11 research outputs found

    Complexity results and exact algorithms for robust knapsack problems.

    Get PDF
    This paper studies the robust knapsack problem, for which solutions are, up to a certain point, immune to data uncertainty. We complement the works found in the literature where uncertainty affects only the profits or only the weights of the items by studying the complexity and approximation of the general setting with uncertainty regarding both the profits and the weights, for three different objective functions. Furthermore, we develop a scenario-relaxation algorithm for solving the general problem and present computational results.Knapsack problem; Robustness; Scenario-relaxation algorithm; NP-hard; Approximation;

    A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs

    Full text link
    This work deals with a class of problems under interval data uncertainty, namely interval robust-hard problems, composed of interval data min-max regret generalizations of classical NP-hard combinatorial problems modeled as 0-1 integer linear programming problems. These problems are more challenging than other interval data min-max regret problems, as solely computing the cost of any feasible solution requires solving an instance of an NP-hard problem. The state-of-the-art exact algorithms in the literature are based on the generation of a possibly exponential number of cuts. As each cut separation involves the resolution of an NP-hard classical optimization problem, the size of the instances that can be solved efficiently is relatively small. To smooth this issue, we present a modeling technique for interval robust-hard problems in the context of a heuristic framework. The heuristic obtains feasible solutions by exploring dual information of a linearly relaxed model associated with the classical optimization problem counterpart. Computational experiments for interval data min-max regret versions of the restricted shortest path problem and the set covering problem show that our heuristic is able to find optimal or near-optimal solutions and also improves the primal bounds obtained by a state-of-the-art exact algorithm and a 2-approximation procedure for interval data min-max regret problems

    An exact approach for the bilevel knapsack problem with interdiction constraints and extensions

    Get PDF
    We consider the bilevel knapsack problem with interdiction constraints, an extension of the classic 0–1 knapsack problem formulated as a Stackelberg game with two agents, a leader and a follower, that choose items from a common set and hold their own private knapsacks. First, the leader selects some items to be interdicted for the follower while satisfying a capacity constraint. Then the follower packs a set of the remaining items according to his knapsack constraint in order to maximize the profits. The goal of the leader is to minimize the follower’s total profit. We derive effective lower bounds for the bilevel knapsack problem and present an exact method that exploits the structure of the induced follower’s problem. The approach strongly outperforms the current state-of-the-art algorithms designed for the problem. We extend the same algorithmic framework to the interval min–max regret knapsack problem after providing a novel bilevel programming reformulation. Also for this problem, the proposed approach outperforms the exact algorithms available in the literature

    Generalizing the Min-Max Regret Criterion using Ordered Weighted Averaging

    Full text link
    In decision making under uncertainty, several criteria have been studied to aggregate the performance of a solution over multiple possible scenarios, including the ordered weighted averaging (OWA) criterion and min-max regret. This paper introduces a novel generalization of min-max regret, leveraging the modeling power of OWA to enable a more nuanced expression of preferences in handling regret values. This new OWA regret approach is studied both theoretically and numerically. We derive several properties, including polynomially solvable and hard cases, and introduce an approximation algorithm. Through computational experiments using artificial and real-world data, we demonstrate the advantages of our OWAR method over the conventional min-max regret approach, alongside the effectiveness of the proposed clustering heuristics

    A large and natural Class of Σ2p\Sigma^p_2- and Σ3p\Sigma^p_3-complete Problems in Bilevel and Robust Optimization

    Full text link
    Because Σ2p\Sigma^p_2- and Σ3p\Sigma^p_3-hardness proofs are usually tedious and difficult, not so many complete problems for these classes are known. This is especially true in the areas of min-max regret robust optimization, network interdiction, most vital vertex problems, blocker problems, and two-stage adjustable robust optimization problems. Even though these areas are well-researched for over two decades and one would naturally expect many (if not most) of the problems occurring in these areas to be complete for the above classes, almost no completeness results exist in the literature. We address this lack of knowledge by introducing over 70 new Σ2p\Sigma^p_2-complete and Σ3p\Sigma^p_3-complete problems. We achieve this result by proving a new meta-theorem, which shows Σ2p\Sigma^p_2- and Σ3p\Sigma^p_3-completeness simultaneously for a huge class of problems. The majority of all earlier publications on Σ2p\Sigma^p_2- and Σ3p\Sigma^p_3-completeness in said areas are special cases of our meta-theorem. Our precise result is the following: We introduce a large list of problems for which the meta-theorem is applicable (including clique, vertex cover, knapsack, TSP, facility location and many more). For every problem on this list, we show: The interdiction/minimum cost blocker/most vital nodes problem (with element costs) is Σ2p\Sigma^p_2-complete. The min-max-regret problem with interval uncertainty is Σ2p\Sigma^p_2-complete. The two-stage adjustable robust optimization problem with discrete budgeted uncertainty is Σ3p\Sigma^p_3-complete. In summary, our work reveals the interesting insight that a large amount of NP-complete problems have the property that their min-max versions are 'automatically' Σ2p\Sigma^p_2-complete

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios

    International Congress of Mathematicians: 2022 July 6–14: Proceedings of the ICM 2022

    Get PDF
    Following the long and illustrious tradition of the International Congress of Mathematicians, these proceedings include contributions based on the invited talks that were presented at the Congress in 2022. Published with the support of the International Mathematical Union and edited by Dmitry Beliaev and Stanislav Smirnov, these seven volumes present the most important developments in all fields of mathematics and its applications in the past four years. In particular, they include laudations and presentations of the 2022 Fields Medal winners and of the other prestigious prizes awarded at the Congress. The proceedings of the International Congress of Mathematicians provide an authoritative documentation of contemporary research in all branches of mathematics, and are an indispensable part of every mathematical library
    corecore