pseudo inertial matrix and C O ~ is the angular velocity.

The method consists a set of forward equations, which propagate velocities and

accelerations of the joints from the base to the end of the manipulator, and a set of

backward equations, which propagate backwards- joint torques or forces due to the

velocities and accelerations from the end to the base. If all joints are revolute, for

example, the forward equations have the form

Let

then the backward equations will be

Newton-Euler method is much more efficient computationally than the Lagran-

gian formulation because of the recursive definition. the rotation is represented as three

angles as opposed to a rotational 3x3 matrix used by Lagrangian method. The formu-

lation, however, does not explicitly generate the different dynamic terms.

It has been shown that the two formulations are equivalent to each other in the

sense that algorithms exist to compute Lagrangian equations recursively as a backward

recursion and a forward recursion and, further, than the Newton-Euler method with

proper rotation representation can be expressed in closed-form, of which computa-

tional complexity also becomes equal to that of Lagrangian formulation [Silver 19821.

3. Comparisons of the Two Formulations

Both the Newton-Euler and the Lagrangian formulation involve too many numer-

ical operations in their present forms to be applied to real-time control. Similar to the

situation of manipulator trajectory generation, the requirement on the rate at which

dynamics is supplied to the joints is determined by the control system, which, in addi-

tion to computing the manipulator set-points, has to compute dynamics as well: There-

fore, these methods must be simplified to reduce the computations necessary to update

the dynamics.

When the dynamics is calculated by a parallel computer, the Lagrangian formula-

tion is preferred, with each joint computing its own dynamics in parallel with others.

The Newton-Euler method, on the other hand, is inherently a serial process. Although

there have been attempts [Luh and Lin 1983, Nigam and Lee 1985, and Kasahara and

Narita 19851 to parallelize the Newton-Euler equations, the procedure is not generally

applicable and resulting systems are extremely complex and require heavy variable

sharing and data interaction among processes, making the implementation difficult.

When considered for real-time control of robot manipulators, the Newton-Euler

method does not really provide a feasible solution, since the formulation of the equa-

tions requires that they be updated at the rate of the joint servos, regardless of whether

the dynamics of the system changes at that rate. Given the present computer technol-

ogy, system capable of performing such a throughput for a robot manipulator cannot be

economically justified. In contrast, the Lagrangian equations can be computed

independently of the manipulator joint servos when the dynamic terms are derived

symbolically. This makes it possible to update the manipulator dynamics not at the

rate of the joint servos but at the rate of manipulator configuration changes, of which

the dynamics equations are functions. It is also possible in Lagrangian equations to

simplify the dynamics terms based on the significant analysis once they are derived.

4. Simplification of Lagrangian Dynamics Equations

Bejczy first noticed the disparity of the roles that different dynamics terms play in

the dynamics equations [Bejczy 19741 and Paul extended the idea to the elimination of

the insignificant dynamics terms and expressions within terms when using the equa-

tions for manipulator control Paul 1981, and Paul et al. 19831. The complete elimina-

tion of the velocity dependent terms Diik has been a subject of much controversy. It has

been shown [Brady, et al. 19821 that there are situations where centripetal and Coriolis

forces dominate the inertial forces. In general, however, the manipulator joints experi-

ence high velocities only during the gross motions when the accuracy of the control is

not critical. During the fine motions when the control accuracy is important, joints

move with high accelerations and very low velocities so that the gravitational and iner-

tial forces become dominant and, therefore, velocity dependent forces can be justly

ignored.

Based on the above argument it can be concluded that Coriolis forces play a much

less significant role in manipulator dynamics than the inertial and gravitational terms

and consequently do not justify computation required when the triple summation in Eq.

(4.2) is to be computed. If only limited computing power is available and approxima-

tion must be made, centripetal and Coriolis forces should be ignored in dynamics com-

putation.

Further simplifications can be made in the expressions of the dynamics terms.

These symbolic terms are functions of manipulator link parameters such as link

masses, center of masses, and radii of gyration. One can examine the relative signifi-

cance within an expression and ignore the less significant terms. For example, when

the x component of a center of mass is far less than the y component and if they are to

be added, one can approximate the result by the y component. Such simplified Dynam-

ics equations based on Lagrangian method for PUMA 560 manipulator has been

derived for the gravity loadings and effective inertias and one coupling inertia term

Du in Paul, Ma and Zhang 19831. The detailed results and center of masses and radii

of gyration are also given in Appendix B. The final symbolic expressions are listed

below.

4.1. Gravity Loadings

When the symbolic expressions are obtained, all matrix operations are replaced

by scalar operations. Gravity loadings for PUMA 560 manipulator are obtained as fol-

lows:

where the symbolic expressions for the constants cy dependent on link parameters can

be found in Appendix B.

4.2. Effective Inertias

The symbolic effective inertias Dii for PUMA 560 manipulator are obtained as

follows:

where the symbolic expressions for constants bij dependent on link parameters can be

found in Appendix B.

4.3. Coupling Inertias

One coupling inertial term, D23 more significant than any other, has been derived.

The expressions for bijk can be found in Appendix B and a complete set of inertia

terns for PUMA 560 manipulator can be found in [Bejczy and Lee 19831.
. .

5. Determination of the Dynamics Constants

The symbolic expressions for the dynamics consists of variables, which are func-

tions of sines and cosines of joint positions, and constants like bii and c ~ , which

depend on the manipulator link parameters such as link mass, center of mass, and radii

of gyrations. When the dynamics equations are used in the control system of a mani-

pulator, the values of the constants must be determined. One may actually take meas-

urements of the links or read engineering drawings of the manipulator to obtain the

dimensions of centers of mass and radius of gyration of each link, calculate the links

masses by the measurements and the density of the materials the links are made of, and

compute the dynamics constants using the symbolic expressions. Although values of

the link parameters can bd accurately calculated from the measurements and the draw-

ings, the process is tedious and the calculated values can sometimes be in error.

An alternative to obtain the constants is an empirical approach. By actually run-

ning the manipulator, one observes joint torques necessary to generate the motion

while the manipulator moves along a trajectory with known motion parameters. Since

the joint torque is directly related to the constants by the dynamics equations and all

intermediate joints positions as well as their sines and cosines are known, a set of -

equations linear to the constants can be established from the readings of joint torque

and position and used to solve for the constants in the dynamics equations. If n con-

stants are to be determined, at least n simultaneous and independent equations are

necessary to uniquely determine the constants. An overconstrained simultaneous sys-

tem of equations also can be used to obtain the best estimate of the constants. This

method takes the nonlinearity of the manipulator into account and can be repeatedly

carried out until optimal results are reached.

5.1. Joint Torque Calibration

To determine the dynamics constants experimentally, it is important to know the

joint torques of all the joints at any time instant. This can be achieved by using force

sensors at the joints. For a revolute joint, its force sensor records the joint torque read-

ings; for a prismatic joint, its force sensor records the joint force readings. While the

form of joint sensors may vary, if the manipulator joints are actuated by electric

motors, joint motor currents provide a direct measurement on the force or torque being

exerted by joints. Figure 4.1 shows a typical relationship between a joint motor current

and joint output torque.

The output torque is approximately linear to the motor current except for the

offset at the origin and a diverging curvature on both curves, which correspond to the

two directions of motion. The offset at the origin is caused by static friction that the

joint must overcome before any motion at the joint can result. The diverging charac-

teristic explains the load dependent nature of joint friction, which increases nonlinearly

with the increase in load. In practice, however, the functional relationship between

joint torque and current, which is complex as well as difficult to determine, is usually

approximated by a linear relationship. In this case, four quantities will fully describe

each joint and the process of computing torque from current becomes a simple and

efficient linear mapping. Let Api and Bpi be the slope and offset of the relationship for

Figure 4.1. Joint Torque versus Motor Current

positive velocity and let A,. and B,. be the slope and offset for the negative velocity

direction, the following equations represent the torque/current calibration for joint i:

where zi refers to the torque value and Ii the motor. current of joint i.

As a demonstration, the above method has been performed on the PUMA 560

manipulator. The measurements of output torques versus joint motor currents for each

one of-the six joints are illustrated in Figure 4.2. Linear approximations as described

by Eq. (4.12) have also been obtained for PUMA 560 manipulator and the results are

listed in Table 4.1.

Table 4.1 Joint Torque Calibration of PUMA 560

Joint 4 *P An Bn

In Table 4.1, the slope As are in oz-inldac and Bs in oz-in. The unit dac stands for

digital-to-analog conversion, in which PUMA controller sends currents to joint motors.

When one reads current values from the joint motors, another unit, adc for analog-to-

digital conversion, is usually used. In this work, the two units are related linearly by

Iadc = AcIdac + Bc (4.14)

where, for the PUMA controller in the experiment, A, = 5.74 and Bc = -61.30, for all

joints. Table 4.1 then serves as a basic relationship from which the joint output torques

are derived to determine the dynamics constants.

5.2. Determination of Gravity Loadings

To obtain gravitational constants cq in Eq. (4.2) from the knowledge of joint

torques zi, the effects due to other dynamics terms must be eliminated so that the joint

becomes a function of gravity loading. One simple method to achieve this is to move

only the joint of interest and have other joints remain stationary. Under these condi-

tions, the velocity and acceleration dependent terms disappear from the Eq. (4.2) and

-1000 -500 0 500 100
Currant

I I I :
-

-400 -200 0 200 40
Currant

-10
4 0 0 -400 -200 0 200 400 BO -1000 -500 0 500 100

Current Current

~ o i n t a .mint a

1 1 1 1 I . . . -
-500 -250 0 250 500

Current
-400 -200 0 200

Current

Figure 4.2. Joint Torclue Calibration for the PUMA 5G0

. the following equation results:

zi = Di (4.15)

In general, each Di involves several constants and, therefore, the number of positions

where the measurements are taken must at least match the number of the constants to

obtain enough number of independent linear simultaneous equations to solve for cq.

Care must be taken also of how the joint being measured moves. Tlie relationships in

Table 4.1 are valid only when there is a non-zero velocity; any current readings taken

while the joint is stationary correspond to region between the two curves which is

highly nondeterministic. Configurations of PUMA manipulator used to measure the

gravitational constants are listed in Table 4.2. Entries left blank are not important for

the measurements.

Table 4.2 Configurations for cv Measurement

As the result, the gravitational constants for the PUMA 560 in the experiment have

been determined to be:

cil = 6373.(oz-in)
1 cgl = -80.(oz -in)

c& = 1 130.(oz -in)
I c50 = -70. (oz -in)

The gravity loading terms Di can be evaluated easily with these constants from

dynamics compensation. Experiments have proved the results to be satisfactory.

5.3. Effective Inertias

The knowledge of the effective inertias is important in dynamics compensation

when the joints experience acceleration or deceleration. The approach to their deter-

mination is similar to that used for measuring gravitational constants except, in this

case, the situation is complicated by the fact that the instantaneous joint accelerations

are not directly obtainable. Dynamics Eq. (4.2) when all joint accelerations and velo-

cities are zero except for joint i has the form:

. .
zi = (lai + Dii)Bi + Di (4.17)

The gravity loading term Di is available from the previous section and if it is moved to

the right-hand side, the equation becomes

. .
zi - Di = (lai + Dii)Bi (4.18)

It is noted in the above equation that since Dii is always a function of only B j with

j>i, if all joints except for joint i remain stationary, the coefficient of the acceleration

on the left-hand side of the above equation is not time-varying. To make use of this

property, Eq. (4.14) can be integrated twice with respect to time. Physically, Equation

(4.14) represents Newton's Law as applied to a manipulator joint. The first integration

produces linear or angular momentum and the second intergration produces work done

by the joint. The evaluation of the integration of the right-hand side then becomes

computation of work, requiring only the link inertia multiplied by the traveled distance

or the difference between the initial and terminal joint positions, which are easily

obtainable. The evaluation of the double integration of the left-hand side can be per-

formed numerically as a double summation with the instantaneous values of the inter-

grand known at all times.

Let AT stand for the sampling period and the integration be performed over n

sampling periods. The left-hand side after the first integration becomes a momentum

M and

mAT m
M (m AT) = 1 (T ~ - Di)dt = (T ~ (k) - Di (k))AT

0 k=O

To integrate the above equation again, work W (t) is obtained

nAT n
W(n AT) = I M (t)dt - x M (rn AT)AT = (q (k) - Di (k))AT AT 1 (4.20)

0 m=O

Integrating the right-hand side of Eq. (4.14) and assuming that both lai and Dii are not

functions of time, one first gets

Assume that Bi(o)=o and integrate the above equation over time again, one gets

Combining equations (4.16), (4.18), and (4.20) leads to

provided that Bi (nAT)#Oi(0).

In Eq. (4.19), the left-hand side is an expression in terms of dynamics constants to

be determined, if positions all joints outer to link i where Dii is being measured remain

unchanged. Of the terms on the right-hand side, ei and Bi(nAT) are the initial and final

joint positions, instantaneous zi(k) can be calculated by the relationship between joint

torque and current, and Di(k) can be evaluated using the gravitational constants meas-

ured above from the arm configuration at each time instant. Equation (4.19), therefore,

is the basic relation followed to calculate the inertial constants bii.

The details of measurement made on PUMA 560 manipulator are described by

the following sets of equations, with set i corresponding to the measurement of Dii.

The joints positions not specified in a set of equation are irrelevant to that measure-

ment. Again, enough number of independent equations must be made available for

solving constants of each link. In these equations, each bfo+lai is treated as one con-

stant, because they are inseparable.

Joints 5 and 6 are simple and one equation is sufficient for each link. For joint 6,

and for Joint 5

When determining constants in D44, ej where j>4.must not move.

When determining constants in Dg3, ej where j>3 must not move.

When measuring constants in D22, ej where j > 2 must not move.

Dll is the most complicated and, when the constants in it are measured, 8, where j> 1

must not move for each chosen configuration and, since there are six constants to be

determined, a total of six independent equations are necessary.

The inertial constants for PUMA 560 measured by the above equations have been

determined as

The coupling inertias, unfortunately, can not be as easily determined as Eq.

(4.22), for Dij is a function of 0, and, to measure constants in Dij, 0, must be in
. .

motion. Consequently, when Eq. (4.17) with non-zero ej is integrated, constants in Di

can no longer be isolated. If integration were to be performed numerically, all con-

stants would be considered at the same time and one would have to be able to read

instantaneous joint acceleration.

6. Conclusion

This Chapter discusses the dynamics problem in manipulator control. Among dif-

ferent methods available for computing dynamics, Lagrangian equations proves to be

the most appropriate for manipulator control. Due to the nature of the equations. the

formulation can be easily implemented on a parallel computer with interactions among

processors minimized. Its closed form makes it possible to derive the equations sym-

bolically and compute them in background at a rate slower than the joint servo rate,

thereby reducing real-time computational complexity considerably. The symbolic

equations can also be simplified based on significant analysis; in particular, the velo-

city dependent terms Diik can be justly ignored. Using the method introduced in this

Chapter, the constants in the dynamics equations can be obtained experimentally for

applications. PUMA 560 manipulator is used as an example to demonstrate the

developed methods.

In all the above discussions, any load carried by the manipulator is not considered

in the dynamics calculation. Dynamics equations with load taken into account can be

treated by first calculating the equations without a load and then adding to them a

second set of equations due to load only. The detailed discussion can be found in [Iza-

guirre and Paul 19841.

CHAPTER V

COMPLIANCE AND HYBRID CONTROL

1. Introduction

The previous chapters dealt with control of robot manipulators in free space

where it was assumed that manipulators are not required to make physical contact with

the environment. However, this is usually not the case in many manipulator tasks.

Assembly, for example, requires physical interaction between the manipulator and the

parts to be assembled. Two problems naturally arise from these tasks: first, when con-

tact is first made between the manipulator and a part, how is the contact achieved in a

collision free manner to avoid damage that would otherwise result to both the manipu-

lator and the part; secondly, once the contact is made, how does a manipulator handle

geometric constraints presented by the task which prevent it-from moving in certain

directions while performing the task.

The importance for a robot manipulator to control force has long been recognized

[Inoue 197 1, Paul 1972, Paul and Shimano 1976, and Raibert and Craig 198 11 [Groom

1972, Silver 1973, Whitney 1977, and Salisbury 19801. As an alternative to pure posi-

tion control, a manipulator actively monitors the contact forces to overcome its inabil-

ity under the circumstances where it cannot possibly perform tasks constrained by

environment by its limited positioning accuracy. By making use of the large forces

developed between the manipulator and the parts, a manipulator can correct or modify

positions in such a way as to minimize the contact forces presumably caused by the

- positional errors. In many cases, the tolerance of the task is usually of order of several

tenths of a millimeter, while the contact forces due to position errors could easily reach

several kilograms. Thus, treating geometric constraints as a guidance rather than obs-

tacles enables a manipulator to succeed in these tasks.

Two distinct force control or compliance strategies, passive mechanical compli-

ance and active programmed compliance, have been developed for a manipulator to be

capable of reacting or complying to contact forces. The former strategy relies on spe-

cial mechanical devices which comply to external forces in certain directions [Lord

19831. The technique is limited by both its range and its dependency on applications.

When a new task is to be performed or when the center of compliance changes, new

compliance devices are necessary. On the other hand, the other more flexible strategy,

the programmed compliance, is built into the manipulator control system. Information

on the external forces collected by the sensing system is used to modify the motions.

This way, it is possible to change the compliance required by the task geometry, as the

task proceeds, as well as the center of compliance.

Among various methods proposed for manipulator active force control, they can

be classified as explicit force feedback approaches and hybrid control approaches and

there are various problems associated with each of the proposed approaches. A stiff-

ness approach [Whitney 19851 computes reaction forces that a manipulator should

apply in response to geometric constraints, but because of this, it will fail near singu-

larity regions where manipulator is unable to apply Cartesian forces by its joints. The

hybrid control method will not fail near the singularity regions, but since Jacobian

inverse must be computed, the control strategy must be designed to be efficient in

order to be applied for real-time control. This Chapter examines the representative

force control schemes and proposes a modified hybrid control method. The stability of

Cartesian force control systems, which has not yet been treated in any other literature,

will also be investigated. Finally, the theoretical development is demonstrated by an

implementation on PUMA 560 manipulator.

2. Compliance Specification

Mason summerized the work in the area of compliance specification [Mason

19791. The contact of interest between the manipulator and the environment is that

between the end effector and the part being manipulated. Given a manipulator task, a

Cartesian coordinate frame can be chosen as compliance frame so that the six degrees

of freedom in the frame are partitioned into two orthogonal complement sets, with

directions in one set constrained by the task geometry and the directions in the other

set unconstrained. This partition can be expressed by a six-by-six diagonal selection

matrix S, whose ith diagonal element, boolean si, specifies the constraint of ith direc-

tion, as in Eq. (5.1).

If ith direction is constrained, si = 1 and, if it is not, si = 0. Consider, for example, the

case of peg-in-hole illustrated in Figure 1.1. The compliance frame is depicted with the

z axis aligned with the hole axis. The motion is allowed only along and about z axis,

but neither along nor about both x and y directions. Therefore, the corresponding

selection matrix has the form

Associated with a selection matrix is its complement which has ones in directions

along or about which force is constrained, i.e., no force can be applied in those direc-

tions because of the absence of the geometric constraints. To specify a task, two sets

of trajectories must be specified. In constrained directions, a set of force trajectories

define how forces will be applied; in unconstrained directions, motion trajectories are

specified in much the same way as motion specification in free space except a few

degrees of motion freedom have been lost. Two extreme cases occur, when a manipu-

lator is free to move in any directions but cannot apply any forces, and when a manipu-

lator tip is set in concrete so that no motion is possible in any directions but arbitrary

forces can be exerted.

The choice of center of compliance or compliance frame is particularly important

in a task specification. The compliance frame may have to change from motion to

motion, as does the compliance requirement, and it must be so chosen that the degrees

of freedom can be readily partitioned into a motion degree of freedom set and a force

degree of freedom set. Tracing a comer in Figure 5.1, for example, requires the mani-

pulator to comply in y and about z and x directions and control position in the rest of

directions when the block travels along AB side until the end of AB side is reached, at

which time the block starts to trace BC side, compliance directions are switched to

along x and about z and y, and the other directions become position controlled.

Figure Tracing Comer

3. Representatives of Active Force Control

A number of methods have been proposed and implemented for manipulator force

control applications through manipulator's active reaction to contact forces, as opposed

to passive response of mechanical devices, to perform tasks with compliance require-

ment. The fashion in which a manipulator reacts to the external contact forces can also

be different. There are mainly two distinct approaches, namely the explicit force feed-

back or stiffness control approach [Groom 1972, Silver 1973, Whitney 1977, and Salis-

bury 19801 and hybrid control approach [Inoue 1971, Paul and Shimano 1976, and

Raibert and Craig 198 11.

To understand different approaches, consider first a simplified manipulator sys-

tem that controls pure position in Figure 5.2.

Figure 5.2. A Pure Position Controller

8

A Cartesian set-point Xd is converted to joint set-point Od by the inverse kinematics

A-'. Errors d8 is obtained by comparing ed and the actual joint position 8. d e is then

fed into the joint servo controller, which calculates corrective torques to be applied to

Arm

joint. For the sake of simplicity, a joint servo contains only a stiffness term and other

>
Xd

>

possible terms such as velocity damping and integral term are ignored. A manipulator

control system consists of n such controllers, working independently to control indivi-

A-I

dual joints.

e d d8
- &

In the explicit force feedback approach, compliance strategy is built upon the

thought that passive compliance of the mechanical systems can be achieved by the

manipulator if it can react differently in terms of force in different directions. In direc-

tions where compliance is needed, weak Cartesian force reactions or stiffnesses are

maintained by the controller, thereby providing compliance in these directions. In

directions where no geometric constraints exist, the manipulator maintains high

stiffnesses. Conceptually, this makes a manipulator behave like a six-dimensional

spring with different stiffnesses defined for six Cartesian directions. In one of the most

successful and complete reports based on the above approach, Salisbury [I9801 imple-

mented the idea and demonstrated how a joint actuated manipulator can accomplish

the Cartesian stiffness specifications. Its simplified version with no stability

67

consideration can be illustrated by the block diagram in Figure 5.3.

Figure 5.3. Stiffness Control Method

To achieve programmable compliance in Cartesian space, Cartesian stiffness charac-

teristics of the manipulator are defined by a diagonal stiffness matrix K, one similar to

the selection matrix S except the diagonal elements are no longer booleans but real

numbers representing the desired stiffnesses in six directions. Cartesian reaction forces

f then equal the Cartesian errors dx multiplied by K , i.e,

f = K x (5.3)

where K = diag [k k2, + , k6]. The joint reaction torques are obtained by Eq. (2.3)

as

JT K

The joint reactions torques then drive the individual joints. To compute the Cartesian

errors, joints errors are multiplied by J, i.e.,

A r m -
Xd

3

The final formulation becomes

J
e d

A-I

where

& = J ~ K J

4

is defined by Salisbury as joint stiffness matrix.

This method deals with compliance directly in the Cartesian space where compli-

ance is specified. Cartesian reaction forces, however, are realized in the joint space.
A

The method is computational efficient since the joint stiffness matrix KO, which is not

diagonal in general, can be computed in background at a rate slower than the joint ser-
A

vos and it is possible to control the joints in integer arithmetics by properly scaling &.

In contrast, hybrid control approach treats the degrees of freedom of the Cartesian

space as those strictly controlled in force and those strictly controlled in position. At

joint level, manipulator is perfectly stiff to control positions. An early implementation

of this approach was attempted by [Paul and Shimano 19771. In Paul and Shimano's

free-joint method, the compliance specification S given with respect to Cartesian com-

pliance frame is matched as closely as possible to a joint compliance selection matrix

So, which is also diagonal with 1s and 0s and has a dimension equal to the number of

joints. Joint errors dB are modified by multiplying with So first before multiplied by

the diagonal joint stiffness matrix &, as illustrated in Figure 5.4.

Figure 5.4. Free-Joint Method

Xd

Given a compliance requirement, a matching process determines one joint for

each compliant direction specified, on the basis of joints' ability to most closely pro-

vide the compliance. Joint space then is partitioned into force servoed subset and

A-' I - s o
do, - Ke

r

A r m -

position servoed subset. In general, an exact partition implies that the set of n 'joints is

divided into two subsets, each of which contains a sufficient number of joints to pro-

vide positional degrees of freedom or compliant degrees of freedom, respectively, of

the Cartesian space. Only when the matching is perfect does the method give an exact

solution. This would be the case, for example for the PUMA 560, if the manipulation

is to comply in rotation in the approach direction which happens to be the z axis about

which joint six rotates so that compliance in the direction is perfectly provided. When

the partition is not perfect, position errors due to force servoed joints are computed and

compensated for by the position servoed joints continuously.

The method is nonetheless simple and efficient with joints servoed independently.

Although the method is at best an approximate one, it has been successful in many

cases because the geometry of the task can usually well fit into the geometry of the

manipulator joints, allowing almost perfect partition .of the joint space, when some

manipulator joints are aligned with the desired compliance directions.

Craig and Raibert proposed an improved hybrid control method [Raibert and

Craig 19811 based on Paul and Shimano's and Mason's work. A simplified version of

the approach is illustrated in Figure 5.5.

Figure 5.5. Hybrid Control Method

w I - S 4 J - ~ - Ke

The approach makes use of the selection matrix S to compute Cartesian errors in posi-

tion controlled directions

Arm

dx, = (I - S)dx (5.7)

where dx is the difference between the actual Cartesian positions and the disired posi-

tions. Position errors in compliant directions are thus ignored. The real errors dx, are

then converted back to joint space for joint servos by inverse Jacobian matrix J-l. The

formulation then becomes

To calculate reaction torques, joint stiffness matrix is used as in Eq. (5.9).

The method asserts the manipulator is still a positioner. Cartesian space and joint

space interact by way of position errors not reaction forces. Further an infinite stiff-

ness is also maintained at each manipulator joint.

4. Modified Hybrid Control Method [Zhang and Paul 19851

The different methods discussed in the previous section reflect the general

approaches to force control or compliance. Drawbacks, however, do exist in these

methods. The free-joint method is approximate in nature and will not perform well in

general situations. Its application is restricted to special-tasks. Active stiffness control

experiences problems when the manipulator approaches singularities. This can be

demonstrated by the following example of a simple manipulator in Figure 5.6.

Figure 5.6. A Simple Manipulator

The manipulator has two links of unit length and two revolute joints. The manipulator

has the differential relationship relating x2 and y 2 to and O2 :

The manipulator has a singularity point when its 82 approaches zero, in which case,

sin (e2)=02, cos(82) = 1, and the manipulator Jacobian matrix becomes

and assume K = diag [k,, ky], the joint stiffness matrix equals

If the manipulator is to control x2 in position and y2 in force, k,, = 0 and the joint stiff-

ness matrix becomes

No restoring torques will be applied whatsoever because of the null joint stiffness

matrix, even though position errors may occur in the position controlled x2 direction.

The reason for this inability of manipulator to control position in regions around

the singularities lies in that the formulation relies on reaction forces to control posi-

tions, but, unfortunately, at those regions the manipulator is not capable of applying

Cartesian forces, even though position errors can still be corrected.

Craig and Raibert's hybrid control method, on the other hand, does not experi-

ence such regions. In this case, the Cartesian reaction errors rather than reaction forces

are computed and then converted back to the joint space by the inverse Jacobian J-'.

The joint errors are then multiplied by the joint stiffness to obtain joint reaction

torques. For the simple manipulator in Figure 5.6, the selection matrix for compliance

in y 2 and position control in x 2 is

and the joint reaction torques are

where, for the purpose of comparison with stiffness control, let dx = Jd8. The inverse

Jacobian of our simple manipulator equals

and, for small g2 it becomes

and the joint reaction torques are

where ki is the stiffness of joint i. The restoring torques will not approacli zero even

when the manipulator approaches singularity. Error in position can only be caused by

error in e l , which will be corrected. Error in g2 will not cause error in x2 and, there-

fore, will not be corrected. The effectiveness of the method is due to the fact that posi-

tion errors maintain a better integrity in regions of singularity than the forces, and they
-

are used in Cartesian space as a measure of how joints should react, as pointed out ear-

lier.

The hybrid control method is correct theoretically. In practice, however, problem

exists in the proposed controller architecture. Calculation of errors is performed in

Cartesian space and, therefore, has to be carried out in real numbers, and so does the

next matrix/vector multiplication converting Cartesian errors back to joint space.

Further, the inclusion of the costly inverse kinematics in the feedback loop causes it

evaluated every sampling period. All of the computation presents a computational

load inappropriate for real-time control. To overcome the computational problem, the

controller illustrated in Figure 5.7 is proposed.

Figure 5.7. Modified Hybrid Control Method

Cartesian errors are calculated by transforming joint errors by the Jacobian matrix

instead of comparing desired and actual Cartesian positions. Reaction Cartesian errors

are obtained by multiplying dx by I-S. They are converted back to joint space by the

Jacobian inverse matrix to be multiplied by the joint stiffnesses. The final joint reac-

tion torques become

z = K~J- ' (I - S)J& (5.10a)

The inverse kinematics is eliminated from the feedback loop in this case and, similar to

the active stiffness control of Figure 5.3, the matrix product,

1 - + J
Xd

*
7

J-' A-I +

1 ,

-

KO - Arm -

Ce = J-' (I-S) J (5. lob)

defined as joint compliance matrix, can be computed in background and properly

scaled for integer arithmetics.

Viewed fiom individual joints, errors in joint space are decomposed by the joint

compliance matrix J-'(I-S)J into those to correct positions errors in non-compliant

directions of the Cartesian space and those to provide compliance in compliant direc-

tions.

The modified hybrid control method was implemented to control a PUMA 560

manipulator [Zhang and Paul 1985]., as illustrated in Figure 5.8. The task specification

is embedded in RCCL [Hayward and Paul 19841 to allow flexible programming of the

force control applications. There are a number of issues to consider when implement-

ing the modified hybrid controller.

The Cartesian position errors ignored by S is fedback to the trajectory generator

in order to take it into consideration when producing the subsequent set-points. This is

performed by computing a COMPLY transformation, derived by Eq. (2.16) from

ignored Cartesian errors, and inserting it after the transformation corresponding to the

compliance frame in the position equation,

COMPLY(t+At) = COMPLY(t) A(t)
T6 = L D(r) COMPLY R

At times the manipulator needs to exert biased forces in some directions in addi-

tion to complying in those directions. This is necessary, for example, when the mani-

pulator is to maintain contact with a surface. ~ i a s e d force is applied in the direction

perpendicular to the surface where contact is made so that stable contact is obtained.

Given the desired contact force as a vector in the compliance frame, it is converted to

5.8. MHCM Controller Design

joint space by the Jacobian transpose JT as in Eq. (2.20) and then added to the joint

torque correcting joint position errors. While the position is controlled in a closed

loop, the force control loop can be either closed or open. Performance of force appli-

cation can be improved by using closed-loop control, but at the same time the scheme

requites costly force sensing devices either at joints or at manipulator wrist and addi-

tional computations. In case force sensors are available, applied force is compared

with the desired force as force error. Similar to positional error, joint force error is

multiplied to a gain before added to the total joint torque.

In the implementation, the joint servo must provide stable and accurate position

control. A single stiffness term or a proportional gain is not sufficient, and usually

proportional, integral, plus derivative (PID) control or proportional plus derivative

(PD) is employed for this purpose. Derivative term stabilizes the system and integral

term eliminates steady state errors. Although there exist. methods to determine the

.optimal combination of controller gains theoretically for each joint, the gains can be

determined based on simpler criteria and on experiments as well.

Dynamics such as gravity loading and inertias has also to be compensated, as

does the joint frictions. The knowledge of the manipulator dynamics and frictions has

been obtained with the method introduced in Chapter IV. The final joint torque to be

applied then consists of all the above contributions and, if open force control loop is

used, has the form

where

Kpi = proportional gain of joint i

Kii = integral gain of joint i

Kdi = derivative gain of joint i

fi = static friction of joint i

Di = gravity loading of joint i

Tfi = joint torque for biased force

On the other hand, if closed force control loop is desired, the actual torque would be

compared to the desired torque TL. Torque error would then be multiplied by a gain to

be added to Ti .

As an example, the following RCCL program performs inserting a peg into a hole

once the peg is in the hole.

#include "rcc1.h'" /* RCCL system f i l e */

pumatask ()

I
TRSF-PTR z , e, bl, b2;
POS-PTR top, bottom;

bl = gentr-rot("Bl", 600. , 250., 700., yunit, 180.) ;
b2 = gentr-rot ("B2", 600. , 250., 500., yunit, 180.) ;

hole = makeposition("PTl", z, t6, e, EQ, bl, TL, e) ;
bottom = 1uakeposition("PT2", z , t6, e, EQ, b2, TL, e) ;

move (hole) ; / * get to hole */
waitf or (completed) ;
comply("fx fy rx ryn,O., O., O., 0.);
move (bottom) ; /* with compliance spec above */
lock ("fx f z rx ry") ; /* terminate the compliance */
release () ; /* open the gripper */
move (park) ; /* go back home */

1

This is a much simplified version of an actual insertion program. Nonetheless, it

shows how compliance can be specified and executed.

RCCL runs under Unix on a VAX 111780, computing set points every 14 mil-

liseconds or at 71 Hz. A real-time interface allows the VAX to exchange a 60-word

buffer with the Unimation controller at each interrupt of the Unimation controller. At

the end of every sampling period, the VAX sends the next set point in joint coordinates

and the updated joint compliance compliance matrix before it receives the compliance

compensations resulting from the control of the previous sampling period. The Puma

controller controls the joints in parallel with the VAX and computes compliance com-

pensations using sixteen-bit integer arithmetic.

The experiments show that the maximum force control errors occur when mani-

pulator is at rest since joint frictions cannot be correctly compensated. On the average

these errors are of the same order as the joint static frictions, bounded by one and a half

pounds in translational directions and two and a half pound inches in rotational direc-

tions of the compliance frame. As the manipulator starts to comply in the specified

direction, friction compensation term becomes effective and the manipulator enters a

very smooth compliance mode.

6. Stability Consideration

From the control point of view, a robot manipulator is a multi-input and multi-

output system. Each joint requires an input signal in terms of joint position or output

force or torque and produces a position as its output. When input is in the form of posi-

tion, joint servo system usually employs a simple PD, PI or PID control to generate

corrective torque for the error in position. In applications where the manipulator needs

only to control position, there is little interaction among joints. Therefore, joint con-

trollers can be designed independenily of each other and stability of individual joints

assures the stability of whole manipulator system.

This, however, is not the case when manipulator needs to control both position

and force. Interactions among joints occur through a non-diagonal matrix, i.e., input to

a joint control no longer contains only one but n elements in general, where n is the

number of joints of the manipulator. So far none of the methods proposed for manipu-

lator force control have effectively dealt with this problem. It is always implicitly

assumed that manipulator joint controllers are not affected by the proposed method.

Maples and Goldman El9841 noticed the problem in their study of Salisbury's

stiffness control. However, no formal analysis was made. Motivated by the fact that if

a manipulator joint is modeled as a double integrater

and if a PD control is used, the critical damping of the system can be set by

K, = 2$-, an ad doc scheme was suggested to continuously modify the velocity

damping of joint i to

with

Kp, are elements in the ith row of the joint stiffness matrix in Eq. (5.6), which

represents new proportional gains that couple reacting torque at joint i with errors of

all joints. Coefficient A is a universal fudge factor used to tune the system.

6.1, State Space Formulation

Systems employing the hybrid control method are faced by the same problem, as

can be shown by Eqs. (5.10) where real joint error deri at one joint depends on errors

of all joints. To study the stability of such systems in theory, one needs to establish a

system model, on which the formal analysis is based. Assume that in a six-joint mani-

pulator each joint has a simple PD control and the joint is modeled as a double

integrater as in Eq. (5.13, a PD joint controller is defined by

Ti = Kpi ei + Kdi ei (5.15)

where the joint error ei = Bd - 0 and rate error ei = €Id - 0. Further, define state vari-

ables

where six-by-one vectors xl = 8 and xz = 8. Define input vector as

The state equations for a system employing pure position control are

where A and B are six-by-six matrices and

where

are the inverse of inertia matrix, proportional gain matrix, and derivative gain matrix,

respectively. It is easy to vedy that Eq(5.15) represents six decoupled joint PD con-

trollers.

When compliance is required, however, both the position errors and velocity

errors are modified by J-~SJ. The state equations for a hybrid controller have the new

A and B matrices,

x = A'x + B'U

where

To investigate the stability of the system, A@), the characteristic polynomial of

the system, is derived first. This polynomial is given by I A' - X I I or

Assuming all matrices are square and keeping in mind that modes of the system are

roots of A(h), Equation (5.23) can be simplified to

where

qi(h) is the joint characteristic function and, for a stable plant, it always has all eigen-

values with non-positive real parts.

The following observations can be made on A(h): When this is no force control,

S = [O] and S = I, and the roots of the characteristic polynomial A(h) are those of the

the joint characteristic polynomials qi(h). The stability of the joints then guarantees

that of the whole system, as is expected in a pure position control when the dynamic

interaction among joints is ignored. When all joints are force controlled, a so-called

free situation, S = I and S = [0] so that

~ (h) = I X ~ D J - ~ s 1 = h12ndii 1 J-' I (5.26)

and all modes of the system have zero eigenvalues, implying the system is still stable

in the sense of Lyapunov and the dynamics compensation becomes dominant

When the situation is between the pure position and pure force control, the joints

interact by way of the inverse Jacobian matrix. Consequently, the system stability

depends on the manipulator kinematics and its current configuration. This makes it
-

difficult to predict in general the outcomes of the controller as a result of configuration

change. It can be concluded, however, that constant gains of joint controllers are not

appropriate in this situation and that since the joints are usually designed with gain

combinations to provide critical damping when working as decoupled systems, the crit-

ically damped joints will in general be impaired as the result of the coupling among

joints to become either over-damped or under-damped or, even worst, unstable sys-

tems, if no adjustment is made to the gains.

Interestingly, hybrid controls have been implemented in a number of cases, and

experiments have shown that the systems still remain stable. This seemingly contrad-

ictory result can be explained by the unique kinematics which a majority of today's

robot manipulators possess.

6.2. Special Case

Most of the robot manipulators are made up of a three-link arm and a three-link

wrist. The arm consists of a waist, a shoulder, and an elbow, and the wrist of three per-

pendicular intersecting axes with zero offsets. The arm provides translational degrees

of freedom and the wrist provides rotational degrees of freedom in the Cartesian space.

Further, an arm joint is coupled kinematically more with other arm joints than with

wrist joints and a wrist joint is coupled only with other wrist joints. While the arm

joints can change the manipulator orientation to certain extent, the wrist joints cannot

change the manipulator position if no tool is attached to the end of manipulator. Such

designs have the effect on the manipulator Jacobian matrix that if J is partitioned into

four three-by-three blocks

Jll 512 -

I = Eil J21]

then Jll relating the changes in arm joints to changes in manipulator position is highly

non-diagonal, as is J22 relating the changes in wrist joints to those in manipulator

orientation. For the off-diagonal blocks, J21, relating the changes of arm joints to

changes in manipulator orientation, has elements of small magnitude compared to Jll ,

while J12 is always null for manipulators with no tool.

The inverse Jacobian for such manipulators has the form

In addition, since the z axis of the Cartesian is always the axis of 86, rotation change in

that direction is solely provided by 86, causing all but the last element of column six of

J-' to be zero. With the special form of J-' , Equation (5.22) can be further evaluated

as the product of two determinants. Let

where every block matrix is three by three and diagonal, and let

the characteristic polynomial

This shows that interaction among modes of joint controllers are confined to two sets -

the arm joints can possibly be affected only by arm joints and the same holds for wrist

joints. To show that stability of the system is totally independent of the manipulator

configuration and of compliance specification, one needs an extremely strong assump-

tion that the arm joints and the wrist joints have the similar characteristics, respec-

tively, i.e.

Under this assumption, PD controls for the arm joints and for the wrist joints are

approximately equal, respectively. To evaluate Al (h) given the translational compli-

ance, S1 = diag[s 1, s2, ss], S1 is multiplied to J T ~ on the right. The ith column of the

resulting matrix is the ith column of JY: if si is 1 and the ith column is a zero vector if

si is 0. Similar matrix product results when JT: is multiplied by S1. If the two matrix

products are multiplied on the left by diagonal matrices Ql and h2D1, respectively.

The final matrix has, as its ith column,

if si = 0. If si = 1, the ith column equals

where Ji: = [aij] and 1% jn. The Al (1) is then easy to calculate and has the form

where n is the number of ones on the diagonal of S1. Therefore, all roots of A(h) are

then either 0, which gives the system a marginal stable mode, or roots of the q 1 , which

have negative real parts as assumed. Similar argument holds for A2(h) and it has the

form

where m is the number of ones on the diagonal of S2. The A(h) becomes

Although the assumption (5.31) is strong in general, many manipulators, such as

PUMA 560, do have such features. Therefore, the assumption is not totally unreason-

able. Secondly, the assumption is not necessary for some manipulator configurations

and compliance specifications. There are cases where all modes of A(h) are stable

even without the assumption (5.3 1).

When there is a tool attached to the end of a manipulator, the Jacobian matrix

does not have a null J12, the arm joints and the wrist joints of the manipulator become

heavily coupled, and the stability of the system is highly unpredictable. This occurs to

all joint-based control systems and has been demonstrated in a hybrid control method

[Zhang and Paul 19853 and in an adaptive force control method [Backes 19841.

6.3. Discussion

If a manipulator is to implement joint-based force control and if constant gains

are employed, the resulting system is in general unstable due to the interaction among

the joints. However, for manipulator with spherical wrist, if the center of compliance

is chosen at the origin of the wrist axes, the system can be stable. Most of the manipu-

lators are designed to have a spherical wrist, but there are many applications requring

remote center of compliance, in which case, the system is bound to fail.

There is no known method yet to solve the problem properly. However, two

approaches can be considered. First, the control system can vary joint gains in such a

way that the system always have stable modes. This inevitably would require a lot of

computations for determining how the gains should be adjusted. In the other approach,

the compliance strategy is such that center of compliance is located at the the origin of

the wrist no matter what task is being performed. This guarantees the system stability.

The errors due to the change of the center of compliance, however, must be compen-

sated for. Cartesian-based force control method [Burdick and Khatib 19841 could pos-

sibly offer yet another solution. Because of disparate nature of the formulation, it is

difficult to make comparisons between Cartesian-based and joint based methods here.

7. Conclusion

The modified hybrid control method partitions the joint error vector into two

components, one as real joint position errors and the other as compliant joint errors,

according to a Cartesian compliance specification. This partition is accomplished by

using the joint compliance matrix Ce. The method is not only theoretically correct to

overcome the inability of explicit feedback control methods in singularity regions, but

also efficient computationally, for the joint compliance matrix can be scaled for integer

arithmetics and computed in background, as can the dynamics equations of a manipu-

lator, at a slower rate than the joint servos.

This theoretical development is demonstrated by the implementation on a PUMA

560 manipulator. The results show that the control accuracy in the experiment is lim-

ited only by the manipulator joint frictions. The experiments have also revealed the

stability problem associated with the joint-based force controller employing constant

gains. Preliminary investigation has proved that manipulators with similar arm joints

and a spherical wrist can be stable if the center of compliance is at the center of the

wrist. This opens up a new research interest in developing compliance strategies based

on a fixed center of compliance at the wrist, and in designing controllers with time-

varying gains.

CHAPTER VI

INTEGRATION OF THE RFMS

1. Introduction

A robot system consists of a number of components, each operating in its own

domain and responsible for providing other system components with its services. A

traditional industrial robot consists of a manipulator and a limited number of position

sensors, such as joint encoders and tachometers, to provide information about joint

positions and velocities for position control. As the requirement on the tasks a robot is

to perform increases, so do the number and sophistication of the sensors. Sensors may

appear in different forms, position, touch, force, vision, etc.; each sensor functions in

its own domain of expertise and their observations are described geometrically [Paul,

Durrant-Whyte and Mintz 19861. A manipulator serves as a force and motion server

(RFMS) to the robot. The robot, interpreting sensor information in terms of a world

model and a task plan, issues instructions to the manipulator to carry out tasks [Brady

19841.

Computers used today in control of robot manipulators fall into two broad

categories in terms of their architecture, those based on a supervisory process and a

number of dedicated and decoupled joint processors, as is the case in many cornmer-

cial industrial robots, and those based on a mini-computer, as is the case in a research

or university laboratory environment where emphasis is often on the investigation of

certain control algorithms for specific applications. Typical of the controllers in the

former case, the PUMA controller [Unimation Inc. 19821 performs most of the

computations on the supervisor and performs interpolation of set-points generated by

the supervisor on the joint processors. Joint processors run at a high rate (1000 Hz) for

smooth motions and the supervisor runs at a much lower rate (36 Hz) with a sampling

period long enough to perform all necessary computations. Tasks performed by the

manipulator are those of positional control without any sensor influence. Due to the

lack of sophistication of the controller, only primitive applications such as pick-and-

place operations are possible and the rigid design of these systems makes it difficult to

modify the system to suit new control algorithms in general, and to control sensor

driven motions in particular because of the delay caused by the slow Cartesian position

update rate.

The systems based on a mini-computer [Hayward and Paul 19841 are usually

designed not for general purpose manipulator control, but for some specific applica-

tions. The fact that the cost of the control computer cannot be economically justified

limits the potential of such systems for wide practical applications in industry.

In recent years, as the microprocessor technology has quickly progressed, there is

a growing interest in designing manipulator controllers based on multiple processors

[Kriegman, Siegel, and Gerpheide 19851 [Nigam and Lee 19851 [Taylor, Korein,

Maier, and Durfee 19851 [Turner, Craig, and Gruver 19861 [Paul and Zhang 19861.

Unlike the early industrial robot controllers, these systems employ powerful micro-

processors and, more importantly, begin to address issues never dealt with before,

including, for example, the design of parallel algorithms, resource sharing by

processes, and interprocess communication required by Cartesian level control such as

stiffness control and hybrid control, sensor integration, etc. Highly powerful systems

are thus achieved, with desired system throughput at a reasonable cost.

In some proposed designs, the architecture of the controller is based on the

dynamics equations of the manipulator [Nigam and Lee 19851 [Kasahara and Narita

19851. The scheduling process of such systems is complex and, once finished, the

systems are vulnerable to further modifications, when needed to suit new applications.

In addition, systems based on dynamics equation alone cannot provide satisfactory per-

formance in terms of positional accuracy; they must be incorporated with another feed-

back position controller, in which case a multiprocessor sub-system dedicated to

dynamics computation is no longer a cost-effective solution.

Sensors play a critical role for robot to plan fine motions. The issue of sensor

integration, however, is not always addressed in some controller designs [Kriegman,

Siegel, and Gerpheide 1985, and Turner, Graig, and Gruver 19861. They propose pipe-

lined algorithms, causing long time delays and leading to systems that cannot control

motions to be modified by sensors in real time.

This Chapter is concerned with construction of a controller for a robot manipula-

tor to execute sensor driven tasks, according to decision made by the robot system as to

what tasks to carry out next; however, it is not concerned with the coordination of the

robot system nor with the integration of sensor observations, which are an interesting

and challenging open research subject in its own right [Giralt 1984, Orlando 1984, and

Paul, Durrant-Whyte, and Mintz 19861. Information about the geometry of the objects

in the world model collected by the sensors is simply assumed to be available to the

manipulator control system. To achieve the goal, the resulting RFMS must maintain a

high Cartesian update rate and be able to interface to sensor systems efficiently.

This Chapter first examines the basic requirements on the RFMS and identifies

them in terms of processes; these processes are classified based on their real-time con-

straints. To minimize sensor feedback delay in the server and provide the robot with

force/motion control abilities, a multi-processor computer architecture is proposed to

distribute computations with processes assigned to processors. Interactions of the

server with the robot coordinator and with sensors are studied. Finally, the system

implementation using off-the-shelf single board computers is discussed and the system

is constructed to provide a flexible force/motion server facilitating sensor controlled

motions. TO demonstrate the system, a trajectory generator and a hybrid controller'are

implemented to control a PUMA 250 manipulator. Users develop and execute applica-

tion software in a time-sharing UnixNAX environment in the high-level language "C"

to control the manipulator, although the system is not tied to any particular program-

ming language.

2. General Consideration

The control system of a robot manipulator must satisfy a number of basic require-

ments in order to perform useful tasks: it must be able to communicate with the robot

coordinator, receiving instructions and sending back manipulator states, and to inter-

pret the instructions for task execution; it must provide a motion control module in

order to position the manipulator where the robot is directed; it must provide compli-

ance when contact is made between the manipulator and the robot environment; it must

provide a means by which the action being taken by the manipulator can be modified

by sensors in a feedback fashion; finally, it must perform all above operations effi-

ciently to meet the real-time constraints associated with the operations.

Sensors determine the state of a manipulation task in terms of their own coordi-

nate frames. If this information is to be used to control the manipulator, it must be

transformed into a common coordinate task frame where given constraints may be

applied and information from various sensors integrated to form a best estimate of the

task state. This information must in turn be transformed into the manipulator joint

coordinates where control of the manipulator is exercised. A key parameter in evaluat-

ing the performance of the system is the time delay between a change in some Carte-

sian coordinate frame and a response at the actuator level, for this time delay deter-

mines how effectively sensors can be used to affect the motions. It must either be very

slow, such as in welding sensor feedback, or very fast, such as for force or contact

feedback. The discussion here is concerned with the latter domain to design a robot

forcelmotion server in which the response of the system is limited only by the manipu-

lator itself and not by the control computer.

The delay of sensor feedback is an accumulated effect due to all the involved

processes. It is caused by time spent on interpreting raw data collected by sensors, on

transmission of the interpreted result from the sensor to the RFMS, on its effect on

Cartesian adjustment to be made by the manipulator, and on the translation of Carte-

sian adjustment to the joint actuations. While the RFMS can do little to speed up the

sensor processing, it can have a strong impact on the time delay in the translation from

the Cartesian commands to actuation control signals. the rest of the way.

To minimize the delay due to transmission and create a flexible system, a robot

system can be best implemented on a computer network with system components

loosely coupled and interacting by way of sending messages. Depending upon the

responsibility of a component, an appropriate computer can be provided. The diverse

computational requirements and the disparate nature of processing prohibit a system

design that tightly couples all its components with a bus structure. The requirements on

the flexibility for expansion and modification and on the bandwidth make a local com-

puter network a natural choice. A network structure enables the sensors to monitor the

features related to the current motion concurrently with the RFMS, thereby paralleliz-

ing all the processings and freeing the RFMS from the time-consuming calculations.

In a robot system with a vision sensor, for example, images are processed at a

computational cost much higher than, for example, a conveyor position tracked by a

position sensor. There is no reason for the vision system to be connected in a tightly

coupled system, where it would share the same data bus with other sensors, causing the

system to come to a virtual halt whenever the vision system uses the bus because of the

amount of data involved. Special treatment is required on the vision system to achieve

real-time performance.

A local computer network provides sufficient speed for the system components to

exchange messages. Since messages carry pre-processed geometric information, the

their compact size makes them easy to handle by the network. Suppose, for example,

that an Ethernet local computer network is used. Its bandwidth is ten mega-bits or 1.25

megabytes per second. In a robot system with n components sending messages each of

m bytes, the worst time delay occurs when all components contends net service at the

same time. This amounts to

nxm
tim delay = seconds.

1.25x106

Most of times, the messages contain descriptions of a coordinate frame represented as

a transformation of o, a, and p vectors in floating point numbers. The message size m

is then 36 bytes and, if system contains n = 10 components,

time delay =
10x36

ms
1 . 2 5 ~ 1 o3

Obviously, the time delay of this magnitude is sufficient for the sensors to be closed in

the feedback loop controlling the motion of the manipulator, provided the sensor pro-

cessing itself does not cause much time delay.

3. Identification of the RFMS Processes

The structure of the RFMS breaks down into four levels, as illustrated in Figure

6.1. At the top level, users write application programs to invoke actions by the manipu-

lator in terms of function calls to a system library, in much the same way that RCCL

Wayward and Paul 19841 works; at the next level, information is exchanged between

the RFMS and the robot coordinator - the robot coordinator instructs the RFMS by

defining the world model and issuing motion/force requests and the RFMS sends the

status of the manipulator back to the coordinator; at the third level, the RFMS updates

manipulator kinematic states, its Jacobian matrices, coefficients in the dynamics equa-

tions, etc; at the bottom level, real-time computation takes place to calculate manipula-

tor set-points and joint 'actuations.

Figure 6.1. Levels of Control in the RFMS

It is important to separate kinematic processes and the dynamic computations in

the above hierarchy, for the dynamic processes must maintain a sufficiently high sam-

pling rate, f,, whereas kinematic processes are related only to manipulator configura-

tion changes. To achieve a stable system, sampling rate of the dynamic process must

be at least twice of the system structural frequency. For a .manipulator like PUMA

560, the structural frequency is about 20 to 30 Hertz for the wrist joints and, therefore,

f, must be at least 60 to .70 Hertz. For motion to be better behaved, it is often desirable

to have a sampling rate three or four times higher than the minimum requirement to

over 300 Hertz. However, if this sampling rate is achieved at the price of lowered rate

of Cartesian set-point computation, no effective sensor integration can be achieved, as

is the case with many industrial robot controllers. On the other hand, by separating -

kinematic computations from the dynamic computations, the complexity of the

dynamic process is lessened with no degraded performance. The update of Jacobian

matrix, for example, belongs to the kinematic process; it changes very little when the

manipulator executes fine motion at low velocity and it changes fast if the manipulator

executes gross motion when the control accuracy is unimportant.

It is also important to use as little pipeline algorithm and as much parallel algo-

rithm as possible, for the pipelined system leads to longer time delay than a paralleled

system, although a pipelined system can increase the system throughput. There is little

point, for example, in utilizing a processor to perform manipulator joint control

input/output, another to perform kinematic transformations, another to convert from

accelerations to joint torques as these processes must be pipelined, performed one after

the other. This increases the rate at which the calculations may be performed but does

nothing to minimize the time delay.

3.1. User Process

The user process executes in a multi-user time-sharing environment to define

manipulator tasks by function calls in four general classes: transform definitions, posi-

tion definitions, mode definitions, and action requests.

Coordinate frames representing relationships between objects in the robot

environment are defined by transform definitions. A transform structure looks like

typedef struct trsf {
VECT n, o, a, p; / * vect is a [x y z] */
int id;
int type; /* a variable transform? */
char *name;

) TRSF, *TRSF-PTR; /* transform message is TRSF itself */

and a call

trsf = gentr-const (args) ;

defines a constant transform that remains unchanged unless explicitly redefined, where

args are the arguments to the function to specify what kind of constant transform to

define, such as a pure translation transform or a rotational transform in terms of Euler

angles. A call like

trsf = gentr-var (args) ;

on the other hand, defines a variable transform that is dependent on external signals

such as sensors. If the transform is variable, each time a new sensor observation is

obtained, it is redefined in the world model. This mechanism enables a user to modify

manipulator motions by sensor observations. All the transforms are stored in a symbol

table and their i& are indices to the table for later references.

Positions to which a manipulator is to move can be defined by function calls to

position equation definition.

pos = makeposition (leftl, rightl,) ;

A position equation is defined as

typedef struct posmsg {
int IfidtMaxLen], / * left hand side < MaxLen trsfs */

rtid[MaxLen]; / * right ... */
int tool, /* tool transform */

comply; / * comply position */
int id;
BOOL flip, left, up; /* configurations */
char *name; / * name of the position eq */

) PST, *PST-PTR;

There are two ordered lists, left1 and rightl, of transform identifiers corresponding

to the left and right hand sides of a position equation. The transforms used must have

been defined prior to the position definition. Other attributes associated with a posi-

tion equation include configurations of the position, for the position is specified in

Cartesian coordinates and there may be more than one set of joint positions that can

satisfy the given position. With the configuration specified, a unique set of joint posi-

tions can be determined.

A mode structure specifies how each motion is to be made, with parameters such

as segment time, acceleration time, velocity, compliance specifications, etc., and it is

defined in a structure M as

m=makemode (tseg, tacc, mode, . - -) ;

It has the structure:

typedef s t r u c t {
i n t id;
i n t mode; /* mode of the motion */
f l o a t tseg; / * segment the */
f l o a t tacc; / * acceleration the */
i n t cpysel; /* compliance select ion word */
FORCE force; /* force t o be exerted */
i n t s tpse l ; /* stop on force d i rec t ion word */
FORCE stpforce; /* stop on force values */
i n t dissel; /* stop on distance select ion */
DIFF dist; /* distance values */
f l o a t mass ; /* load held */

) MODE, *MODE-PTR;

where FORCE and DIFF are vectors of six floats. One may define a number of modes

in a program and associate motion segments with modes. It may be sometimes desir-

able to execute a motion one way in the beginning of a program and then execute the

same motion later in the program with another mode specification. The definition of

mode structures and their association with a motion makes the programming of tasks

simple and clear.

To request an action by the manipulator, motion request is called. Each request is

stored in a structure like

typedef s t r u c t reqmsg{
i n t ps t id ; /* which position t o go t o */
i n t mot id; /* with what mode */
i n t id;

) REQ, *REQ - PTR;

A motion request relies on the defined data structures in the first three categories to ini-

tiate actions for the manipulator. A request contains two pointers: one to a destination

position with the current position being the default initial position, and the second

pointer to a mode structure specifying how the motion is to be made. It is called in the

form of

s =move (pos, mode) ;

Moves are executed sequentially in the order they are requested and each move request

returns a sequence number, which can be used to identify moves for motion synchroni-

zation. For example, when one wishes to make sure the next move will not start until

the current move finishes,

serves for this purpose.

3.2. Communication Process

The communication process enables the RFMS to communicate with the robot

system through the network. The robot coordinator issues messages to the RFMS and

may request information from the RFMS. The messages from the coordinator contain

the definition of the world model in terms of transform and position definitions and

move requests. The world model can be further modified by new definitions of

transformations. The RFMS broadcast its status back to the coordinator on a regular

basis. The received messages are stored in the memory to be processed by another

process.

Even though the definition of the world model and motion requests are sent with

no real-time constraints, when the sensors extract information from the robot environ-

ment, descriptions of interesting features must be provided to the RFMS in real time to

facilitate sensor-driven manipulator motions. The real-time constraints on the com-

munication process, when the exchanged information involves sensor observations,

require that the messages reach the RFMS within a specified time delay. racki in^ the

position of a moving object by a vision sensor, for example, requires the observation

be transmitted faster than .the object moves so that tracking operation will be stable.

The speed of communications at this level must be at millisecond level, and, as

described in previous section, a local computer network at real-time constraints suf-

fices for this purpose.

The content of a message is contained in a structure MESS with the form

typedef union {
TRSF t r s f ;
PST pst;
MOT mot;
REQ req;

) MESS, *MESS-PTR;

and a message can then be defined as

typedef struct {
char type; / * of the message */
i n t id; /* ser ia l number */
char used; /* i f the message has been read */
MESS nmss; /* contents */

) MSG, *MSG-PTR;

The field i d is used as a serial number of the messages and the field used identifies if

the message has been processed and, with this field, a message will not be mistakenly

read twice or destroyed before processed.

3.3. Kinematic Process

The kinematic processes are computed at the rate of change of manipulator confi-

gurations. At this level, the RFMS performs computations related to the kinematic

states of the system, which are functions of only manipulator configurations and can be

computed in background. Failure to perform them fast enough will not lead to system

instability, but less accurate control. When manipulator remains stationary, these

processes do not have to be updated at all.

Two major computational elements at this level are the computations of Jacobian

matrices and of coefficients of dynamics equations. The Jacobian matrix can be sym-

bolically derived as functions of joint positions. It is useful in computing joint torques

z from a Cartesian force vector f, and in any other applications based in Cartesian

coordinates. The stiffness control [Salisbury 19811, for example, requires the compu-

tation of joint stiffness matrix KO and the modified hybrid control [Zhang and Paul

19851 requires joint compliance matrix Ce, both of which depend on the Jacobian

matrix andlor inverse Jacobian matrix. The coefficients in Lagrangian dynamics equa-

tions are also functions of joint positions and can be derived symbolically. Their

evaluation at the rate of kinematic process is both economical and sufficient.

3.4. Dynamic Process

The processes at the center level are interrupt driven and proceed at the sampling

rate of the system with the strictest real-time constraint. Computation in the processes

must be finished before the next interrupt comes and the sampling rate must be high

enough to assure the smoothness of the motions as well as the stability of the system.

The process is given the highest priority within the controller hierarchy. The task of the

process consists of a set-point process to compute desired joint positions and a force

control process to compute joint actuations.

A set-point process computes the set-point in two stages. First it solves for T6

from the current position equation Pi and possibly the next position equation Pi+l if a

transition is necessary. This requires matrix operations such as matrix inversion and

multiplication. Obviously, the more complex the position equation, the more expen-

sive this process is computationally. Equation (6.1) functionally defines this first

stage:

The second stage of the set-point process solves for the joint positions from the T6.

When the manipulator is simple, this can be performed symbolically, i.e., closed-form

solutions exist to express the joint positions as a function of the T6.

Once the set-points are computed, the RFMS computes the joint torques, by

another force control process. It is in this process that dynamics is compensated for

and force control algorithms is implemented. A general form for torque for the ith

joint is:

zi = D(0, 0, 9) + F(f,, J) + R(Od, S, J) (6.3)

where D () is dynamics compensation, F () is joint bias force due to the Cartesian bias

force f,, and R () is the reaction torque due to joint errors d0 and with the compliance

specification S taken into consideration.

Equation (6.3) reflects the general approach of all joint based force control

methods such as the stiffness method and hybrid method. Note here that all the input

parameters to Eq. (6.3) are available from the kinematic process computed in the back-

ground and that each function in Eq. (6.3) is a linear function of the input arguments.

Therefore, it represents very little computational load and can be executed efficiently.

4. Implementation of the RFMS

Based on the above theoretical analysis and using motion planner in Chapter I11

and the hybrid control in Chapter V as control strategies, a distributed multi-processor

RFMS, illustrated in Figure 6.2, is built with Intel's single board computers, to control

a Unimation PUMA 250 manipulator wnimation 19801. The real-time constraints on

the processes determine their priorities in assigning processors to processes. The fact

that the time delay between a change in some Cartesian coordinate frame and a

response at the actuator level can be minimized by performing as many calculations in

parallel as possible, leads to this architecture in which one processor is used for each

joint of the manipulator, one processor is dedicated to supervising the system, the

kinematic process is computed at a slow rate in the background on a math processor, a

matrix multiplier [Nash 19851 is used to compute matrix-related operations, limiting

the real-time process for a joint to the task of converting T6 to its joint position, adjust-

ing the joint errors if compliance is required, and converting joint accelerations to joint

inertia compensation. At this time, however, the matrix multiplier is yet to become

available from the manufacturer; it is being simulated as the real-time job on the math

processor.

Figure 6.2. The RFMS Implementation

The interface of the RFMS to the coordinator and to sensor systems is provided

by the Ethernet F te l , DEC, and Xerox 1982al computer network. The RFMS itself is

tightly coupled by the Multibus system bus [Intel 1983al. The Multibus interface is a

general purpose system bus structure providing for communication between system

components. Memory on one board can be accessed by another through the Multibus;

eight interrupt signals can be used to direct actions. Even though any board on the

Multibus can become the bus master, Multibus usage by boards other than the supervi-

sor is kept at the minimum in the system to minimize the bus contention. The Multibus

system bus can access up to 16 megabytes of system memory. However, the system

can be most efficient if the system memory is restricted to a one megabyte page to

avoid operations for changing a megabyte page. Given the size of programs in the

RFMS, one megabyte is sufficient. The detail of Multibus memory assignment is

given by Table 6.1.

Table 6.1. Multibus Address Assignment

Device Start Address Ending Address Size

The Intel single board computers all provide standard Multibus interface for easy

interactions among the boards. Joint processors and supervisor as well as the math

processor contain 128 kilobytes on-board memory each, which can be chosen by

jumper selections to be system memory accessible from the Multibus or local memory

To achieve efficiency, the RFMS does not use an operating system but is driven

by interrupts and handshaking operations. The system is programmed in high level

Super
Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint 6
Gripper
Comm
DMA
Mem
SDM

OxOOOOO
0x20000
Ox30000
0x40000
0x50000
0x60000
Ox70000
0x80000
0x90000
OxBOOOO
OxB4000
OxFCOOO

OxlFFFF
Ox2FFFF
Ox3FFFF
Ox4FFFF
OXSFFFF
0x6-
Ox7FFFF
Ox 8FFFF
OxAFFFF
OxB3FFF
OxFBFFF
OxFFFFF

128k
64k
64k
64k
64k
64k
64k
64k

128k
16k

288k
16k

language "C" [Kernighan and Ritchie 19781 except for some low-level 110 and inter-

rupt and timer control, which are programmed in a 86, a hybrid between Intel's assem-

bly linguage &d VAX assembly language. The programming of SBCs is by way of a

cross-compiler using the development system illustrated in Figure 6.3. Programs are

written and compiled on a VAXfUnix system and down-loaded to the target system for

execution through a serial interface. Arithmetic operations are performed in floating

point numbers with Intel's floating point co-processors. Integer arithmetic can be

more efficient but gives poor precision; the coding in integers are also difficult for

understanding and modifications.

UNlXNAX Machine

CC86

I CC, Kermit, etc

Figure 6.3. Development System

4.1. User Level

The robot coordinator runs on a VAX 111785 under Unix in a time-sharing

environment Since the intent of the research here is not to construct a dedicated robot

manipulator control system, but a flexible forcelmotion server easily interfaced to and

controlled by a robot system, no formal robot- control system is specified. There are

available to the users a set of primitive functions that provide fundamental control

features. Associated with each function call is a message to be sent to the RFMS.

The world model is maintained at this level with transformation, position equa-

tion, and motion mode symbol tables for the communication process to identify the

redefinitions of the world model. A redefinition of a transformation leads to a modi-

fied transformation. A position or motion mode can only be defined once; any attempt

to redefine them is considered as an error by the system.

4.2. Ethernet Communication

An Intel iSBC 186151 [Intel 19841 communication controller in the RFMS facili-

tates the communication between the robot coordinator and the RFMS. It is connected

to the coordinator via an Ethernet transceiver on one end and connected to the RFMS

via Multibus on the other. The communication with the coordinator takes place in the

form of messages. When a message arrives, the CPU is interrupt by the co-processor

82586 and the message is processed in the interrupt service routine. The routine stores

it sequentially in a message list, of which each entry contains a message identifier or

index, a message type, a flag for handshaking with the process reading the messages,

and the content of the message.

Upon transmission of a message back to the- coordinator, the message is packed

into a string of characters and sent by a general command,

send (dest, buf, size) ;

where the dest is the destination address on the network, buf contains the message

content, and size is the size of the message.

4.3. Supervisor

The supervisor of the RFMS maintains the global variables and directs the real-

time processes. It runs on an Intel iSBC 86/30 [Intel 1982bl with an 8Mhz 8087 float-

ing point co-processor Dntel 19801. The iSBC 86/30 contains 128K of dual-port

memory, nine levels of interrupt control, two programmable timers, and serial and

parallel UO interface. The 8087 numeric co-processor executes floating point instruc-

tions and its instruction set provides for both arithmetic and trigonometric functions,

such as tangent and rctangenet.

In the background, the supervisor processes the message list on the Ethernet com-

munication controller and creates its own copy of world model. In real time, it con-

trols the system clock, provides coordination among processors, and computes Eq.

(6.3) with the help of the math processor. The memory organization of the RFMS

created by the supervisor can be illustrated by ~ i g u r e 6.4.

The background process reads the messages stored in the iSBC 186151 and

creates the internal data structures in terms of symbol tables and a motion queue. Since

there is no variable sharing between the robot coordinator and the RFMS, the RFMS

must be able to interpret messages. This can be achieved by setting up symbol tables

on the RFMS for various data structures and associating an identifier with each defined

structure.

An entry is the transformation symbol table is defined by a structure

Eth.ernet Controller .

Math Processor

M3VE1

MOVE2

MMI I

I

Figure 6.4. Memory Organization

typedef struct trsf {
i n t id;
NOAP *noap; /* pointer t o transform content */
struct t r s f *invs; /* inverse of the transform */
char invp; - /* inverse predicate */
char valid; /* whether the info is up t o date */

) TRSF, *TRSF-PTR;

Supervisor

.

Z Too
-

M l ~ m I m I I I

PI 1 P2 I P3 I

I

T6 POINER

TOOL

COMPLY

-
-

where NOAP is

typedef struct {
VECT n, 0 , a, p;

) NOAP, *NOAP_PTR;

i d is the identifier of the transformation, invs points to the inverse of the transforma-

tion, and an invp serves as an inverse transformation predicate. noap points to the

contents of the transformation, which are stored in the matrix multiplier memory where

the matrix operations are performed; noap .is implicitly a pointer to memory on

another board. This arrangement avoids the need to move the contents of transforma-

tions, since only the matrix multiplier needs to have access to the contents.

A position equation references transforms in its definition. it can find the

transformations associated with the position equation from the transform symbol table.

When a position equation is processed, the two lists of transformations are first looked

up in the transform symbol tables. A ring structure Paul 198 11 illustrated in Figure 6.5

is then created for each position and the pointer to the structure is stored in a position

symbol table. A mode record is treated similarly in a mode symbol table. Finally, an

action request is queued in the action queue after its two pointers to a position equation

and to a mode record are located in the respective symbol tables.

The real-time process on the supervisor initiates the computation of the next set-

point upon a real-time clock interrupt from the programmed timer every sample period.

The algorithm used is that in [Paul and Zhang 19851. The supervisor first determines

how the next Cartesian set-point, T6, should be computed and requests the math pro-

cessor to compute the all the matrix inversion and multiplications. It then requests the

data channel to communicate T6 to the joint processors to compute the joint coordi-

nates. The specific computation performed during each period depends upon the state

of the manipulator or its trajectory. This process must finish before the next interrupt

comes when another set-point must to be generated.

Joint Info
Comply Drive

to P or G

Tool Trsf

I
> Z Ts > Tool

I I I

2'' < r $ < Tool "

Figure 6.5. Position Ring Structure

The math processor performing matrix operations is simulated now by an Intel

iSBC 286 [Intel 19851, which will eventually be replaced by a matrix multiplier device

mash 19851, a systolic array processor, to compute the matrix operations for the super-

visor at a speed needed to write and fetch data. Currently a math processor simulates

matrix multiplier and in each sampling period, when the matrix multiplications are

needed, the supervisor generates a pointer list to those matrices to be multiplied, inter-

rupts the math processor, and then continues with other operations. Upon completion

of matrix multiplications, the math process interrupts the supervisor.

4.4. Joint Processors

Each joint is equipped with an iSBC 86/30 and an 8087 numeric processor. 64

kilobytes of its memory is configured global for interprocess communication. Joint

processes run in parallel to control individual joints as described by Eq.(6.2) and Eq.

(6.3). Working as slave processors to the supervisor, each of the joint processors com-

putes its joint trajectory. The only process on a joint processor is real-time and inter-

rupt driven. Its interaction with the supervisor can be described by table 6.2.

. . Table 6.2. Supervisor-Joint Interaction

Supervisor I Joint i

Send T6
interrupt all joints

start computing next T6
acknowledge interrupt

read d e and send it back to all joints

resume interrupted job

acknowledge interrupt

read 9 and send it back to all joints

resume interrupted job

background if any

acknowledge interrupt

compute inverse kinematics and dei

interrupt supervisor to signal finish

wait

compute deri, if necessary, and 0

interrupt supervisor

wait

compute zi and servo the joint

At the beginning of a sampling period, it reads the current desired Cartesian position

computed by the supervisor and solves for the joint position. Since the ith joint solu-

tion requires sines and cosines of prior i-1 joints in general and this would cause con-

siderable time delay if joints wait for solutions, one can make use of the sines and

cosines of joint variables computed in the last sample period so that all joints start

computing simultaneously. During a transition, hbwever, a joint process computes the

coefficients of the transition polynomial and obtains solution by evaluating the polyno-

mial. The state variable of the supervisor dictates the action of the joint processes.

The force control process is executed next to compute joint torque as in Eq. (6.3).

Information such as the Jacobian matrix and dynamics equation coefficients are broad-

cast to the joints when they are updated by the kinematic processes, with the ith row of

the joint compliance matrix and of the inertial matrix passed to the ith joint. On the

other the joint errors need to be exchanged among joints in real time for hybrid control.

Noting that the joint processors are started to compute joint set-points simultaneously

by the real-time clock on the supervisor, the joint with the most computation must fin-

ish the last, at which time it can interrupt the supervisor to exchange the joint errors

and be sure that all other joints have finished. The same argument holds for the

exchange of joint accelerations needed for dynamics compensation. Once the real

error is computed and joint accelerations obtained, Eq. (5.10a) can be evaluated to gen-

erate joint reaction torques as in Eq. (5.10a) and Eq. (6.3).

The low level interface to the joint is achieved through a specially designed

hardware, iSBX multimodule board [Zhang 19861, that is attached to the SBX connec-

tor on each host 86/30. It provides the joint encoder interface and A/D and D/A con-

verters. The board employs two digital to analog converters, two analog to digital con-

verters, and an incremental encoder circuit. The first DAC outputs motor current,

while the second allows one to specify a force set point to the joint. The two ADCs

reads the joint motor current and joint velocity, respectively. The incremental encoder

tracks the position of the joint by observing the waveforms generated by the joint

encoder. At the end of each sample period, the computed torque is converted to an

equivalent joint current value through a PID control as in Eq. (5.1 1) and sent to the

amplifier circuits to drive the joint motors.

4;s. Math Process

The math processor performs matrix multiplications in real time and computes

the kinematic process in the background. It is implemented on an Intel iSBC 286112

While the iSBC 286112 has one megabyte on-board dual-port memory, 64K is defined

as Multibus memory. The SBC contains a programmable interrupt controller, pro-

grammable timers, Multibus interface, and parallel and serial LfO interface, and the

numeric co-processor 80287 [Intel 19851 equivalent to the 8087.

The matrix multiplication starts with an intermpt from the supervisor. The list of

pointers to the matrices to be multiplied is stored in the Multibus memory at a fixed

location and terminated by a null pointer. The matrix multiplication function is exe-

cuted as the interrupt service routine. The result of the multiplication is stored in the

Multibus memory, the pointer to which is written to another fixed location for the

supervisor to read. The math processor then interrupts the supervisor to signal the fin- -
ish.

The process performs dynamics and Jacobian matrix updates in background con-

tinuously. For the application of hybrid control, the joint compliance matrix Co is also

updated. For a typical robot manipulator like PUMA, each cycle of dynamics update

takes roughly 21 ms and Ce update about 14 ms [Zhang 19861; therefore, the rate of

update for the background process is about 30 Hertz.

4.6. Direct Memory Access

A DMA board iSBC 589 [Intel 1982~1 is added to the system to speed up the data

transfer operations. It enhances system performance by helping the supervisor with the

data transfers. Because the supervisor and the joint processors exchange information

frequently in their real-time processes, this device considerably reduces the time for

global memory readlwrite. The iSBC 589 provides an ideal solution to such a system

in which exchanged information is of fixed format and source and destination are

known a priori. To invoke a DMA action, the supervisor simply specifies one of the

pre-constructed parameter blocks containing source and destination addresses and the

size of the data block, then it may proceed to its next instruction, leaving the 110 to the

DMA controller. Further, the speed of transfer by iSBC 589 can be up to one mega-

bytes per second, much faster than that of an 86/30. At the time of initialization, desti-

nation and source addresses for different data transfers are stored in the parameter

blocks. In real-time, the supervisor simply issues a wake-up byte to the parameter

block corresponding to the desired operations.

4.7. Performance EvaIuation

The real-time performance of the system depends on the control strategies. For

this experiment, the motion trajectory generator in Chapter III and the hybrid controller

controller in Chapter V are implemented as the control strategies. As indicated earlier,

the worst case of the TG occurs at the starting point of a transition to Cartesian motion,

when T6 evaluation, two inverse kinematics solutions, and a drive transformation are

to be computed.

The Cartesian set-point generation described by Eq. (6.2) involves the T6 evalua-

tion, which requires matrix multiplications. The matrix operations can be performed

fast if the matrix multiplier is available; the time spent is that for transferring data to

the bus and for reading the results back. However, before such a device is available,

the math processor is to perform the operations. The computational complexity of Eq.

(6.2) depends on the number of transformations in the position equations. Each matrix

multiplication requires 33 multiplies and 24 adds and each matrix inversion requires 15

multiplies and nine adds. In an average case where there are four transformations in

the position equation like

a total of 81 multiplies and 57 adds are needed. This amount of computation

corresponds to five ms on an 8087 floating point processor. A drive transform compu-

tation requires 19 multiplies, 12 adds, three arctangent calis, two square root calls, and

two sinelcosine functions. This corresponds to about 3.27 ms on an 8087.

The inverse kinematics, Eq. (6.3), are computed in parallel on all the joint proces-

sors. For this implementation on PUMA 250 manipulator, using the kinematic solu-

tions given in Appendix A, the worst case occurs on joint two and six, for which 1.3 ms

is needed for one inverse kinematics solution. The final torque computation described

by Eq. (6.4) requires additional 1.4 ms. Therefore, the total amount of computation for

each joint is about 4 ms.

Assume that the matrix multiplier is available. If the processes on supervisor and

joint processors are to be computed in serial, i.e., the supervisor computes T6 first then

gives it to joints to compute joint actuations in the same sampling period, the time

periods of over 7 ms is needed, corresponding to a servo rate of 130 to 140 Hertz. The

T6, however, can be pipelined, as in Figure 6.6, to achieve a higher servo rate.

Supervisor L
Joints

Kinematic

Figure 6.6. Process Scheduling

The Cartesian set-point T6 computed in ith sampling period is used in (i+l)th sampling

period, while the math process continues to execute in parallel with and providing

information to the real-time processes. Joint processors start computing simultaneously

with the supervisor in each sampling period, in which case the servo rate of the system

depends on the longer of the supervisor process and the joint processes. Using the

numbers above, a 250 Hertz sampling rate can be obtained. This represents a consider-

able improvement over all the industrial robot controllers, where the Cartesian update

rate is almost ten times slower.

5. Conclusion

This Chapter discusses the design of a robot manipulator controller with sufficient

computational bandwidth and precision so that the manipulator performance limits the

performance of the system not the controller. The system provides for both position

and force control and is not dedicated to a programming language but is specified in

terms of network message formats. An Ethernet interface is provided so that the sys-

tem may be directly interfaced with many other sensors and robot planning and control

systems in a very simple manner. The high computational bandwidth facilitates

motions controlled by sensors in real time.

Off-the-shelf components are used in the implementation to achieve the system

economically. All coding is in the C language to facilitate understanding and future

modification of the system.

CHAPTER VII

CONCLUSION AND FUTURE WORK

1. Summary

For robots to be truly intelligent systems capable of functioning independently,

handling uncertainties, and performing useful tasks, they must be able to react to

changes taking place in their environment through the use of sensors, which help them

understand and reason about the world. Further, in order to perform, they must also be

able to take actions effectively based on the task specification and interpretation of

sensor observations. Significant process has been made in the past few decades in

various areas of the robotics, in sensing techniques, in machine reasoning, and in robot

manipulation. The various disciplines, however, are yet to be integrated to create use-

ful systems. This represents a next major undertaking for robotics researchers.

The research described in this thesis attempts as the first step at the problem of a

complete robot system construction. A robot forcelmotion server is designed and con-

structed for the robot system, to provide motion control and compliance and to facili-

tate real-time sensor driven motions. The motion control strategy provides essential

forms of motions; the force control strategy enables a manipulator to perform tasks

constrained by the task geometry such as an assembly. Both control strategies are effi-

cient for real-time control of manipulators with a sufficiently high Cartesian set-point

update rate. The use of the simplified dynamics model improves the performance of

the system and provides a realistic and efficient way of accounting for the manipulator

dynamics. A multi-processor system with an adequate system throughput is built to

perform computations necessary for the control strategies, although it is not restricted

to any particular algorithm, but rather provides a general computing system on which

different control techniques can be applied. The Ethernet interface built into the server

provides the server with real-time sensory feedback and makes it convenient to drive

the RFMS from other computers.

2. Future Work

There are a number of areas of the RFMS that can be improved, based on the

development described in this writting. In a trajectory planner, transitions sometimes

may have to be performed in the Cartesian space for the operations, such as seam

welding, where precise Cartesian positions are demanded at all times including during

the transitions. Since the trajectory generator introduced and implemented here per-

forms all transitions in the joint space to obtain efficiency of operation, the Cartesian

trajectory during a transition may deviate beyond that which can be tolerated. In order

to eliminate the problem, transition could be re-formed in Cartesian space. In order to

retain the simple formulation offered by the current method, one could exclusively per-

form transitions in Cartesian space regardless of the motion of the next segment. This

requires more computations but leads to accurate Cartesian path control.

The modified hybrid control method in Chapter V is both theoretically correct

and computationally efficient; however, the control performance is limited by the ina-

bilities of the joints to predict direction of the velocity for friction compensation. As a

result, the force control sensitivity of the manipulator is that of the joint friction, which

is unfortunately larger for all industrial robot manipulators than usually required by an

assembly task. To solve the problem, one can design manipulators with low joint fric-

tion such as direct-drive arms [Asada 19841; one can also design joint feedback torque

controllers to reduce the joint friction to the minimum [Wu and Paul 19801 Luh,

Fisher, and Paul 19801 [Pfeffer, Khatib, and Hake 19861: All of the methods, however,

involve considerable additional remodeling of the manipulator. A more economical

approach is to close the Cartesian force control loop using a Cartesian force sensor and

an improved performance can be expected [Craig and Raibert 19791.

To make use of the RFMS effectively, a complete robot programming system

must be designed. The sensors and the RFMS are integrated into a coherent system,

where the system components function in parallel to contribute to the system with

knowledge and capability in their own domain of expertises. A system of such a com-

plex structure cannot be constructed on a single-processor system and unpredictable

real-time interactions take place among the robot sub-systems in performing a task.

Research should be directed into task level programming systems with capabilities

beyond those that programming languages provide, if robots are to become useful in

general.

LIST OF REFERENCES

LIST OF REFERENCES

Angeles, J. 1985. "On the Numerical Solution of the Inverse Kinematic Problem," Int.
J. Robotics Res., Vol. 4, No. 2, pp. 21 - 37.

Asada, H. and Joucef-Tomi, K. 1984. "Analysis and Design of a Direct-drive Arm
with a Five-Bar-Link Parallel Drive Mechanism," ASME J. Dynamics Sys., Measure-
ments, and Control, Vol. 106.

Backes, P.G. 1984. "Real Time Control with Adaptive Manipulator Control
Schemes," M.S. Thesis, School of Mechanical Engineering, Purdue University.

Bejczy, A.K. 1974. "Robot Arm Dynamics and Control," NASA - JFL Technical
Memorandum, 33-669.

Bejczy, A.K. and Lee, S. 1983. "Robot Arm Dynamics Model Reduction for Con-
trol," Proc. IEEE Conf on Decision and Control.

Brady, M., Hollerbach, J.M., Johnson, T.L., Lozano-Perez, T., and Mason, M.T.
1982. Robot Motion. Cambridge: MIT Press.

Burdick, J. and Khatib, 0. 1984. "Force Control Implementation in COSMOS," In-
telligent Task Automation Interim Technical Report, 1/16 - 4/15, pp. 6-9 - 6-12.

Giralt, G. 1984. "Research Trends in Decisional and Multisensory Aspects of Third
Generation Robots," Proc. Second International Symposium of Robotics Research, pp.
446 - 455.

Goertz, R.C. 1952. "Fundamentals of General Purpose Remote Manipulator," Nu-
cleonics, Vol. 10, No. l l , pp. 36 - 42.

Hartenburg, R.S. and Denavit, J. 1964. Kinematic Synthesis of Linkages. McGraw
Hill.

Hayward, V. and Paul, R.P. 1984. "Introduction to.RCCL: A Robot Control C Li-
brary," Proc. IEEE Conf. on Robotics and Automation, pp. 293 - 297.

Hoilerbach, J.M. 1980. "A Recursive Formulation of Lagrangian Manipulator
Dynamics," IEEE Trans. Systems, Man, Cybernetics, Vol. 10, pp. 730 - 739.

Inoue, H. 1974. "Force Feedback in Precise Assembly Tasks," Artificial Intelligence
Laboratory, MIT, AIM-308.

Intel, 1980. "iSBC 337 Multimodule Numeric Data Processor Hardware Reference
Manual," 142887-001, Intel Corporation.

Intel, DEC, and Xerox, 1982a. "Ethernet Data Link and Physical Layer Specification,
Version 2.0," Intel, DEC, and Xerox.

Intel, 1982b. "iSBC 86/14 and iSBC 86/30 Single Board Computer Hardware Refer-
ence Manual," 14404-002, Intel Corporation.

Intel, 1982c. "iSBC 589 Intelligent DMA Controller Board Hardware Reference
Manual," 142996-002, Intel Corporation.

Intel, 1983a. "MULTIBUS Architecture Reference Book," 2 10883-002, Intel Corpora-
tion.

Intel, 1983b. "iSDM 86 System Debug Monitor Reference Manual," 146165-001, Intel
Corporation.

Intel, 1984. "iSBC 186151 COMMputer Board Hardware Reference Manual,"
122 136-002, Intel Corporation.

Intel, 1985. "iSBC 286/ 12 Single Board Computer Hardware Reference Manual,"
147533-00 1, Intel Corporation.

Izaguirre, A. and Paul, R.P. 1985. "Computation of the Inertial and Gravitational
Coefficients of the Dynamics,'' Proc. IEEE Conf. on Robotics and ~ut&nation, pp.
1024 - 1032.

Kahn, W.E. 1969. "The Near-minimum-time Control of Open Loop Articulated
Kinematic Chains," Ph.D. Thesis, Computer Science Department, Stanford University.

'Kasahara, H. and Narita, S. 1985. "Parallel Processing of Robot-Arm Control Com-
putation on a Multiprocessor System," IEEE J. Robotics and Automation, Vol. 2, RA-
1, pp. 104 - 113.

Kernighan, B.W. and Ritchie, D.M. 1978. The C Programming Language.
Prentice-Hall, Inc.

Khatib, 0. 1985. "The Operational Space Formulation in the Analysis, Design, and
Control of Robot Manipulators," The Third Internution Symposium of Robotics
Research, pp. 103 - 1 10.

Kriegman, DJ., Siegel, D.M., Narasimhan, S., Hollerbach, J.M., and Gerpheide,
G.E. 1985. "Computational Architecture for the UtahJMIT Hand," Proc. IEEE Conf.

. . on Robotics and Automation, vol. 1, pp. 9 18 - 924.

Lieberman, M. and Wesley, M. 1976. "AUTOPASS: An Automatic Programming
System for Computer Controlled Mechanical Assembly," Proc. Robots VI, Detroit, pp.
392 - 406

Lord, 1983. "ROBOWRIST Remote Center Compliance Devices," PC-8034b, Lord
Industrial Products, Lord Corporation.

Luh, J.Y.S., Walker, M.W. and Paul, R.P. 1980. "On-line Computational Scheme
for Mechanical Manipulators," J. Dynamic Systems, Measurement, Control, Vol. 102,
pp. 69 - 76.

Luh, J.Y.S., Fisher, W.B., and Paul, R.P. 1983. "Joint Torque Control by Direct
Feedback for Industrial Robots," IEEE Trans. Automatic Control, Vol. AC-28, No. 2.

Maples, J. and Goldman, R. 1984. "Progress on Implementing a High-Speed Salis-
bury Stiffness Controller," Intelligent Task Automation Interim Technical Report, 1/16
- 4/15, pp. 6-13 - 6-28.

Mason, M.T. 1979. "Compliance and Force Control for Computer Controlled Mani-
pulators," Artificial Intelligence Laboratory, MIT, AIM-5 15.

Nash, J.G. 1985. "A Systolic/Cellular Computer Architecture for Linear Algebraic
Operations," Proc. IEEE Con. on Robotics and Automation, pp. 779 - 784.

Nigam, R. and Lee, C.S.G. 1985. "A Multiprocessor-Based Controller for the Con-
trol of Mechanical Manipulators," IEEE J. Robotics and Automation, Vol. 2, RA- 1, pp.
173 - 182.

Paul, R.P. 1972. "Modeling, Trajectory Calculation, and Servoing of a Computer
Controlled Arm ," AIM 177, Artificial Intelligence Laboratory, Stanford University.

Paul, R.P. and Shimano, B. 1976. "Compliance and Control," Proc. I976 Joint Au-
tomatic Control Con., pp. 694 - 699.

Paul, R.P. 198 1. Robot Manipulators: Mathematics, Programming, and Control.
Cambridge: MIT Press.

Paul, R.P. 1983. "The Computational Requirements of Second Generation Robots",
Japan Robotics Society.

Paul, R.P., Ma, R., and Zhang, H. 1983a. "Dynamics of Puma Manipulator," Proc.
American Control Con., pp. 491 - 496.

Paul, R.P. and Stevenson, C.N. 1983b. "Kinematics of Robot Wrists," Int. J. Robot-
ics Res.,, Vol. 2, No. 1, pp. 31 - 38.

Paul, R.P. and Zhang, H. 1985. "Robot Motion Trajectory Specification and Gen-
eration," Proc. Second International Symposium of Robotics Research, pp. 373 - 380.

Paul, R.P. and Zhang, H. 1986. "Design and Implementation of a Robot
Force/Motion Server," Proc. IEEE Con. Robotics and Automation, pp. 1878 - 1883.

Paul, R.P. and Durrant-Whyte, H.F. 1986. "A Robust, Distributed Sensor and Ac-
tuation Robot Control System," Proc. Third International Symposium of Robotics
Research.

Paul, R.P. and Zhang, H. 1986. "Computationally Efficient Kinematics for Manipu-
lators with Spherical Wrists Based on the Homogeneous Transformation Representa-
tion," Int. J. Robotics Res.: Special Issue on Manipulator Kinematics.

Pfeffer, L., Khatib, O., and Hake, J. 1986. "Joint Torque Sensory Feedback in the
Control of a PUMA Manipulator ," Proc. IEEE Con. Robotics and Automation, pp.
1878 - 1883.

Pieper, D.L. 1968. "The Kinematics of Manipulators Under Computer Control,"
AIM-72, Artificial Intelligence Laboratory, Stanford University.

Wu, C.H. and Paul, R.P. 1980. "Manipulator Compliance Based on Joint Torque
Control," Proc. 19th IEEE Con. Decision and Control, pp. 84 - 88.

Raibert, M.H. and Craig, J J. 1981, "Hybrid PositionIForce Control of Manipula-
tors," J. Energy Resources Technology, Vol. 103, pp. 126 - 133.

Salisbury, J.K. 1980. "Active Stiffness Control of A Robot Manipulator in Cartesian
Coordinates," IEEE Conf Decision and Control, Albuquerque, New Mexico.

Shimano, B.E., Geschke, C.C., and Spalding, C.H. 1984. "VAL-11, A New Robot
Control System For Automatic Manufacturing," Proc. IEEE Conf. on Robotics and Au-
tomation, pp. 278 - 29 1.

Silver, D. 1982. "On the Equivalence of Lagrangian and Newton-Euler Dynamics for
Manipulators," nt. J. Robotics Research, Vol. 1, No. 2, pp. 60 - 70.

Taylor, R.H. 1979. "Planning and Execution of Straight-Line Manipulator Trajec-
tories," IBM J. Research and Development, Vol. 23, pp. 424 - 436.

Taylor, R.H., Korein, J.U., Maier, G.E., and Durfee, L.F. 1985. "A General Pur-
pose Control Architecture for Programmable Automation Research," IBM Research
Report, RC 11416 (#51345).

Turner,T.L., Craig, J.J., and Gruver, W.A. 1986. "A Microprocessor Architecture
for Advanced Robot Control,"

Uicker, J.J. 1966. "Dynamic Force Analysis of Spatial Linkages," Mechanisms
Conference.

Unimation Inc. 1980. "Unimation Series 250 Robot Installation and Operation
Guide", Unimation Inc.

Unimation Inc. 1982. "Breaking away from VAL or How to Use Your PUMA
without Using VAL", Unimation Inc.

Whitney, D.E. 1972. "The Mathematics of Coordinated Control of Prostheses and
Manipulators," J. Dynamic Systems, Measurement, Control, pp. 303 - 309.

Whitney, D.E. 1982. "Quasi-static Assembly of Compliantly Supported Rigid Parts,"
J. Dynamic Systems, Measurement, Control, Vol. 104, pp. 65 - 77.

Zhang, H. and Paul, R.P. 1985. "Hybrid Control of Robot Manipulators," Proc.
IEEE Conf. on Robotics and Automation, vol. 1, pp. 602 - 607.

Zhang, H. 1986. "Progress Report on the Implementation of the RFMS", Department
of Computer and Information Science, University of Pennsylvania.

APPENDICES

Appendix A

Kinematics of PUMA 250 Manipulator

A Matrices

PUMA 260 link and joint parameters are given in Table Al .

Table Al . PUMA 260 Link and Joint Parameters

link a a d

a;? = 203.2mmy d2 = 126.23mmy and d4 = 203.2mrn. The offset from the T6 origin to

the mounting flange d6 is 55.4mm long.

With the link and joint parameters, A matrices are obtained by Eq. (2.4) as:

Replace A2 and A3 with the product A23 :

A 2 =

-C2 -S2 0 a2C2-

S2 C2 0 a2S2

0 0 1 d2

0 0 0 1 - -

Direct Kinematics

where

*==

The position and orientation of the manipulator are given by the product of the A

matrices

-C23 0 -S23 C 2 ~ 2 -

S23 0 C23 S2a2
0 -1 0 d2

0 0 0 1 - -

Define Ui as follows:

where

SZ = sin(e2+e3) C23 = cos(e2+e3)

Thus

Premultiplying by AS, Us is obtained as *

Four local variables are created to represent the four expressions present in US

and then proceed to obtain U4 by premultiplying by Aq

Assign local variables:

and premultiply by A3 to obtain U3.

New local variables are assigned:

U3 =

(A. 1 1)

As joints 2 and 3 are parallel, U4 is premultiplied by Ap to obtain U2

S3U411+C3U521 S3U412+C3U522 S3U413+C3C5 C3d4

-u421 -u422 -u423 0
(A. 10)

There are eight local variables in U2

C23U411-S23U521 C23U412423U522 C23U413-S23C5 -S23d4+C2a2-

S23U411c23U521 S23U4.12+C23U522 S23U413c23C5 C23d4+S2a2

u2=[-u421 -U 422 -u423 d2

0 0 0 1
-

(A. 13)

(A. 12)

Finally, premultiplying by A1, one obtains U1 = T6 representing the position and

orientation of the end of the manipulator.

S1 U211+ClU421 SlU212+ClU422 SlU213+ClU423 SlU214-C l d 2
U 1 = T6 = u 222 u223 u 2 2 4

(A. 14)

The elements of U1 = T6 are identified as

ox = C 1 U212-S 1 U422 a x = C 1 U213-S 1 U423 Px = C 1 U214+S ld2

Oy = S 1 U212c 1 U422 ay = S 1 U213+C 1 U423 Py = $1 U214-C ld2 (A. 15)

0, = u222 az = U223 P z = u224

A procedure to evaluate the position and orientation of the end of the manipulator is

the local variable assignments.

(A. 16)

followed by the evaluation of the elements of T6 given above. This computation

corresponds to 6 sineJcosine pairs, 34 multiplies, and 17 additions.

The Jacobian

The Jacobian J matrix relates joint coordinate rates el through e6, to the Carte-

sian rates of the end of the manipulator v=x by Eq. (2.13). The equivalent velocities in

frame T due to the velocities at base v and o are given by Eq. (2.11). A revolute joint,

ei rotates about the i-lth. link z axis.

"'[o 0 0 0 1 OITOi (A. 17)

Give T of the form in Eq(2.4), the relationship in Eq(2.11) becomes

Using Eq(A. I),

(A. 18)

(A. 19)

As joints two and three are parallel it is expected that use of the variable = e2+e3

might result in a simplification. Transforming the velocity due to 82 into link three,

one obtains

Thus the relationship between rates 02 and e3 can replaced with the simplified expres-

sion between rates e2 and 023.

Each of these intermediate frame rates can now be transformed into link six rates

using the differential transforms shown in Table 2A.

Table A2 Differential Transformations

Joint Variable Initial Frame Differential Transformation

Performing the transformations, one obtains the columns of the Jacobian

6[u211d2+~421u214 U212d2+u422u214 U213d2+U423u214 U221 U222 u2231T01

The Jacobian matrix has the following form:

where:

(A. 22)

(A. 24)

(A. 25)

Inverse Jacobian

The Inverse Jacobian is given by:

and

Jll is too complicated to invert symbolically. However, considering the three columns

of J l 1 as vectors a, b and c:

Then its inverse is:

JT: =
1

a-b x c
a x b

Inverse Kinematics

In order to obtain the solution, Eq. (2.9) is used. Vs are obtained as follows.

Prernultiplying T6 by A:', one obtains Vlj

Define

Then premultiplying Vlj by AI' , one obtains V2,

Premultiplying V1 by A Z ~ , one obtains V3

Remultiplying by A;', one obtains Vqj

Finally premultiplying by AS', one obtains Vsj

The solution is now obtained by solving the six equations in Eq(2.9). First equate Vo

Equating the 14 and 24 elements leads to

Eliminating U214, one gets

Let:

Then

r s i q = p y rcos$ = px with r>0

r =.\IP= and $=tan- 1 f i PX

One obtains

d2
sin(O1-+) = - (A.40)

r

This equation has two solutions corresponding to the left and right configurations. The

one corresponding to left is

The solution corresponding to right is

Next equating V1 to U2, one obtains

Define

Isolating the 23 terms, one gets

then squaring and adding, one obtains

letting

Then

rsin@ = p , rcos@ = Vl14 with r>O

1 pz r = d M and $=tan- -
v114

and making the substitution one obtains

This equation again has two solutions corresponding to elbow up and elbow down.

Defining

a$ -d$ +vf14 +P:
yf = cos-

2a2r

then the elbow down solution is

A second solution corresponds to elbow up

O3 is then obtained from the next equation V4 = U3

from which one obtains

and

O3 = tan-
1 a 2 - c 2 v 1 1 4 - s 2 ~ z

C2~z-s2v114

O4 is obtained from

Expressions for the sine and cosine of O4 can be obtained as

The sign of S determines the third configuration, flip and non-flip. Whenflipped,

Otherwise,

-v323
04 = tan-' 7

€I4 is undefined if S5 = 0 as the manipulator runs into a singular point. V323 and V313

can be evaluated with their recursive definition to obtain:

From the next equation

one obtains

One obtains directly that

where V313 andV323 are defined above. Therefore,

-
(A. 60)

Finally equating

Equations for S 6 and C 6 are obtained directly by equating the first two elements of the

second column.

The expressions on the right hand side are evaluated as

€I6 is finally obtained by

(A. 62)

(A. 64)

Appendix B

Dynamics Equations of PUMA 560 Manipulator

The constants in the gravity and inertia coefficients for PUMA 560 are listed in

this appendix. The derivation of the equations can be found in [Paul, Ma, and Zhang

19831. Radii of gyration for the PUMA 560 manipulator are given in Table A3.

Table A3. Radii of Gyration for the PUMA 560

The centers of mass of each link are the following

link

1

2

3

4

5

6

k&(cm 2 ,

45 1

566

673

326

7

34

k g (cm 2 ,

45 1

1847

679

2 1

10

34

k 3 c m 2)

5 8

1408

36

32

7

1

There are four constants in gravity coefficients as indicated by Eq. (4.9). Their

symbolic expressions are:

I c50 =-g(m6T6 +m5z5) (B*3)

1 c 31 = - (m 3 +m4 +mg +m6)ga3- (B -4)

A total of 15 constants exist to describe the effective inertia coefficients. For

joint six through three,

2
b160 = m6k 622

2 2 blgO = mgk gyy+m6k

2
b40 =m4k 4yy +m5k25xx

(B. 10)

(B. 11)

For joint two,

2 b120 = m2k 2n + m3k23yy + rn4k24= + m5k2gn + m2 (a Z 2 + Z 2 a 2)

+rn3a23 + (m 4 +mg +mg) (d24 +a23) -2m4L4d4 (B. 12)

(B. 13)

(B. 14)

For joint one,

(m 3 +ma +mg +mg)d23 + (m 4 +mg +ma)d24 -2m4Y4d4 (B. 15)

2 2 bill = (m2 + m3 + m4 + mg + mg)a2 + 2m2F2a2 + m2(k 2yy - k22rr) (B.16)

bIlz = (m 3 +m4 +mg +mg)a23 - (m 4 +mg +mg)d24 + 2m4Y4d4 +

ms(k23zz - k23= (B. 17)

b l I3 = 2(m3 + mq + mg + mg)a3a2 (B. 18)

b114 =2a2(m3y3 + (m 4 +m5 +m6)d4 - m 4 Y) (B. 19)

bZl5 =2a3(m3y3 + (m 4 +m5 + m 6) d 4 - m 4 Y) (B.20)

The coupling inertia coefficient D23 is defined by

2 2 2 2 2 b1230 = m3k 3, + mak 4pr + mgk 5, + mgk 6, + (ma + m4 + mg + m6)a 3

+ (m4 +mg +m6)d24 + (2m4y4 +m61g)d4 (B.21)

Appendix C

Distributed Trajectory Generator and Hybrid Controller

Supervisor

The supervisor figures out the current T6 and sends the necessary information to

the joint processors. During a transition, it computes the r using the Eq. (3.15).

/ *
* s e t p . c - con ta ins set po in t genera t ion func t ions
* /

/ *
* s e t p .
*
*

, c - set p o i n t oenera te r
This program i s const ructed a s a f i n i t e s t a t e machine based
on "motion t r a j e c t o r y spec and genera t ion" (2nd ISRR) .
S t a t e zero scorreponda t o t h e idle s t a t e when t h e r e i s not
a new motion reques t f e tched . S t a t e one corresponds t o
t h e s t r a i g h t l i n e segment of t h e motion. S t a t e two cor res -
ponds t o one sample pe r iod be fore t h e t r a n s i t i o n and t h e r e i s
a next motion reques t t o have been dequeued. S t a t e
t h r e e corresponds t o t h e beginning of t h e t r a n s i t i o n .
S t a t e f o u r corresponds t o t h e t r a n s i t i o n pe r iod . S t a t e
f i v e i s a in termedia te s t a t e when t h e arm i s brought t o
rest because t h e r e i s no next e n t r y i n t h e motion queue
and t h e arm is i n t h e middle of t h e motion.

inc lude " . . / h / d a t d e f . h W
inc lude " . . /h /condef .hW
inc lude " . . /h / fundef .hn

d e f i n e SEGT-DEF 10.0 / * d e f a u l t segment and a c c e l e r a t i o n t ime * /
d e f i n e ACCT-DEF 0 .3 / * i n seconds */
d e f i n e SAMPLE 0.005 /* sample pe r iod i n seconds */
d e f i n e NOP 200 /* number of p o i n t s SEG/SAMPLE*/

* se tpo in t () - generates the next s e t point
* /

double send () ;
extern PST-PTR ds tps t ;

i n t setpoint ()
{

s t a t i c PST-PTR newpst;
s t a t i c f l o a t T i m e = SEGT-DEF, /* clock */

Tseg = SEGT-DEF, /* segment t h e */
Tacc = ACCT-DEF; /* acceleration t ime */

s t a t i c i n t s t a t e = STATEO, /* of what t o compute */
mode = JNTM, /* mode of the motion */
NM = NO; /* a boolean f o r New Motion */

s t a t i c REQ *newmove; /* new motion request */
. .

s t a t i c NOAP expl, exp2,
exprl = &expl, / 1st of the two possible T 6 ' s */
expr2 = &exp2; / 2nd of . . . */

REQ -ve ; /* k t i o n request var */
f l o a t I

h I /* segment parameter */
P;

/ * w r i t e appropriate values t o the joint processors */

switch (s t a t e) {
case STATEO: /* i d l e case */

/* "s-expl" sends the f i r s t T6 t o joint processor */
/* "getEXm solves f o r T6 from the posi t ion equation */
s-expl (getEX (exprl, ds tps t , 1.0) , mode, 0.0, s t a t e) ;

/* "dequeuew looks in to the motion request queue */
i f ((move = dequeue ()) ! = NULL) {

newmove = move;
s t a t e = STATE3;
newpst = newmove->pst;
NM = YES;
i f (nearmove->mot--& = JNTM) {

/* sends the second possible T6 t o jo in ts */
8 exp2 (getEX (expr2, newpst , 0 . 0)) ;

1 else-{
/* i n i t i a l i z e s the drive transform */
initD (exprl, newpst) ;
s e x p 2 (getLDR (expr2, newpst, 0 .0)) ;

1
send-status (STM) ;

1
break;

case STATE1: /* straight line segment */
h = Tb/Tseg;
r = 1.0 - h;
if (mode = JNTM) {

exprl = getEX (exprl, dstpst, h) ;
) else {

exprl = getLDR(expr1, dstpst, r) ;
1
s-expl (exprl, mode, r, state) ;
if(!NM) { /* keep look if there is no next motion yet */

if ((move = dequeue ()) ! = NULL) {
newmove = move;
NM = YES;
Tacc = newmove->mot->tacc;
if(Time > Tseg-Tacc-SAMPLE) { /* do have a move */
state = STATE2; /* but a bit late */
break;

1
1

1
Time += SAMPLE;
if (Time >c Tseg - Tacc - SAMPLE) {

if(!=) { /* come to a stop */
newmove = newmove;

1
state = STATE2;

1
break;

case STATE2: / * one sample period before the transition */
h = Time/Tseg;
r = 1.0 - h;
if (mode = JNTM) {

exprl = getEX (exprl, dstpst , h) ;
) else {

exprl = getLDR(expr1, dstpst, r);
1
s-expl (exprl, mode, r, state) ;
newpst = newmove->pst; /* = dstpst if !NM */
s-exp2 (getEX (expr2, newpst , 0.)) ;

state = STATE3;
break;

case STATE3: / * beginning of the transition */
exprl = getEX (exprl, dstpst, 1.0) ;
if (NM) {

Tseg = newmove->mot->tseg;
mode = newmove->mot->mode;
Tacc = newmove-kot->tacc;
NM = NO;

) else {
Tseg = Tacc; /* come to a stop */

1
getEX(expr1, dstpst, 1.0) ;

i n i t D (e x p r l , n e w p s t) ;
dstpst = n e w p s t ;
T h e = -TaCc + SAMPLE;
s - e x p l (e x p r 1 , mode, r, s t a t e) ; / * r u n d e f i n e d */
s-exp2 (g e t E X (e x p r 2 , newpst, 0 . 0)) ;
s-tacc (T a c c) ;
state = STATE4;
b r e a k ;

case STATE4: /* during the t r ans i t ion * /
p = (T h e + T a c c) / (2 .O*Tacc) ;
h = ((2. *p-6.) " p t 5 . 0) *p*p*p*p*Tacc/Tseg;

' r = 1 . 0 - h;
i f (mode = JNTM) {

exprl = g e t E X (e x p r l , dstpst, h) ;
) else I

exprl = g e t L D R (e x p r 1 , dstpst, r) ;
1
s-expl (e x p r l , mode, r, s t a t e) ;
s e n d g (p) ;
T i m a += SAMPLE;
i f (Time > T a c c)

s t a t e = (T a c c >= T s e g) ? STATE0:STATEl;
break;

d e f a u l t :
printf ("unknown state: %do, s t a t e) ;
return;

1
s e n d () ; /* T h i s rea l ly sends. */
return (1) ; / * f o r d e b u g g i n g only */

1

Joint Process

Three functions corresponding to three stages of the joint process exist on each

joint processor. The first computes the joint set-point without compliance specifica-

tion based on the T6 received from the supervisor. The second computes the real joint

set-point with compliance consideration and then the joint accelerations for dynamics

compensation. The third function computes joint torques based on its joint position

error and all the joint accelerations. In the following, the three functions for joint one

are given. Other joints have similar functions with differing joint parameters such as

inertias and controller gains.

/ *
* j1.c - The first part of the joint set point process;
* interrupt driven from the supervisor;
* comniunicates with the supervisor via the mail structure
* This segment of the program is identical for all joints.
* Refer to "Motion Trajectory Generation" for details.

* /

include "../h/datdef.hm
include "../h/condef.hn
include "../h/conmr.hn
define SAMPLE 0.005 /* sampling time */
define ONEBYTAU (l.O/SAMPLE)

/ *
* jsetpo - computes joint error without considering compliance
*/

extern S - MAIL MAIL; /* Structure sent b3 the supervisor */
J MAIL - JMAIL ; /* Things to be sent back to supervisor */

int jsetp ()
{

static float thBC = 0.0,
thold = 0.0,
thdot = 0.0,
thtmp = 0.0;

static float aO, al, a4, a5, a6, a7;

double solve () ;
float p, theta, thchg, thB, thC;

switch (MAIL. state) {
case STATEO:

theta = solve (MAIL. exprl) ;
thdot = (theta - thold) *ONEBYTAU;
if (MAIL. status = STM) {

MAIL-status = NT;
thtmp = solve(MAIL.expr2);

1
thold = theta;
break;

case STATE1:
if (MAIL. mode = JNTM) {

thchg = solve (MAIL. exprl) ;
theta = MAIL.r*thBC + thchg;

1 else {
theta = solve (MAIL. exprl) ;

1
break;

case STATEP:

i f (MAIL .mode = JNTM) {
t h c h g = solve (MAIL. e x p r l) ;
t h e t a = MAIL.r*thBC + t h c h g ;

1 else {
theta = solve (MAIL . e x p r l) ;

1
thtmp = solve (MAIL. e x p r 2) ;
thdot = (t h e t a - t h o l d) *ONEBYTAU;
b r e a k ;

case STATE3:
theta = tho ld + thdot*SAMPLE;
t h B = solve (MAIL. e x p r l) ;
t h C = solve (MAIL. e x p r 2) ;
a 0 = theta - t h B ;
t h B C = t h B - t h C ;
a1 = 2 . *MAIL. tacc* (t h d o t - (t h C - t h t m p) *ONEBYTAU) ;
a 4 = - 2 0 . * a l - 35.*aO;
a5 = 4 5 . * a l + 84.*aO;
a6 = -36.*al - 70.*aO;
a 7 = 1 0 . * a l + 20.*aO;
b r e a k ;

case STATE4:
p = MA1L.p;
theta = ((((a 7 * p + a 6) * p + a 5) * p + a4)*p*p*p + a l) * p + aO;
i f (MAIL. mode = JNTM) {

theta += solve (MAIL. e x p r l) ;
theta += MAIL.r*thBC;

) else {
theta += solve (MAIL. e x p r l) ;

1
thdot = (t h e t a - t h o l d) *ONEBYTAU;
b r e a k ;

default :
b r e a k ;

1
J M A I L . t h e t a . t h 1 = theta;
t h o l d = theta;

1

/ *
* s o l v e () - inverse k i n e m a t i c s f o r one jo in t (jl of PUMA 2 6 0 i n t h i s program).
* /

double a t a n 2 0 ,
a s i n () ,
sqrt 0 ;

double solve (t r s f)
NOAP *trsf;
I

f l o a t x = trsf ->p.x, y = trsf ->p. y ;
f l o a t u, v;

if (c - left)
return (atan2 (y, x) + asin (~2/sqrt (x*x+y*y)) ;

else
return (PI + atan2 (y, x) - asin (D2/sqrt (x*x + y*y))) ;

1

Joint Compliance ~rof-&s

include (math.h>
include "../../h/datdef.hW
include "../../h/comu.h"
include w../../h/condef.hn
/*
* comply() - computes joint error based on compliance consideration
* (written for joint one) .
*/

extern PARCEL dyn-cmy;
extern J-MAIL MAIL;

double camply (err)
JNT-PTR err;
{

JXT PTR cmpnat;
.floZt error;

cmymat = Cdyn-cmy.Crow;
if(MAIL.comply G J N T 1) {

error = err->thl*cmymat->thl + err->th2*cmymat->th2 +
err-Xh23*cmymat-Xh23 + err->th4*cmymat->th4 +
err-Xh5"cmymat->th5 + err->th6*aymat->th6;

) else {
error = err->thl;

1
return (error) ;

1

Joint Torque Computation

include "../../h/datdef.hW
include "../../h/comm.h"
define KP 1.0
define KI 1.0 /* to be adjusted by experiments */
define KD 1.0

define SAMPLE 0.005
define SAMPLE2 (1/ (SAMPLE*SAMPLE)) /* scal ing constant */

/ *
* dyn() - computes torques and drives the joint
*/

double dyn (err, thacc)
JNT-PTR err,

thacc ;

s t a t i c f l o a t errold, e r r i n t ;
JNT-PTR ine r t i a ;
f l o a t errdot, torque;

errdot = err->thl - errold; /* er ro r derivative * SAMPLE */
e r r i n t += err-Xhl; /* er ro r integration / SAMPLE */
i n e r t i a 3 6idyn-any. iner t ia ;

/* i n e r t i a l e f fec t */
torque = (inertia-Xhl*thacc->thl + inertia->th2*thacc-Xh2

+ inertia-Xh3*thacc-Xh23 + inertia->th4*thacc--4
+ inertia-Xh5*thacc-Xh5 +
inertia->th6*thacc->th6)*sAMPLE2;

/* PID + gravity */
torque = =*err-Xhl + KD*errdot + KI*errint +

inertia->thl*thacc->thl + inertia->th2*thacc->th2
+ inertia->th3*thacc--3 + inertia->th4*thacc->th4
+ inertia->thS*thacc->th5 + inertia->th6*thacc->th6
+ dyn--.gravity;

return (torque) ;
1

	Design and Implementation of a Robot Force and Motion Server
	Recommended Citation

	Design and Implementation of a Robot Force and Motion Server
	Abstract
	Comments

	tmp.1193761458.pdf.xEJrz

