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Abstract We consider the Bilevel Knapsack Problem with Interdiction Constraints,
an extension of the classic 0-1 knapsack problem formulated as a Stackelberg game
with two agents, a leader and a follower, that choose items from a common set
and hold their own private knapsacks. First, the leader selects some items to be
interdicted for the follower while satisfying a capacity constraint. Then the fol-
lower packs a set of the remaining items according to his knapsack constraint
in order to maximize the profits. The goal of the leader is to minimize the fol-
lower’s total profit. We derive effective lower bounds for the Bilevel Knapsack
Problem and present an exact method that exploits the structure of the induced
follower’s problem. The approach strongly outperforms the current state-of-the-art
algorithms designed for the problem. We extend the same algorithmic framework
to the Interval Min-Max Regret Knapsack Problem after providing a novel bilevel
programming reformulation. Also for this problem, the proposed approach outper-
forms the exact algorithms available in the literature.

Keywords Bilevel programming, Exact approach, Bilevel Knapsack with
Interdiction Constraints, Min-Max Regret Knapsack Problem

1 Introduction

Recently, growing attention has been centered to multilevel programming. This
emerging field considers optimization problems with a hierarchal structure where
many decision makers sequentially operate to reach conflicting objectives. Each
agent takes decisions that may affect objectives and decisions of the agents at
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lower levels. At the same time, the latter decisions impact on the objectives of
the agents at upper levels. Hierarchal contexts arise in many real-life applications
in supply chains, energy sector, logistics and telecommunication networks among
others. The presence of many decision levels makes these problems very challeng-
ing to solve.
The most relevant research in the field has been pursued for bilevel optimization
where two agents, denoted as a leader and a follower, play a Stackelberg game
([34]). In this game, the leader takes the first decision and then the follower reacts
taking into account the leader’s strategy. Eventually, the agents receive a pay-off
which depends on both leader’s and follower’s choices. The goal is typically to find
a strategy for the leader that optimizes his own objective. Two standard assump-
tions are considered in a Stackelberg game: complete information, that is each agent
knows the problem solved by the other agent; rationale behavior, namely each agent
has no interest in deviating from his own objective.
Bilevel optimization considers Mixed-Integer Bilevel Linear Programs (MIBLP)
where both the leader and the follower solve a combinatorial optimization prob-
lem with linear objective function and constraints and with either continuous or
integer variables. The first generic Branch and Bound approach for MIBLP was
provided in [27]. Branch and Cut schemes were introduced in [15], [14]. Further
approaches were proposed in [5], [18] , [37] and [36]. An improved generic MIBLP
solver has been proposed in [16]. We refer to [16] and the references therein for an
overview on MIBLP solvers and related applications.

In this paper, we consider the Bilevel Knapsack with Interdiction Constraints
(BKP), as introduced in [14]. The problem is an extension of the classic 0-1 Knap-
sack Problem (KP) (see monographs [23] and [26]) to a Stackelberg game where
the leader and the follower choose items from a common set and hold their own
private knapsacks. First, the leader selects some items to be interdicted for the
follower while satisfying a capacity constraint. Then the follower packs a set of the
remaining items according to his knapsack constraint in order to maximize the
profits. The goal of the leader is to minimize the follower’s total profit.
In [3] it is shown that BKP is Σp2 -complete in the polynomial hierarchy complex-
ity. Essentially, BKP cannot be formulated as an ILP model of polynomial size
unless the polynomial hierarchy collapses (also pointed out in [4]). This makes the
problem even more difficult to solve than an NP-Complete problem. We refer to
[22] for an introduction on polynomial hierarchy.
One of the best performing algorithms for BKP is given in [4]. The algorithm,
denoted as CCLW, relies on the dualization of the continuous relaxation of the
follower’s problem and on iteratively computing upper bounds for the problem
until a stopping criterion applies. The approach is motivated by the lack of signifi-
cant lower bounds for the problem. Algorithm CCLW solves to optimality instances
with 50 items within a CPU time limit of 3600 s, running out of time in instances
with 55 items only. Another previous exact solution approach was proposed in [35].
Very recently, an improved branch-and-cut algorithm has been given in [17]. The
proposed approach manages to solve to optimality all benchmark instances in [4],
requiring at most a computation time of about 85 s in an instance with 55 items.
The algorithm in [17] was shown to be superior to the other approaches also on
the medium size instances with up to 50 items considered in [14] and [35]. We also
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mention the work of [19] where a heuristic approach is proposed for BKP and for
other interdiction games.
Other bilevel knapsack problems have been tackled in the literature. In [2] the
leader cannot interdict items but modifies the follower’s capacity. In [7], the leader
can modify the follower’s objective function only. In [33], a variant of the problem
is considered in which an item can be taken by both the leader and the follower, in
which case its profit changes (either increasing or decreasing). As discussed in [4],
these knapsack problems are easier to handle than BKP. A polynomial algorithm
has been provided in [6] for the BKP variation where the follower solves a con-
tinuous knapsack problem. Finally, a bilevel knapsack problem where the leader
controls the weights of a subset of the follower’s items has been recently tackled
in [28].

Our contribution for BKP is twofold. First, we derive effective lower bounds
based on mathematical programming. Second, we present a new exact approach
that exploits the induced follower’s problem and the derived lower bounds. The
proposed approach shows up to be very effective successfully solving all benchmark
literature instances provided in [4,15,35] within few seconds of computation. Our
algorithm manages to solve to optimality larger instances generated according to
the same generation scheme of [4] with up to 500 items requiring in the worst-case
instance less than 14 seconds of CPU time. An extended computational campaign
is also applied to the instances considered in [19] reaching very good results. A
preliminary conference version of this work appeared in [13].
Further, we managed to extend the proposed approach to the Interval Min-Max
Regret Knapsack Problem (MRKP), as introduced in [24]. This problem is a gen-
eralization of the KP where the profit of each item ranges between a minimum and
a maximum value. A given assignment of the items profit levels defines a scenario
which corresponds to a standard knapsack instance. The problem calls for finding
a feasible solution that minimizes the maximum regret over all possible scenarios,
where the regret represents the difference between the optimal solution value of
a scenario and the value given by the selected solution. The authors of [9] show
that the decision version of the MRKP is Σp2 -complete and thus very challenging
to solve. In [20] different heuristic and exact algorithms are proposed for the prob-
lem based on classical optimization approaches such as Benders decomposition
and branch and cut methods. We propose a bilevel programming reformulation
of the MRKP and correspondingly apply the algorithmic framework proposed for
BKP with proper integrations. The approach significantly outperforms the best
performing exact algorithms given in [20].

2 Notation and problem formulation

In BKP a set of n items and two knapsacks are given. Each item i (= 1, . . . , n) has
associated a profit pi > 0 and a weight wi > 0 for the follower’s knapsack and a
weight vi > 0 for the leader’s knapsack. Leader and follower have different knapsack
capacities denoted by Cu and Cl, respectively. Quantities pi, vi, wi (i = 1, . . . , n),
Cu, Cl are assumed to be integer, with vi ≤ Cu and wi ≤ Cl for all i. To avoid

trivial instances, it is also assumed that
n∑
i=1

vi > Cu and
n∑
i=1

wi > Cl. We introduce
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0/1 variables xi (i = 1, . . . , n) equal to one if the leader selects item i and 0/1
variables yi equal to one if item i is chosen by the follower. BKP can be modeled
as follows:

min
n∑
i=1

piyi (1)

subject to
n∑
i=1

vixi ≤ Cu (2)

xi ∈ {0, 1} i = 1, . . . , n (3)

where y1, . . . , yn solve

the follower’s problem: max
n∑
i=1

piyi (4)

subject to
n∑
i=1

wiyi ≤ Cl (5)

yi ≤ 1− xi i = 1, . . . , n (6)

yi ∈ {0, 1} i = 1, . . . , n (7)

The leader’s objective function (1) minimizes the profits of the follower through
the interdiction constraints (6). These constraints ensure that each item i can be
selected by the follower only if the item is not interdicted by the leader, i.e., if
xi = 0. Constraint (2) represents the leader’s capacity constraint. The objective
function (4) maximizes the follower’s total profit and constraint (5) represents the
follower’s capacity constraint. Constraints (3) and (7) define the domain of the
variables.

The optimal solution value of model (1)-(7) is denoted by z∗. The optimal
solution vectors of variables xi and yi are respectively denoted by x∗ and y∗.
Notice that in model (1)-(7) there always exists an optimal solution for the leader
which is maximal, namely where items are included in the leader’s knapsack as
long as there is enough capacity left.

Let us now recall the optimal solution of the continuous relaxation of a standard
KP, namely the follower’s model (4)-(7) without constraints (6) and constraints

(7) replaced by inclusion in [0, 1]. Under the assumption
n∑
i=1

wi > Cl, this solution

has the following structure. Consider the sorting of the items by non-increasing
ratios of profits over follower’s weights:

p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn
. (8)

According to this order, items j = 1, 2, . . . are inserted into the knapsack as long

as
j∑

k=1

wk ≤ Cl. The first item s which cannot be fully packed is commonly denoted

in the knapsack literature as the split item (or break/critical item). The optimal
solution of the KP linear relaxation is given by setting yj = 1 for j = 1, . . . , s− 1,

yj = 0 for j = s + 1, . . . , n and ys = (Cl −
s−1∑
j=1

wj)/ws. The solution with items
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1, . . . , (s − 1) is a feasible solution for KP and is commonly denoted as the split

solution.

In the remainder of the paper, we assume the ordering of the items (8). We
denote by KP (x) the follower’s knapsack problem induced by a leader’s strategy
encoded in vector x, i.e. a knapsack problem with item set

S := {i : xi = 0, xi ∈ x}.

We also denote by KPLP (x) the corresponding Linear Programming (LP) relax-
ation. If

∑
i∈S wi > Cl, we define the critical item c of KPLP (x) as the last item

with a strictly positive value in its optimal solution. Thus, we have yc ∈ (0, 1] and
a corresponding split solution with profit

∑
i∈S:i<c

pi =
c−1∑
i=1

pi(1− xi) (9)

which constitutes a feasible solution for KP (x). Notice that we denote by z(M)
the optimal solution value of any given mathematical model M .

3 Computing lower bounds on BKP

Consider the optimal solution vector x∗. In the induced follower’s knapsack prob-
lem KP (x∗) with item set S, two cases may occur: either there is no critical item in
KPLP (x∗), namely

∑
i∈S wi ≤ Cl, or one critical item exists, namely

∑
i∈S wi > Cl.

The first case can be easily handled by considering that the follower will pack all
items not interdicted by the leader. This case is discussed in Section 4.2.1.
In the second case, we derive effective lower bounds on BKP that constitute the
main ingredient of the exact approach presented in Section 4. Since we don’t know
a priori the leader’s optimal solution x∗, we proceed by guessing the critical item
of KPLP (x∗), namely we formulate an Integer Linear Programming (ILP) model
where we impose that a given item c must be critical and evaluate the profit of the
corresponding split solution in the objective function. We consider binary variables
kh (h = 1, . . . , wc) associated with the weight contribution of the critical item and
introduce the following model (denoted as CRIT1(c)).

CRIT1(c):
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min
c−1∑
i=1

pi(1− xi) (10)

subject to
n∑
i=1

vixi ≤ Cu (11)

c−1∑
i=1

wi(1− xi) +
wc∑
h=1

hkh = Cl (12)

wc∑
h=1

kh = 1 (13)

xc = 0 (14)

xi ∈ {0, 1} i = 1, . . . , n (15)

kh ∈ {0, 1} h = 1, . . . , wc (16)

The objective function (10) minimizes the value of the split solution. Con-
straint (11) represents the leader’s capacity constraint. Constraints (12) and (13)
ensure that item c is critical as it is the last item packed, with a weight in the
interval [1, wc]. Constraint (14) indicates that item c can be critical only if it is not
interdicted by the leader. Constraints (15) and (16) indicate that all variables are
binary. Admittedly, instead of using wc binary variables kh, an alternative model
could be obtained by using a single integer positive variable in constraint (12). For
sake of exposition, this issue is discussed at the end of this section.

We can state the following proposition.

Proposition 1 If c is the critical item in KPLP (x∗), then z(CRIT1(c)) is a valid

lower bound on z∗.

Proof If c is the critical item in KPLP (x∗), an optimal BKP solution x∗ constitutes
a feasible solution for model CRIT1(c). Let denote by z1 the solution value of the
split solution in KP (x∗). Since the follower maximizes the profits in KP (x∗), the
value of z∗ is greater than (or equal to) the one of the related split solution, that is
z1 ≤ z∗. But then, as model CRIT1(c) searches for an interdiction of items by the
leader inducing a minimum cost split solution (among all feasible split solutions
for a given critical item c), we get z(CRIT1(c)) ≤ z1 ≤ z∗. ut

The previous proposition already provides a first significant lower bound for the
problem. However, following the reasoning in the proof of Proposition 1, we remark
that improved bounds on z∗ can be derived by considering any feasible solution
for KP (x∗) that might be obtained by removing (adding) items that were not
interdicted by the leader and that were selected (not selected) by the split solution,
provided that the follower capacity is not exceeded. Indeed, this corresponds to
considering only items i not interdicted by the leader and to removing tuples of
items i ∈ [1, c − 1] and/or to adding tuples of items i ∈ [c, n] from/to the split
solution without exceeding the follower’s capacity.

Notice that, the state-of-the-art algorithms for KP, Minknap ([31]) and Combo

([25]) consider that in general only few items with ratio pi/wi close to that of
the critical item change their values in an optimal solution with respect to the
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values taken in the split solution. These items constitute the so-called core of the
knapsack. Minknap and Combo start with the computation of the split solution and
define a core initialized with the critical item only. Then, the algorithms iteratively
enlarge the core by evaluating both the removal of items from the split solution
and the addition of items after the critical item. The empirical evidence illustrates
that an optimal (or close to be optimal) KP solution is typically found after few
iterations.

We cannot precisely characterize the features of these exact algorithms by a
set of constraints within an ILP model, but we can mimic the same algorithmic
reasoning by considering subsets of items c−∆, ..., c+∆ provided that these items
are not interdicted by the leader. In each subset, the items i : i ≤ c−1 are removed
from the split solution, while the items j : j ≥ c are added to the solution. When-
ever this operation does not violate the capacity constraint, a new feasible solution
is reached. Correspondingly, the initial profit and weight of the split solution are
modified by subtracting the profits and the weights of the removed items and by
summing up the profits and the weights of the added items.

Then, for any given subset τ of items c − ∆, ..., c + ∆, let pτ and wτ be the
related profit and weight contributions, namely:

pτ = −
∑

i∈τ :i<c

pi +
∑

j∈τ :j≥c
pj ; (17)

wτ = −
∑

i∈τ :i<c

wi +
∑

j∈τ :j≥c
wj . (18)

A subset τ with pτ ≤ 0 is not considered since it does not improve upon the
split solution (whatever is the split solution originated by the relevant ILP model)
associated with the critical item c. Instead, an improving subset with pτ > 0 is
of interest only if it is feasible. Feasibility is obtained if wτ does not exceed the

residual capacity, that is if wτ ≤
wc∑
h=1

hkh which implies
wc∑

h=wτ
kh = 1. Also, only

items not interdicted by the leader can be considered, that is xi = 0 ∀i ∈ τ must
hold. Correspondingly, an improving subset τ is detected inducing an additional
profit pτ , if and only if the following expression holds:

wc∑
h=wτ

kh −
∑
i∈τ

xi = 1. (19)

A new model can then be generated by introducing a non-negative variable π
that carries the maximum additional profit to the split solution value provided by
any subset τ and related additional constraints of the type

π ≥ pτ (
wc∑

h=wτ

kh −
∑
i∈τ

xi). (20)

Notice that the right-hand side of (20) is not larger than 0 whenever
wc∑

h=wτ
kh =

0 or
∑
i∈τ

xi ≥ 1. Correspondingly, it equals pτ if and only if expression (19) holds.

We can then consider a set of constraints (each corresponding to a subset of
items), denoted (with a little abuse of notation) as F(π, x, k, τ), linking variable
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π to variables xi and kh for each considered subset τ . The model (denoted as
CRIT2(c)) is as follows.

CRIT2(c):

min
c−1∑
i=1

pi(1− xi) + π (21)

subject to F(π, x, k, τ) (22)

(11)− (16)

π ≥ 0 (23)

Due to the addition of any set of constraints F(π, x, k, τ), for every c we have
z(CRIT1(c)) ≤ z(CRIT2(c)) as in CRIT2(c) there are more constraints and the
objective function contains an additional positive term π. Notice that, every addi-
tional constraint contains only items not interdicted by the leader (I) and does not
violate the follower’s capacity (II). Every set F(π, x, k, τ) of constraints satisfying
both requirements (I) and (II) is denoted as proper. Once set F(π, x, k, τ) is built,
variable π represents in the objective function the largest profit induced by the
tuples of items that can be added to the profit of the split solution.

Proposition 2 If KPLP (x∗) admits a critical item c and model CRIT2(c) has a

proper set F(π, x, k, τ), then z(CRIT2(c)) ≤ z∗.

Proof Since model CRIT2(c) considers feasible solutions for KP (x∗), the inequality
holds by applying the same argument of Proposition 1. ut

We remark that models CRIT1(c) and CRIT2(c) contain a pseudo polyno-
mial number of binary variables kh depending on the magnitude of the follower’s
weights. Hence, the hardness of these ILP models may increase with the size in-
crease of such input entries. At the same time, a different handling of models
CRIT1(c) and CRIT2(c) is possible in presence of large follower’s weights. We can

avoid to use a pseudo polynomial number of variables by replacing term
wc∑
h=1

hkh

in constraint (12) with one integer variable and by introducing a binary variable
and two constraints for each tuple considered in F(π, x, k, τ). For the sake of expo-
sition, we show this alternative treatment of the ILP models only for the MRKP
in Section 8.2. For BKP, after computational tests on benchmark instances, we
noticed that the use of a pseudo polynomial number of variables kh appears to
be more effective. This is because the data generation from the literature chooses
rather small follower’s weights in the interval [1, 100] (see Section 5) thus limiting
the number of variables kh in models CRIT1(c) and CRIT2(c) .

4 A new exact approach for BKP

4.1 Overview

We propose an exact algorithm for BKP that considers the possible existence of a
critical item in KPLP (x∗) and exploits the bounds provided by model CRIT2(c).
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The key idea of the algorithm is to compute appropriate leader’s solutions by ex-
ploring the most promising subproblems of the follower in terms of lower bounds.
This strategy considerably speeds up in practice both the identification and certifi-
cation of an optimal interdiction structure. The approach involves two main steps.
In the first step, the possible non-existence of a critical item is first evaluated.
Then, the approach assumes the existence of a critical item and identifies a set of
possible candidate items. For each candidate item c and value of a parameter ∆
(that controls the core size), model CRIT2(c) is built by considering several sub-
sets of items and related additional constraints (20). Then the linear relaxation
CRITLP2 (c) is solved, where the integrality constraints (15) and (16) are replaced
by inclusion in [0, 1].

The feasible problems CRITLP2 (c) are sorted by increasing optimal value so
as to identify an order of the most promising subproblems to explore. A limited
number of feasible BKP solutions is also computed in this step.

In the second step, each relevant subproblem is explored by constraint genera-
tion until the subproblem can be pruned. An optimal BKP solution is eventually
returned. The approach takes as input six parameters α, β, ∆, µ, γ, ω and relies
on an ILP solver along its steps. We discuss the steps of the algorithm in the
following. The corresponding pseudo code is then provided.

4.2 Step 1

4.2.1 Handling the possible non-existence of a critical item

We first consider the case where there does not exist a critical item in KPLP (x∗).
Thus, the follower will select all available items which are not interdicted by the
leader and an optimal solution of BKP is found by solving the following problem
NCR.

NCR:

min
n∑
i=1

pi(1− xi) (24)

subject to
n∑
i=1

vixi ≤ Cu (25)

n∑
i=1

wi(1− xi) ≤ Cl (26)

xi ∈ {0, 1} i = 1, . . . , n (27)

If problem NCR is feasible, let denote by x′ the related optimal solution repre-
senting the leader’s strategy. The corresponding follower’s solution is denoted by
y′, with y′i = 1 − x′i (i = 1, . . . , n). The current best solution (x∗, y∗) with value
z∗ (which will be optimal at the end of the algorithm) is initialized accordingly
(Lines 3-4 of the pseudo code).
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4.2.2 Identifying the relevant critical items

We now assume that there exists a critical item c in KPLP (x∗) (Lines 5-13) and
estimate the first and last possible items q and r that can be critical according to
ordering (8). For item q we have

q := min{j :
j∑
i=1

wi ≥ Cl}. (28)

All items 1, . . . , (q − 1) cannot in fact be critical even without the leader’s inter-
diction. For the last item r, we first compute the maximum weight of the follower
that can be interdicted by the leader (similarly to [4]) by solving the following
problem (denoted by LW ).

LW :

max
n∑
i=1

wixi (29)

subject to
n∑
i=1

vixi ≤ Cu (30)

xi ∈ {0, 1} i = 1, . . . , n (31)

Item r is defined as

r := min{j :
j∑
i=1

wi ≥ Cl + z(LW )}. (32)

Since from (32) we have
r∑
i=1

wi(1−xi) ≥ Cl for any leader’s strategy, all items from

(r + 1) to n cannot be critical.

4.2.3 Building models CRIT2(c)

For each candidate critical item c ∈ [q, r], we formulate model CRIT2(c) by con-
structing a proper set F(π, x, k, τ) as follows. Consider the subsets involving items
in the interval [c−∆, c+∆]. Even for small value of ∆, the number of subsets can
be very large. Hence, in order to limit the number of constraints in F(π, x, k, τ), we
propose a different strategy that greedily selects the subsets according to the proce-
dure denoted as DefineTuples and sketched below. We remark that the adopted
strategy slightly differs from the ComputeTuples procedure we used in [13] and
contributes to further improving the performance of the proposed approach (see
Section 5).

For a given value of ∆, we consider the interval of items [a, b], with a =
max{1; c−∆} and b = min{c+∆;n}. Starting with the empty set, we enumerate
all “backward” sets with at most α items among items a, . . . , (c − 1). Each set
has a profit and weight equal to the sum of profits and weights of the included
items. We also compute all “forward” sets with items c, . . . , b and at most β items.
Then we combine each backward set with a forward set and generate a tuple τ . If
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pτ > 0 and wτ ≤ wc, we store the tuple for possible insertion in set F(π, x, k, τ).
Then we sort all the stored tuples by nondecreasing cardinality with ties broken
in favor of tuples with a higher ratio pτ/wτ . The rationale is to fill set F(π, x, k, τ)
by considering tuples with a limited number of items (and so expected to be more
difficult to interdict) while ensuring the insertion of tuples with high efficiency
in terms of ratio profit over weight. Following the ordering of the tuples, we add
the related constraints (20) to F(π, x, k, τ) until their number is larger than an
input parameter µ. If not previously included, we also add to set F(π, x, k, τ) the
constraint π ≥ pckwc which handles the possible adding of the critical item to the
split solution if the residual capacity is equal to wc.

DefineTuples(c, α, β, ∆, µ)

1: Consider items in the interval [a, b] with a := max{c−∆; 1}, b := min{c+∆;n}.
2: Starting from the empty set, enumerate all backward sets with at most α items

among items a, . . . , (c− 1).

3: Enumerate all forward sets with at most β items c, . . . , b.

4: Generate tuples by merging each backward set with each forward set and store

any tuple τ with pτ > 0 and wτ ≤ wc.
5: Sort the stored tuples by nondecreasing cardinality with ties broken in favor

of tuples with higher ratio pτ/wτ .

6: Following the order of the tuples, add the related constraints (20) to

F(π, x, k, τ) as long as |F(π, x, k, τ)| ≤ µ.

7: If not already included, add to F(π, x, k, τ) constraint π ≥ pckwc .

Then we solve models CRITLP2 (c) for each c ∈ [q, r] and order the models by
increasing optimal value so as to have an order of most promising subproblems to
explore. If for the first subproblem we have z(CRITLP2 (c)) ≥ z∗, an optimal BKP
solution is already certified (Line 13 of the pseudo code).

4.2.4 Computing feasible BKP solutions

According to the previous order of subproblems, we compute BKP feasible solu-
tions by considering the first γ subproblems (Lines 15-22). For a given item c, we
solve model CRIT2(c) obtaining a solution x̂.
If z(CRIT2(c)) < z∗, we solve the induced follower’s problem KP (x̂) with optimal
solution ŷ and update the current best solution if z(KP (x̂)) < z∗.

4.3 Step 2

This step considers all relevant (ordered) suproblems CRIT2(c). For each sub-
problem, we first test for standard variables fixing and then each subproblem is
explored by means of a constraint generation approach (Lines 24-42).
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4.3.1 Fixing variables in subproblems

For a given problem CRITLP2 (c), denote the optimal values of variables xi and
kh by xLPi and kLPh respectively. Let rxi and rkh be the reduced costs of non
basic variables in the optimal solution of CRITLP2 (c). We apply then standard
variable-fixing techniques from Integer Linear Programming: if the gap between
the best feasible solution available and the optimal solution value of the continuous
relaxation solution is not greater than the absolute value of a non basic variable
reduced cost, then the related variable can be fixed to its value in the continuous
relaxation solution. Thus, the following constraints are added to CRIT2(c):

xi = xLPi ∀ i : |rxi | ≥ z
∗ − z(CRITLP2 (c)); (33)

kh = kLPh ∀h : |rkh | ≥ z
∗ − z(CRITLP2 (c)). (34)

4.3.2 Solving subproblems

For each open subproblem induced by a critical item c, we first solve CRIT2(c)
(Line 27) obtaining a solution x̄. If the corresponding objective value is lower
than the current best feasible solution value, we solve KP (x̄) with solution ȳ

and if an improving solution is found, the current best solution is updated, as in
Section 4.2.4. In [13], the following straightforward cut was added to CRIT2(c) in
order to impose that at least one item selected by the follower in solution ȳ must
be interdicted:

n∑
i:ȳi=1

xi ≥ 1. (35)

Model CRIT2(c) is then solved with one more constraint and then the same proce-
dure is applied until z(CRIT2(c)) ≥ z∗ or the problem becomes infeasible. Taking
a closer look to the structure of the subproblems, at each iteration we can replace
when possible constraint (35) with a new additional constraint (20) to induce more
targeted changes of the interdiction structure in the leader’s solutions and speed
up the exploration process of the subproblems.
Given solutions x̄ and ȳ, let τ̄ be the subset of items 1, ..., c − 1 not included in ȳ

and items c, ..., n included in ȳ. If τ̄ is not empty, we compute quantities pτ̄ , wτ̄

according to (17), (18) respectively and add the corresponding constraint (20) to
set F(π, x, k, τ) in model CRIT2(c). Two cases may occur when model CRIT2(c)
is solved in the next iteration: either the same solution x̄ is obtained but then we
would have z(CRIT2(c)) = z(KP (x̄)) ≥ z∗, or a solution different from x̄ is ob-
tained. In this second case, either at least one item in τ̄ is interdicted and/or the
weight contribution of the critical item has a value smaller than wτ̄ (corresponding
to a different choice of a variable kh in constraint (12)).
Thus at each iteration we add a valid cut for subproblem CRIT2(c) when subset τ̄
is not empty or else we add constraint (35) as indicated in the pseudocode (Lines
31-35). In addition, if the value of z(CRIT2(c)) stagnates for ω iterations, we add
up to µ tuples with limited weight (Lines 36-39). At the end of Step 2, the optimal
BKP solution (x∗, y∗) is returned (Line 43).
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Exact solution approach

1: Input: BKP instance, parameters α, β, ∆, µ, γ, ω.
. Step 1

2: Handle the absence of a critical item:

3: solve NCR; z∗ ← +∞;
4: if NCR has a feasible solution then x∗ = x′, y∗ = y′, z∗ = z(NCR); end if

5: Identify the candidate critical items and build models CRIT2(c):

6: Compute the interval of critical items [q, r]: q ← apply (28), r ← apply (32);
7: for all c in [q, r] do
8: Build model CRIT2(c) by procedure DefineTuples(c, α, β, ∆, µ);
9: Solve model CRITLP2 (c);

10: end for

11: Sort models CRIT2(c) by increasing z(CRITLP2 (c)).
12: =⇒ Create a list of ordered critical items L = {c1, c2, . . . };
13: if z(CRITLP2 (c1)) ≥ z∗ then return (x∗, y∗); end if

14: Compute feasible BKP solutions:

15: for i = 1, . . . , γ do

16: if z(CRITLP2 (ci)) < z∗ then x̂← solve CRIT2(ci);
17: if z(CRIT2(ci)) < z∗ then ŷ ← solve KP (x̂);
18: if z(KP (x̂)) < z∗ then x∗ = x̂, y∗ = ŷ, z∗ = z(KP (x̂));
19: end if

20: end if

21: end if

22: end for

. Step 2
23: Solve subproblems:

24: for all c in list L do

25: if z(CRITLP2 (c)) ≥ z∗ then return (x∗, y∗); end if

26: Apply (33), (34) and fix variables in CRIT2(c);
27: x̄← solve CRIT2(c);
28: while z(CRIT2(c)) < z∗ do

29: ȳ ← solve KP (x̄);
30: if z(KP (x̄) < z∗ then x∗ = x̄, y∗ = ȳ, z∗ = z(KP (x̄)); end if

31: Compute subset τ̄ ;
32: if τ̄ is not empty then

33: add constraint (20), as indicated in section 4.3.2, to CRIT2(c); end if

34: if τ̄ is empty then

35: add constraint (35) to CRIT2(c); end if

36: if z(CRIT2(c)) does not increase for ω iterations then

37: Consider the remaining tuples computed by DefineTuples(c, α, β, ∆, µ)

38: with weight ≤ Cl −
c−1∑
i=1

wi(1− x̄i);

39: Add µ constraints (20) to CRIT2(c); end if

40: x̄← solve CRIT2(c);
41: end while

42: end for

43: return (x∗, y∗).
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5 Computational testing

All tests were performed on an Intel i5 CPU @ 3.0 GHz with 16 GB of RAM.
The code was implemented in the C++ programming language. The ILP solver
used along the steps of the algorithm is CPLEX 12.9. The parameters of the ILP
solver were set to their default values. We considered first the BKP instances with
n = 35, 40, 45, 50, 55 that were generated in [4] as follows. Profits pi and weights
wi of the follower and weights vi of the leader are integers randomly distributed in
[1, 100]: 10 instances are generated for each value of n. The follower’s capacity Cl is
set to d(INS/11)

∑n
i wie where INS (= 1, . . . , 10) denotes the instance identifier.

The leader’s capacity is randomly selected in the interval [Cl − 10;Cl + 10].

These 50 benchmark instances were the most challenging ones solved to op-
timality in the literature. Indeed, the computational tests in both [4] and [17]
were limited to instances with 55 items. After some preliminary computational
tests, we chose the following parameter entries for our approach: α = 2, β = 2,
∆ = 10, µ = 150, γ = 2, ω = 5. The corresponding results are presented in Table
1. For each instance, we report the CPU time to obtain an optimal solution and
the number of subproblems explored in Step 2. The last column also reports the
number of times model CRIT2(c) is solved along the two steps. Algorithm CCLW
in [4] was executed on a Quad-Core Intel Xeon @ 2.66 GHz using solver Gurobi
5.5.0. This algorithm solves all instances with 50 items within a CPU time limit of
3600 seconds but runs out of time limit in instances 55-3, 55-4. Algorithm in [17]
was executed on an Intel Xeon E3-1220V2 @ 3.1-GHz using solver CPLEX 12.6.
This algorithm solves all benchmark instances, requiring at most a computation
time of about 85 seconds for solving instance 55-3. As the results in Table 1 il-
lustrate, the proposed exact approach successfully solves to optimality the whole
batch of instances in approximately 5 seconds, that is 0.1 seconds on the average,
requiring at most 0.34 seconds on instance 55-3. Also, the number of subproblems
explored in Step 2 and the number of models CRIT2(c) solved are very limited.
Even though the tests in [4] and in [17] were carried out on different machines and
using different solvers, the improvement with respect to the current state of the
art literature appears to be very significant.
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CPU # Subprob. # CRIT2(·)
n INS Time in Step 2 solved
35 1 0.08 3 5

2 0.15 0 2
3 0.15 1 3
4 0.12 2 4
5 0.07 2 4
6 0.04 0 0
7 0.03 0 0
8 0.03 0 0
9 0.02 0 0

10 0.02 0 0
40 1 0.12 1 3

2 0.16 1 3
3 0.20 3 5
4 0.11 0 2
5 0.08 0 2
6 0.04 0 0
7 0.04 0 0
8 0.03 0 0
9 0.03 0 0

10 0.01 0 0
45 1 0.14 3 5

2 0.31 3 5
3 0.19 2 4
4 0.19 1 3
5 0.12 2 4
6 0.04 0 0
7 0.04 0 0
8 0.04 0 0
9 0.03 0 0

10 0.03 0 0
50 1 0.26 5 8

2 0.25 2 4
3 0.17 2 4
4 0.13 0 2
5 0.11 0 2
6 0.05 0 0
7 0.05 0 0
8 0.04 0 0
9 0.03 0 0

10 0.02 0 0
55 1 0.22 3 5

2 0.28 2 4
3 0.34 8 10
4 0.17 5 7
5 0.07 0 0
6 0.05 0 0
7 0.05 0 0
8 0.04 0 0
9 0.04 0 0

10 0.03 0 0

Table 1 BKP instances from [4].

We considered also other instances considered in the literature proposed in [14]
(available at http://coral.ise.lehigh.edu/data-sets/bilevel-instances/) and
[35] (available at http://people.clemson.edu/~jcsmith/Test_Instances_files/BKPIns.
zip). There is a total of 160 instances in [14] with size not larger than n = 50 and
there is a total of 210 instances in [35] with size not larger than n = 30. We
do not provide the complete results on those instances but just mention that
our exact algorithm with the above mentioned settings solved the whole batch of
160 instances in [14] in 9.87 seconds (less than 0.06 seconds on average for in-
stance) and the whole batch of 210 instances in [35] in 18.1 seconds (less than

http://coral.ise.lehigh.edu/data-sets/bilevel-instances/
http://people.clemson.edu/~jcsmith/Test_Instances_files/BKPIns.zip
http://people.clemson.edu/~jcsmith/Test_Instances_files/BKPIns.zip
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0.09 seconds on average for instance). We then generated and tested larger in-
stances with n = 100, 200, 300, 400, 500 (available at https://drive.google.com/

drive/folders/1LTDEB3b8gFDXbRJ-9b3RRjJ978BpynYm) according to the generation
scheme in [4]. For each value of n and INS, we generated 10 instances for a total
of 500 instances. For these large instances, we set the parameters of our algorithm
to the following values: α = 2, β = 2, ∆ = 20, µ = 1000, γ = 5, ω = 5. It is pointed
out in [4] that in instances with INS ≥ 5 the follower’s capacity constraint is
expected to be inactive for any maximal leader’s interdiction strategy. This makes
these instances easy to solve. Our computational experiments confirm this trend
also on larger instances: the proposed algorithm solves each instance with n from
100 to 500 and INS ≥ 5 in at most 6 seconds without ever invoking Step 2. In the
light of this consideration, we report in the following Table 2 only the results for
instances with INS ≤ 4.

CPU # Subproblems # CRIT2(·)
Time in Step 2 solved

n INS #Opt Average Max Average Max Average Max

100 1 10 0.9 1.1 0.3 1 4.3 6
2 10 1.7 2.6 3.1 8 8.1 14
3 10 1.5 2.0 2.2 6 7.2 11
4 10 0.9 1.3 0.7 4 5.2 9

200 1 10 2.2 3.3 2.9 6 8.0 13
2 10 3.1 4.0 4.2 6 9.2 11
3 10 3.5 4.4 5.6 11 10.8 16
4 10 2.7 3.4 3.0 8 7.8 13

300 1 10 3.5 4.0 3.1 9 8.0 14
2 10 5.3 7.5 6.2 12 11.2 17
3 10 6.4 7.6 10.1 15 15.5 20
4 10 4.7 6.1 4.5 11 9.5 16

400 1 10 5.0 6.1 5.5 9 10.9 16
2 10 7.4 8.6 7.8 12 13.4 20
3 10 9.0 11.3 10.5 14 16.2 22
4 10 7.5 9.4 7.8 23 12.9 29

500 1 10 7.2 9.5 6.9 14 12.2 21
2 10 10.4 12.6 9.8 17 14.9 22
3 10 11.9 13.4 12.3 17 17.4 22
4 10 9.8 10.9 4.4 9 9.4 14

Table 2 BKP instances with n = 100, 200, 300, 400, 500 and INS ≤ 4.

The results in the table are summarized in terms of average, maximum CPU
time and number of optimal solutions obtained with a time limit of 60 seconds.
Similarly to Table 1, we also report the average and maximum number of subprob-
lems explored in Step 2, and the average and maximum number of times model
CRIT2(c) is solved. The results illustrate the effectiveness of our approach. All
instances are solved to optimality requiring 13.6 seconds at most for an instance
with 500 items. The number of subproblems handled by Step 2 is in general lim-

https://drive.google.com/drive/folders/1LTDEB3b8gFDXbRJ-9b3RRjJ978BpynYm
https://drive.google.com/drive/folders/1LTDEB3b8gFDXbRJ-9b3RRjJ978BpynYm
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ited, reaching a maximum value of 23 (in an instance with 400 items). Also, the
number of models CRIT2(c) to be solved is generally limited and never larger than
29. We finally point out that the number of times constraints (20)/(35) are added
to each subproblem is also limited: in the tested instances, the while–loop of Step
2 is executed 5 iterations at most.

To get a broader picture, we also tackled the instances generated in the recent
work [19] where a heuristic approach is proposed for BKP and for other interdiction
games. These instances are classified according to different correlations between
profits and weights following the schemes in [25]. Nine classes were listed in [19]
having the following distribution where u.r. stands for uniformly random.

1 Uncorrelated : wj u.r. in [1, R] , pj u.r. in [1, R].
2 Weakly correlated : wj u.r. in [1, R], pj u.r. in [wj − R/10, wj + R/10] so that
pj ≥ 1.

3 Strongly correlated : wj u.r. in [1, R] , pj = wj +R/10.
4 Inverse strongly correlated : pj u.r. in [1, R], wj = dj +R/10.
5 Almost strongly correlated : wj u.r. in [1, R], pj u.r. in [wj+R/10−R/500, wj+
R/10 +R/500].

6 Subset-sum : wj u.r. in [1, R], pj = wj .
7 Even-odd subset-sum : wj even value u.r. in [1, R], pj = wj .
8 Even-odd strongly correlated: wj even value u.r. in [1, R], pj = wj +R/10.
9 Uncorrelated with similar weights: wj u.r. in [100R, 100R + R/10], pj u.r. in

[1, R].

All the instances were generated with R = 100, the leader’s weights vj u.r. in [0, R]
and follower’s and leader’s capacities generated as in [4]. We do not consider Class
9 here as it was mentioned in [19] that the instances of this class are trivial for
BKP. Table 3 provides the relevant results in terms of average, maximum CPU
time and number of optimal solutions obtained within a time limit of 300 seconds
for the easier classes 1-2 where our algorithm kept the same parameters values
indicated above.

CPU # Subproblems # CRIT2(·)
Time in Step 2 solved

CORR n #Opt Average Max Average Max Average Max

100 10 0.6 1.9 0.5 4 2.4 9
200 10 1.4 3.3 1.2 6 3.2 11

1 300 10 2.6 6.9 2.3 12 4.3 17
400 10 4.0 8.7 3.6 12 5.9 17
500 10 4.9 10.5 2.5 8 4.5 13

100 10 4.3 18.6 4.3 20 6.6 28
200 10 12.2 39.1 6.8 29 10.7 41

2 300 10 12.5 52.2 8.6 37 11.5 42
400 10 16.5 75.3 10.4 45 13.7 53
500 10 33.7 180.9 11.9 48 22.5 113

Table 3 BKP instances from [19] (Classes 1-2).
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Table 4 provides the relevant results on the harder correlations 3–8. For these
instances, best performances were reached by slightly modifying the value of pa-
rameters ∆ (∆ = 50) and µ (µ = 2000) while keeping unchanged the other pa-
rameters. For these instances, it is shown that the algorithm is capable of solving
to optimality instances with size n = 100 with only four instances (two of class 6
and two of class 7, respectively) exceeding a CPU time limit of 3600 seconds, thus
further highlighting the effectiveness of the proposed approach. In the table, the
average CPU time is computed without considering the four instances exceeding
the time limit.

CPU # Subproblems # CRIT2(·)
Time in Step 2 solved

CORR n #Opt Average Max Average Max Average Max

3 100 10 148.6 1377.5 3.8 20 23.7 204

4 100 10 81.0 400.8 5.4 32 43.2 195

5 100 10 69.9 672.7 3.3 20 10.3 80

6 100 8 766.3 3600.0 1.6 13 18.1 145

7 100 8 737.1 3600.0 1.6 13 15.4 123

8 100 10 228.1 2234.4 4.1 20 17.4 138

Table 4 BKP instances from [19] (Classes 3-8, n = 100).

As mentioned at the end of Section 3, variables kh could be substituted by
a single integer variable. We tested this alternative formulation but the perfor-
mances were consistently inferior on every non trivial instance. The total CPU
time (summed up on all considered instances) ratio between the formulation with
a single integer variable and the formulation with wc binary variables is approxi-
mately equal to 4.

For sake of completeness, we tested also on our machine the exact approaches
of [4] and [17] (the related codes were kindly provided by the authors) with a time
limit of 3600 seconds on the instances of Tables 3 and 4 with n = 100 for a total
of 80 instances. Both approaches were typically able to solve in limited time the
so-called easy instances with INS = 5 − 10, but ran out-of-time in most of the
other instances. Specifically, the approach of [4] ran out of time on 28 instances
while the approach of [17] ran out of time on 36 instances.
We tested then our approach on larger instances with n = 200−500 on the harder
correlations 3–8. Table 5 provides the relevant results regrouped in three main
categories (INS = 1 − 3, INS = 4 and INS = 5 − 10). For each category, we
depict the number of problems solved to optimality along the six classes 3− 8 and
the average CPU time. The results clearly indicate that instances with INS = 4
and INS = 5 − 10 remain consistently easy to solve for the proposed approach,
while instances with INS = 1 − 3 are currently out of reach. For these instances
involving strong correlations between the profits and the weights of the follower,
we believe that dedicated approaches should be considered as it was done in the
corresponding versions of the standard KP (see, e.g., the works [30] and [32] for
handling strongly correlated and subset-sum instances, respectively.)
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n INS #Opt Aver. Time

1-3 2/18 3210.0
200 4 6/6 23.4

5-10 36/36 7.3

1-3 2/18 3225.6
300 4 6/6 49.3

5-10 36/36 16.1

1-3 0/18 3600.0
400 4 6/6 71.5

5-10 36/36 25.9

1-3 0/18 3600.0
500 4 6/18 141.6

5-10 36/36 36.1

Table 5 BKP instances from [19] (Classes 3-8, n = 200, 300, 400, 500).

Finally, we implemented a one-shot heuristic version of our procedure applying
only step 1 and allowing a CPU time limit of 60 seconds. In the heuristic, the
settings were the same used by our exact algorithm for the instances generated in
[4] except for γ = 5 where for each model CRIT2(c) CPLEX 12.9 was allowed to run
for 10 seconds. We compared our heuristic to the best heuristic algorithm denoted
DR+ in [19] on distributions [3-8] (as our exact algorithm solves all instances to
optimality on distributions [1-2]). This heuristic procedure shows up to be just
slightly inferior to the algorithm in [19] reaching the same objective function value
on 281 over 300 instances and being outperformed on 19 instances only.

6 Extending the approach to the Interval Min-Max Regret Knapsack

Problem

We now discuss the application of the derived algorithmic framework to the In-
terval Min-Max Regret Knapsack Problem (MRKP) first introduced in [24]. Some
of the notation adopted for BKP recurs in this section with a different meaning.
Consider the classical 0/1 Knapsack Problem (KP) and the related ILP formu-

lation max
n∑
i=1

pixi subject to
n∑
i=1

wixi ≤ C, xi ∈ {0, 1}, i = 1, . . . , n. MRKP is

a generalization of KP where the profit of each item i can assume any value be-
tween two values p−i and p+

i , with p+
i > p−i . A set s of n profits psi ∈ [p−i , p

+
i ]

defines a scenario. The set of all possible scenarios is denoted by S0, namely
S0 := {s : psi ∈ [p−i , p

+
i ], i = 1, . . . , n}. We also denote by zs(opt) the KP opti-

mal solution value under scenario s where each item has profit psi and by zs(x) the

solution value given by a feasible solution vector x, i.e. zs(x) =
n∑
i=1

psixi, xi ∈ x.

Correspondingly, the regret rs(x) associated with a solution x under scenario s is

rs(x) = zs(opt)− zs(x). (36)

MRKP consists in finding a feasible solution vector x such that the maximum
regret obtainable over all scenarios is minimized. More formally the problem can
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be stated as follows:

min max
s∈S0

rs(x) (37)

subject to
n∑
i=1

wixi ≤ C (38)

xi ∈ {0, 1} i = 1, . . . , n (39)

We denote by x∗ an optimal solution of model (37)-(39) with regret value z∗.
The authors of [9] prove that the MRKP is Σp2 -complete and point out that the
solution of even moderately sized instances of the problem is challenging and seems
to require innovative approaches. An attempt in this direction has been provided
in [20], where heuristic and exact approaches are proposed for the solution of the
MRKP. The authors of [20] evaluate the performance of the proposed algorithms
through extensive computational experiments on instances with up to 70 items
(see Section 6.2). We refer the interested reader to [20] for a literature review
about other min-max regrets optimization problems.

6.1 Bilevel reformulation of the MRKP

The following crucial result was proved in [1] (and recalled in [20]) for the MRKP
within a general context of min-max regrets problems:

Lemma 1 ([1]) For any feasible solution x, the profits in its worst case scenario,

denoted as σ(x), are as follows:

p
σ(x)
i =

{
p−i if xi = 1

p+
i otherwise

(i = 1, . . . , n)

Therefore a given feasible solution x induces a unique worst case scenario (σ(x))
to be considered for the computation of the corresponding maximum regret rσ(x),
namely

rσ(x) = zσ(x)(opt)− zσ(x) = zσ(x)(opt)−
n∑
i=1

p−i xi (40)

Notice that the last summation in (40) representing zσ(x) does not include terms p+
i

as they disappear when xi = 0. Given the result in Lemma 1, we can alternatively
see the problem as a Stackelberg game and propose a related bilevel programming
reformulation. To the authors’ knowledge, this is the first time MRKP is formu-
lated as a bilevel programming problem with interdiction constraints. Here the
leader first chooses a feasible knapsack solution x with the goal of minimizing the
regret rσ(x) associated with his decision. The follower aims to maximize the profits
of the knapsack instance induced by the worst-case scenario σ(x), thus comput-
ing zσ(x)(opt). To derive a bilevel linear program, we consider binary variables xi
(i = 1, . . . , n) equal to one if the leader selects item i. We also introduce 2n items
in the follower’s knapsack problem: for each i we define a “low” item li with profit
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p−i and weight wi and a “high” item hi with profit p+
i and weight wi. Correspond-

ingly, we introduce binary variables y−i and y+
i equal to one if the follower selects

item li or hi (i = 1, . . . , n) respectively. MRKP can be modeled as follows:

min
n∑
i=1

(p−i y
−
i + p+

i y
+
i )−

n∑
i=1

p−i xi (41)

subject to
n∑
i=1

wixi ≤ C (42)

xi ∈ {0, 1} i = 1, . . . , n (43)

where y−1 , . . . , y
−
n , y

+
1 , . . . , y

+
n solve

the follower’s problem: max
n∑
i=1

(p−i y
−
i + p+

i y
+
i ) (44)

subject to
n∑
i=1

wi(y
−
i + y+

i ) ≤ C (45)

y−i ≤ xi i = 1, . . . , n (46)

y+
i ≤ 1− xi i = 1, . . . , n (47)

y−i , y
+
i ∈ {0, 1} i = 1, . . . , n (48)

The leader’s objective function (41) minimizes the regret (40) given by the dif-

ference between the follower’s profits and
n∑
i=1

p−i xi. The objective function (44)

maximizes the follower’s profits while constraints (42) and (45) respectively rep-
resent the leader’s and follower’s capacity constraint. Constraints (46) and (47)
ensure that scenario σ(x) is always induced in the follower’s knapsack problem
for any leader’s solution x: the follower can in fact select only item li (with profit
p−i ) if xi = 1 and only item hi (with profit p+

i ) if xi = 0 for each i = 1, . . . , n.
Constraints (43) and (48) define the domain of the variables.

Hence, we can generate a model which is structurally similar to the BKP bilevel
formulation (1)-(7). This motivates us to employ the same algorithmic machinery
setup for BKP with proper integrations. Model formulation and details of the
approach are provided in Appendix.

6.2 Computational results on MRKP

The authors of [20] introduce several heuristic and exact approaches to tackle the
MRKP. The solution approaches are based on classical optimization techniques
such as Benders decomposition and branch and cut methods. The best perform-
ing exact algorithm given in [20] (running on a Pentium 4 @3.2 GHz), denoted
as FIMY, is capable of solving to optimality instances with up to 70 items with
a time limit of 3600 s, running out of time in 95 out of 486 instances. The in-
stances (available at http://www.or.deis.unibo.it/research_pages/ORinstances/
MRKP_instances.zip) were generated by considering different distributions of pro-
cessing times and weights according to the same nine classes indicated in Section
5 with R = 1000/10000 and the following additional settings.

http://www.or.deis.unibo.it/research_pages/ORinstances/MRKP_instances.zip
http://www.or.deis.unibo.it/research_pages/ORinstances/MRKP_instances.zip
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– Number of items n ∈ {50, 60, 70}.
– Capacity C ∈ {b0.45W c, b0.50W c, b0.55W c} with W =

∑n
j=1 wj (and C in-

creased by 1, if even, for classes 7 and 8).
– profit interval [p−j , p

+
j ] with p−j u.r. in [(1 − δ)pj , pj ], p+

j u.r. in [pj , (1 + δ)pj ]
and δ ∈ {0.1, 0.2, 0.3}.

After preliminary experiments, we set the the parameters of our exact approach
to the following entries: α = 2, β = 2, ∆ = 50, µ = 1000, γ = 5. ω = 5 for
Class 6, 7 and 8 which are the hardest classes to solve; α = 2, β = 2, ∆ = 20,
µ = 200, γ = 5. ω = 5 for the remaining classes. Table 6 compares FIMY (running
on a different machine) to our approach on classes 1–3. Each row in the table
considers six instances aggregated by the number of items n and value of δ. For
both approaches, column “Sec” indicates the average CPU time, column “#f”
(failures) indicates the total number of instances not solved to proven optimality.
Similarly, Table 7 relates to classes 4–6 and Table 8 relates to classes 7–9. Entry
“t.l.” in the tables indicates that the approach reached an out of time status in all

the instances of the category.

Class 1 Class 2 Class 3

Our Our Our
FIMY Approach FIMY Approach FIMY Approach

n δ Sec #f Sec #f Sec #f Sec #f Sec #f Sec #f

50 0.1 < 0.1 0 0.2 0 < 0.1 0 3.0 0 3.2 0 13.0 0
0.2 < 0.1 0 0.3 0 1.2 0 3.4 0 235.7 0 3.9 0
0.3 < 0.1 0 0.3 0 2.9 0 1.4 0 195.2 0 5.3 0

Avg/Tot < 0.1 0 0.3 0 1.4 0 2.6 0 144.7 0 7.4 0

60 0.1 < 0.1 0 0.3 0 0.2 0 5.4 0 31.8 0 17.0 0
0.2 < 0.1 0 0.4 0 4.6 0 4.4 0 1835.7 3 3.5 0
0.3 < 0.1 0 0.5 0 11.6 0 2.2 0 1906.2 2 4.7 0

Avg/Tot < 0.1 0 0.4 0 5.5 0 4.0 0 1257.9 5 8.4 0

70 0.1 < 0.1 0 0.5 0 0.2 0 6.5 0 108.5 0 19.1 0
0.2 < 0.1 0 0.5 0 10.9 0 3.8 0 2029.3 3 5.2 0
0.3 < 0.1 0 0.5 0 53.7 0 2.7 0 3504.5 4 5.1 0

Avg/Tot < 0.1 0 0.5 0 21.6 0 4.3 0 1880.8 7 9.8 0

Overall < 0.1 0 0.4 0 9.5 0 3.6 0 1094.5 12 8.5 0

Table 6 MRKP instances from [20] (Classes 1-3).



Bilevel Knapsack Problems with Interdiction Constraints 23

Class 4 Class 5 Class 6

Our Our Our
FIMY Approach FIMY Approach FIMY Approach

n δ Sec #f Sec #f Sec #f Sec #f Sec #f Sec #f

50 0.1 2.9 0 9.2 0 7.5 0 12.1 0 252.7 0 666.0 1
0.2 82.0 0 4.3 0 55.5 0 4.3 0 1161.1 0 161.2 0
0.3 30.4 0 2.0 0 72.1 0 2.1 0 315.1 0 18.1 0

Avg/Tot 38.4 0 5.1 0 45.1 0 6.1 0 576.3 0 281.8 1

60 0.1 21.5 0 16.3 0 46.6 0 29.2 0 3409.1 5 738.1 1
0.2 1383.0 0 6.6 0 348.6 0 5.3 0 3235.3 4 352.3 0
0.3 411.2 0 3.6 0 703.8 0 2.5 0 t.l. 6 59.8 0

Avg/Tot 605.2 0 8.8 0 366.4 0 12.3 0 3414.8 15 383.4 1

70 0.1 60.4 0 22.0 0 112.3 0 20.6 0 t.l. 6 944.3 1
0.2 1849.8 3 6.2 0 1723.3 2 8.4 0 t.l. 6 553.4 0
0.3 1662.9 0 3.6 0 2662.3 3 3.9 0 t.l. 6 137.0 0

Avg/Tot 1191.0 3 10.6 0 1499.3 5 11.0 0 t.l. 18 544.9 1

Overall 611.6 3 8.2 0 636.9 5 9.8 0 2530.3 33 403.4 3

Table 7 MRKP instances from [20] (Classes 4-6).

Class 7 Class 8 Class 9

Our Our Our
FIMY Approach FIMY Approach FIMY Approach

n δ Sec #f Sec #f Sec #f Sec #f Sec #f Sec #f

50 0.1 234.4 0 987.0 1 2.1 0 47.4 0 < 0.1 0 0.4 0
0.2 794.6 0 221.2 0 120.8 0 19.8 0 < 0.1 0 0.4 0
0.3 594.6 0 75.8 0 103.8 0 14.9 0 < 0.1 0 0.4 0

Avg/Tot 541.2 0 428.0 1 75.6 0 27.3 0 < 0.1 0 0.4 0

60 0.1 3088.6 3 859.2 0 25.1 0 62.5 0 < 0.1 0 0.5 0
0.2 t.l. 6 762.0 1 1834.7 3 24.4 0 < 0.1 0 0.5 0
0.3 t.l. 6 312.9 0 900.3 0 20.3 0 < 0.1 0 0.5 0

Avg/Tot 3429.5 15 644.7 1 920.0 3 35.7 0 < 0.1 0 0.5 0

70 0.1 t.l. 6 1525.9 1 63.1 0 84.4 0 < 0.1 0 0.6 0
0.2 t.l. 6 627.8 0 1997.7 3 29.7 0 < 0.1 0 0.6 0
0.3 t.l. 6 180.6 0 2620.4 3 28.1 0 < 0.1 0 0.6 0

Avg/Tot t.l. 18 778.1 1 1560.4 6 47.4 0 < 0.1 0 0.6 0

Overall 2523.5 33 616.9 3 852.0 9 36.8 0 < 0.1 0 0.5 0

Table 8 MRKP instances from [20] (Classes 7-9).

From the tables, even though tests were executed on different machines, we
evince that the proposed approach strongly outperforms FIMY (except for Class
1 and Class 9 where FIMY is slightly faster but our approach requires 0.6 seconds
at most) running out of time in six instances only (three of Class 6 and three of
Class 7).

7 Concluding remarks

We proposed for the Bilevel Knapsack Problem with Interdiction Constraints a
new exact approach which outperforms the state-of-the-art algorithms available in
the literature. The algorithm relies on a new lower bound derived for the problem,
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which is improved by exploiting the expected features of an optimal solution of the
classical knapsack problem. It is shown that the proposed approach handles in few
seconds uncorrelated instances with up to 500 items and is capable of solving all
but four instances with n = 100 for various correlation classes between follower’s
weights and profits. The approach has been extended to deal with the Interval
Min-Max Regret Knapsack Problem. Also in this case the proposed algorithm is
shown up to be superior to the current state of the art literature. A very natural
future research would be to study bilevel versions of several generalizations of KP,
such as, for instance, Collapsing KP [12], Penalized KP [10], KP with Setups [11,
21,29] and Product KP[8], for which very efficient exact algorithms have been
recently proposed.
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8 Appendix

8.1 Additional notation for MRKP

For further analysis, we define the set of items li by L and the set of items hi by
H. We consider the 2n items in the follower’s knapsack ordered by nonincreasing
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ratio profit over weight. For each item j = 1, . . . , 2n in the ordering we denote by
i(j) the corresponding index i. Similarly as in Section 2, we denote by KP (x) the
follower’s knapsack problem induced by a leader’s solution x, here with item set

J :=


j : xi(j) = 1 and j ∈ L,
j : xi(j) = 0 and j ∈ H,
xi ∈ x



and denote by KPLP (x) the corresponding LP relaxation. We again denote
as critical the last item with a strictly positive value in the optimal solution of
KPLP (x). Notice that for each xi one item between li and hi will be always avail-
able for insertion in the follower’s knapsack. Hence, under the standard assumption

that
n∑
i=1

wi > C in the MRKP, we also have
2n∑
j=1

wi(j) > C. This implies that there

alway exists a critical item c in KPLP (x) and a split solution with value

∑
j∈J:

j<c,j∈L

p−i(j) +
∑
j∈J:

j<c,j∈H

p+
i(j) =

∑
j<c,j∈L

p−i(j)xi(j) +
∑

j<c,j∈H
p+
i(j)(1− xi(j)) (49)

8.2 Computing a lower bound for MRKP

As for BKP, we aim to guess the critical item of KPLP (x∗). To this purpose we

modify model CRIT2(c) as follows. We replace term
wc∑
h=1

hkh with an integer vari-

able θ associated with the weight contribution of the critical item c in the follower’s

capacity constraint, with 1 ≤ θ ≤ wi(c). The objective function has term
n∑
i=1

p−i xi

as negative contribution plus the split solution value (49) and the additional profit
contribution that can be gained by a feasible solution derived by the split solution.
Such a profit is captured by variable π through a set of constraints F(π, x, θ, v, τ)

involving additional binary variables vp (p = 1, . . . , |F(π,x,θ,v,τ)|
2 ). We explain the

construction of set F(π, x, θ, v, τ) next. We obtain the following model, denoted as
CRIT3(c).
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CRIT3(c):

min
∑

j<c,j∈L
p−i(j)xi(j) +

∑
j<c,j∈H

p+
i(j)(1− xi(j)) + π −

n∑
i=1

p−i xi (50)

subject to
n∑
i=1

wixi ≤ C (51)

∑
j<c,j∈L

wi(j)xi(j) +
∑

j<c,j∈H
wi(j)(1− xi(j)) + θ = C (52)

1 ≤ θ ≤ wi(c) (53)

F(π, x, θ, v, τ) (54)

xi(c) = 1 if c ∈ L , xi(c) = 0 if c ∈ H (55)

xi ∈ {0, 1} i = 1, . . . , n (56)

vp ∈ {0, 1} p = 1, . . . ,
|F(π, x, θ, v, τ)|

2
(57)

θ ∈ N (58)

π ≥ 0 (59)

The objective function (50) minimizes the difference between the value of a fol-

lower’s knapsack solution and sum
n∑
i=1

p−i xi. Constraint (51) represents the leader’s

capacity constraint. Constraints (52) and (53) guarantee that item c is critical as
it is the last item packed, with a weight in the interval [1, wi(c)]. Constraint (55)
enforces the availability of item c in the follower’s knapsack: if c ∈ L we must have
xi(c) = 1 or else xi(c) = 0. Constraints (56)-(59) define the domain of the variables.

We build a proper set F(π, x, θ, v, τ), namely a set of constraints that considers
only feasible solutions in the follower’s knapsack, as follows. For a given subset τ
of items around the critical item c, the corresponding profit pτ and weight wτ now
are:

pτ = −
∑
j∈τ :

j<c,j∈L

p−i(j) −
∑
j∈τ :

j<c,j∈H

p+
i(j) +

∑
j∈τ :

j≥c,j∈L

p−i(j) +
∑
j∈τ :

j≥c,j∈H

p+
i(j) (60)

wτ = −
∑

j∈τ :i<c

wi(j) +
∑

j∈τ :j≥c
wi(j). (61)

We consider in set F(π, x, θ, v, τ) only subsets of items improving upon the
split solution, i.e. with pτ > 0, that could be feasible, i.e. with wτ ≤ wi(c). Also
we do not consider subsets with two items j and j′ corresponding to the same
xi, namely with i(j) = i(j′), as these items cannot be both available for packing.
For the p − th subset τ considered for selection in F(π, x, θ, v, τ), we will have
binary variable vp equal to one only if the follower’s capacity constraint is not
violated, i.e. wτ ≤ θ. This condition will be enforced by adding to F(π, x, θ, v, τ)
the constraint (wi(c)−wτ )vp ≥ θ−wτ , that we translate as follows to be added as
a linear constraint
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(wi(c) − w
τ +

1

2
)vp ≥ θ − wτ +

1

2
, (62)

where constant term 1
2 is introduced to have vp = 1 when wτ = θ. Then an im-

provement π can be determined by adding to F(π, x, θ, v, τ) the following constraint

π ≥ pτ (vp −
∑

j∈τ,j∈L
(1− xi(j))−

∑
j∈τ,j∈H

xi(j)). (63)

Notice that constraints (62) and (63) ensure that only items available for insertion
in the follower’s knapsack are considered and the follower’s capacity constraint is
not violated, validating tuple τ . The following proposition holds.

Proposition 3 If KPLP (x∗) has critical item c and model CRIT3(c) has a proper

set F(π, x, θ, v, τ), then z(CRIT3(c)) ≤ z∗.

Proof We apply the same argument of Propositions 1 and 2 and observe that model
CRIT3(c) considers feasible solutions for KP (x∗). Let z1 denote the solution value
of the best of these KP solutions. We have

z(CRIT3(c)) ≤ z1 −
n∑
i=1

p−i x
∗
i ≤ z(KP (x∗))−

n∑
i=1

p−i x
∗
i = z∗,

where the first inequality is implied by noticing that x∗ is feasible but not neces-
sarily optimal for model CRIT3(c). ut

We finally notice that the introduction of variable θ is motivated by the pres-
ence of large follower’s weights (with values up to 10000) in the benchmark MRKP
literature instances we considered in our computational tests. As remarked in Sec-
tion 3, large weights compromise the use of variables kh and the solution of the
corresponding ILP models.

8.3 A new exact approach for MRKP

We employ the same algorithmic framework of BKP with the following few modifi-
cations. We construct set F(π, x, θ, v, τ) in model CRIT3(c) by a procedure denoted
as MRKPTuples. The procedure is very similar to DefineTuples, so we do not report
the corresponding pseudo code. The only differences are the presence of 2n items
in the follower’s knapsack and the insertion of µ pairs of constraints (62)-(63) to
set F(π, x, θ, v, τ) and constraints related to the adding of the critical item (Lines
6-7 in the pseudo code of DefineTuples).
Similarly to (28), we then define the first possible critical item q as

q := min{j :
j∑

k=1

wi(k) ≥ C}. (64)
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We also test variables xi and vp for fixing by reduced costs and consider the follow-
ing constraint instead of constraint (35) during the exploration of a subproblem
CRIT3(c)

n∑
i:x̄i=0

xi +
n∑

i:x̄i=1

(1− xi) ≥ 1. (65)

Finally notice that for MRKP we do not have to handle the absence of the critical
item in the follower’s knapsack problem (see section 8.1). Below is reported the
pseudo code of the derived approach.
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MRKP exact solution approach

1: Input: MRKP instance, parameters α, β, ∆, µ, γ, ω.
2: z∗ ← +∞;
3: Identify the candidate critical items and build models CRIT3(c):

4: Compute the interval of critical items [q, 2n]: q ← apply (64);
5: for all c in [q, 2n] do
6: Build model CRIT3(c) by procedure MRKPTuples(c, α, β, ∆, µ);
7: Solve model CRITLP3 (c);
8: end for

9: Sort models CRIT3(c) by increasing z(CRITLP3 (c)).
10: =⇒ Create a list of ordered critical items L = {c1, c2, . . . };
11: Compute feasible MRKP solutions:

12: for i = 1, . . . , γ do

13: if z(CRITLP3 (ci)) < z∗ then x̂← solve CRIT3(ci);
14: if z(CRIT3(ci)) < z∗ then solve KP (x̂);

15: if (z(KP (x̂))−
n∑
i=1

p−i x̂i) < z∗ then x∗ = x̂, z∗ = z(KP (x̂))−
n∑
i=1

p−i x̂i;

16: end if

17: end if

18: end if

19: end for

. Step 2
20: Solve subproblems:

21: for all c in list L do

22: if z(CRITLP3 (c)) ≥ z∗ then return x∗; end if

23: Fix variables xi and vp by reduced costs in CRIT3(c);
24: x̄← solve CRIT3(c);
25: while z(CRIT3(c)) < z∗ do

26: solve KP (x̄);

27: if (z(KP (x̄))−
n∑
i=1

p−i x̄i) < z∗ then x∗ = x̄, z∗ = z(KP (x̄))−
n∑
i=1

p−i x̄i;

28: end if

29: Compute subset τ̄ ;
30: if τ̄ is not empty then

31: add constraints (62)-(63), as indicated in section 8.2,
32: to CRIT3(c); end if

33: if τ̄ is empty then

34: add constraint (65) to CRIT3(c); end if

35: if z(CRIT3(c)) does not increase for ω iterations then

36: Consider the remaining tuples computed by MRKPTuples(c, α, β, ∆, µ)

37: with a weight ≤ θ;
38: Add alltogether at most µ pair of constraints (62)-(63) to CRIT3(c),
39: see section 8.2; end if

40: x̄← solve CRIT3(c);
41: end while

42: end for

43: return x∗.


