578 research outputs found

    Pipeline morphing and virtual pipelines

    Full text link

    Mesh-based vs. Image-based Statistical Appearance Model of the Human Femur: a Preliminary Comparison Study for the Creation of Finite Element Meshes

    Get PDF
    Statistical models have been recently introduced in computational orthopaedics to investigate the bone mechanical properties across several populations. A fundamental aspect for the construction of statistical models concerns the establishment of accurate anatomical correspondences among the objects of the training dataset. Various methods have been proposed to solve this problem such as mesh morphing or image registration algorithms. The objective of this study is to compare a mesh-based and an image-based statistical appearance model approaches for the creation of nite element(FE) meshes. A computer tomography (CT) dataset of 157 human left femurs was used for the comparison. For each approach, 30 finite element meshes were generated with the models. The quality of the obtained FE meshes was evaluated in terms of volume, size and shape of the elements. Results showed that the quality of the meshes obtained with the image-based approach was higher than the quality of the mesh-based approach. Future studies are required to evaluate the impact of this finding on the final mechanical simulations

    Virtual Prototyping for Dynamically Reconfigurable Architectures using Dynamic Generic Mapping

    Get PDF
    This paper presents a virtual prototyping methodology for Dynamically Reconfigurable (DR) FPGAs. The methodology is based around a library of VHDL image processing components and allows the rapid prototyping and algorithmic development of low-level image processing systems. For the effective modelling of dynamically reconfigurable designs a new technique named, Dynamic Generic Mapping is introduced. This method allows efficient representation of dynamic reconfiguration without needing any additional components to model the reconfiguration process. This gives the designer more flexibility in modelling dynamic configurations than other methodologies. Models created using this technique can then be simulated and targeted to a specific technology using the same code. This technique is demonstrated through the realisation of modules for a motion tracking system targeted to a DR environment, RIFLE-62

    Incremental Visual-Inertial 3D Mesh Generation with Structural Regularities

    Full text link
    Visual-Inertial Odometry (VIO) algorithms typically rely on a point cloud representation of the scene that does not model the topology of the environment. A 3D mesh instead offers a richer, yet lightweight, model. Nevertheless, building a 3D mesh out of the sparse and noisy 3D landmarks triangulated by a VIO algorithm often results in a mesh that does not fit the real scene. In order to regularize the mesh, previous approaches decouple state estimation from the 3D mesh regularization step, and either limit the 3D mesh to the current frame or let the mesh grow indefinitely. We propose instead to tightly couple mesh regularization and state estimation by detecting and enforcing structural regularities in a novel factor-graph formulation. We also propose to incrementally build the mesh by restricting its extent to the time-horizon of the VIO optimization; the resulting 3D mesh covers a larger portion of the scene than a per-frame approach while its memory usage and computational complexity remain bounded. We show that our approach successfully regularizes the mesh, while improving localization accuracy, when structural regularities are present, and remains operational in scenes without regularities.Comment: 7 pages, 5 figures, ICRA accepte

    Statistical Modeling of Craniofacial Shape and Texture

    Get PDF
    We present a fully-automatic statistical 3D shape modeling approach and apply it to a large dataset of 3D images, the Headspace dataset, thus generating the first public shape-and-texture 3D Morphable Model (3DMM) of the full human head. Our approach is the first to employ a template that adapts to the dataset subject before dense morphing. This is fully automatic and achieved using 2D facial landmarking, projection to 3D shape, and mesh editing. In dense template morphing, we improve on the well-known Coherent Point Drift algorithm, by incorporating iterative data-sampling and alignment. Our evaluations demonstrate that our method has better performance in correspondence accuracy and modeling ability when compared with other competing algorithms. We propose a texture map refinement scheme to build high quality texture maps and texture model. We present several applications that include the first clinical use of craniofacial 3DMMs in the assessment of different types of surgical intervention applied to a craniosynostosis patient group
    • …
    corecore