6 research outputs found

    Power Control for D2D Underlay in Multi-cell Massive MIMO Networks

    Full text link
    This paper proposes a new power control and pilot allocation scheme for device-to-device (D2D) communication underlaying a multi-cell massive MIMO system. In this scheme, the cellular users in each cell get orthogonal pilots which are reused with reuse factor one across cells, while the D2D pairs share another set of orthogonal pilots. We derive a closed-form capacity lower bound for the cellular users with different receive processing schemes. In addition, we derive a capacity lower bound for the D2D receivers and a closed-form approximation of it. Then we provide a power control algorithm that maximizes the minimum spectral efficiency (SE) of the users in the network. Finally, we provide a numerical evaluation where we compare our proposed power control algorithm with the maximum transmit power case and the case of conventional multi-cell massive MIMO without D2D communication. Based on the provided results, we conclude that our proposed scheme increases the sum spectral efficiency of multi-cell massive MIMO networks.Comment: 6 Pages, 3 Figures, WSA 201

    Power allocation for cache-aided small-cell networks with limited backhaul

    Get PDF
    Cache-aided small-cell network is becoming an effective method to improve the transmission rate and reduce the backhaul load. Due to the limited capacity of backhaul, less power should be allocated to users whose requested contents do not exist in the local caches to maximize the performance of caching. In this paper, power allocation is considered to improve the performance of cache-aided small-cell networks with limited backhaul, where interference alignment (IA) is utilized to manage interferences among users. Specifically, three power allocation algorithms are proposed. First, we come up with a power allocation algorithm to maximize the sum transmission rate of the network, considering the limitation of backhaul. Second, in order to have more users meet their rate requirements, a power allocation algorithm to minimizing the average outage probability is also proposed. In addition, in order to further improve the users’ experience, a power allocation algorithm that maximizes the average satisfaction of all the users is also designed. Simulation results are provided to show the effectiveness of the three proposed power allocation algorithms for cache-aided small-cell networks with limited backhaul

    Robust Beamforming with Pilot Reuse Scheduling in a Heterogeneous Cloud Radio Access Network

    Get PDF
    © 1967-2012 IEEE. This paper considers a downlink ultradense heterogeneous cloud radio access network, which guarantees seamless coverage and can provide high date rates. In order to reduce channel state information (CSI) feedback overhead, incomplete intercluster CSI is considered, i.e., each remote radio head or macro base station only measures the CSI from user equipments (UEs) in its serving cluster. To reduce pilot consumption, pilot reuse among UEs is assumed, resulting in imperfect intracluster CSI. A two-stage optimization problem is then formulated. In the first stage, a pilot scheduling algorithm is proposed to minimize the sum mean square error (MSE) of all channel estimates. Specifically, the minimum number of required pilots along with a feasible pilot allocation solution are first determined by applying the Dsatur algorithm, and adjustments based on the defined level of pilot contamination are then carried out for further improvement. Based on the pilot allocation result obtained in the first stage, the second stage aims at maximizing the sum spectral efficiency (SE) of the network by optimizing the beam vectors. Due to incomplete intercluster CSI and imperfect intracluster CSI, an explicit expression of each UE's achievable rate is unavailable. Hence, a lower bound on the achievable rate is derived based on Jensen's inequality, and an alternative robust transmission design algorithm along with its distributed realization are then proposed to maximize the derived tight lower bound. Simulation results show that compared with the existing algorithms, the system performance can be greatly improved by the proposed algorithms in terms of both sum MSE and sum SE
    corecore