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Abstract—This paper considers a downlink ultra-dense hetero-
geneous cloud radio access network (H-CRAN) which guarantees
seamless coverage and can provide high date rates. In order
to reduce channel state information (CSI) feedback overhead,
incomplete inter-cluster CSI is considered, i.e., each remote radio
head (RRH) or macro base station (MBS) only measures the
CSI from user equipments (UEs) in its serving cluster. To reduce
pilot consumption, pilot reuse among UEs is assumed, resulting
in imperfect intra-cluster CSI. A two-stage optimization problem
is then formulated. In the first stage, a pilot scheduling algorithm
is proposed to minimize the sum mean square error (MSE) of all
channel estimates. Specifically, the minimum number of required
pilots along with a feasible pilot allocation solution are first
determined by applying the Dsatur algorithm, and adjustments
based on the defined level of pilot contamination are then carried
out for further improvement. Based on the pilot allocation result
obtained in the first stage, the second stage aims to maximize
the sum spectral efficiency (SE) of the network by optimizing the
beam-vectors. Due to incomplete inter-cluster CSI and imperfect
intra-cluster CSI, an explicit expression of each UE’s achievable
rate is unavailable. Hence, a lower bound on the achievable rate
is derived based on Jensen’s inequality, and an alternative robust
transmission design (RTD) algorithm along with its distributed
realization are then proposed to maximize the derived tight lower
bound. Simulation results show that compared with existing
algorithms, the system performance can be greatly improved by
the proposed algorithms in terms of both sum MSE and sum SE.

Index Terms—H-CRAN, pilot reuse, imperfect CSI, pilot
scheduling, beamforming, RTD.

I. INTRODUCTION

According to the forecast in [1], there will be 1.5 mobile
devices per capita and the monthly global mobile data traffic
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will surpass 49 exabytes by 2021. To meet the continuously
growing demand for ubiquitous high-speed wireless access,
a 1000 times capacity boost is thus expected in the fifth-
generation (5G) network compared to the current fourth-
generation network [2]. To realize this 5G vision, cloud radio
access network (C-RAN) has been recognized as a promising
solution [3]. In the C-RAN architecture, a baseband unit
(BBU) pool with powerful computation capability acts as a
cloud data center, and remote radio heads (RRHs) configured
only with some radio-frequency functionalities are connected
to the BBU pool through optical fiber fronthaul links. Due to
the simplified functionalities, RRHs can be densely and dis-
tributedly deployed to improve network access in conventional
cellular networks, especially in hot spots with a large number
of user equipments (UEs) like hospitals, shopping malls, etc.
In addition, different from untra-dense small cell networks that
suffer from cochannel interference [4], interference mitigation
can be effectively realized in a C-RAN by applying Coordi-
nated Multi-Point Transmission/Reception (CoMP) thanks to
the powerful BBU pool [5].

Since a C-RAN is mainly adopted to provide high data rates
in hot spots, real-time voice service and control signalling
are not efficiently supported. If UEs move fast, the switching
speed of the RRH service in a C-RAN is relatively high,
resulting in a high signalling exchange load. On the other
hand, the fronthaul capacity of a C-RAN is usually limited,
making it difficult to serve all UEs in a network. Hence, lack
of high power nodes may make it hard to ensure backward
compatibility with the existing cellular systems [6], [7]. In
order to deliver the overall control signalling and guarantee
seamless coverage, an advanced architecture, known as a
heterogeneous cloud radio access network (H-CRAN), was
proposed to combine the advantages of both C-RAN and
heterogeneous networks [8]–[10]. In an H-CRAN, besides
the BBU pool and RRHs, macro base stations (MBSs) are
also included. The BBU pool and MBSs are interfaced via
backhaul links for coodination. Hence, the delivery of control
and broadcast signalling can be shifted from RRHs to MBSs
to alleviate the capacity and time delay on the fronthaul [11],
[12]. Unnecessary handover and re-association can then be
avoided.

In H-CRANs, cochannel interference suppression is an
important technical issue. In C-RANs, only interference a-
mong RRHs exists and it can be effectively mitigated via
centralized processing at the BBU pool. While in H-CRANs,
when RRHs and MBSs operate on the same time-frequency
resource block (RB), a UE served by RRHs (a MBS) will not
only experience intra-tier interference from RRHs (MBSs),
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but also suffer additional inter-tier interference from MBSs
(RRHs). Hence, the signal-to-interference-plus-noise ratio (S-
INR) expressions of UEs contain more cochannel interference
terms, making the problem more challenging. In [11]–[13],
interference suppression problems in H-CRANs were studied
aiming at different design metrics. Specifically, reference [11]
aimed to maximize the average throughput and maintain the
network stability by traffic admission control, user association
and resource allocation. In [12], a contract-based interference
coordination framework was proposed to mitigate the inter-
tier interference between RRHs and MBSs. Reference [13]
aimed to maximize the energy efficiency (EE) of an H-
CRAN by resource assignment and power control. All these
works, however, focused on single-input single-output (SISO)
networks. By considering multi-antenna MBSs and multi-
antenna RRHs, the performance of H-CRANs can be further
enhanced by applying beamforming techniques.

Downlink beamforming design has been widely studied
in both the conventional cellular networks [14]–[16] and C-
RANs [17]–[19]. Perfect global channel state information
(CSI) was assumed available for system performance anal-
ysis and optimization. However, it is in practice difficult to
obtain perfect CSI of all links due to channel estimation and
quantization errors. In addition, feeding back the CSI from
all UEs to each RRH or MBS requires excessive overhead,
which may easily overwhelm the capacity of the wireless
radio interface, especially in ultra-dense C-RANs [20], [21].
Hence, transmission design based on incomplete CSI has
drawn great attention recently [22]–[28]. In [22] and [23],
a multi-user massive multiple-input multiple-output (MIMO)
network and a full-duplex MIMO cognitive radio system
are respectively considered, and beamforming vectors were
designed under channel uncertainties. In [24]–[26], distributed
transmit beamforming was studied with imperfect CSI under
different scenarios. Specifically, references [24] and [25] con-
sidered a cognitive radio network, while [26] considered a
multicell cellular system. In [27] and [28], incomplete CSI
was assumed in C-RANs, i.e., each RRH only estimated the
CSI from UEs in its serving cluster (named intra-cluster CSI).
As for the UEs outside the serving cluster, it was assumed
that the RRH only had the large-scale channel gains (named
inter-cluster CSI). However, perfect intra-cluster CSI was still
assumed in [27] and [28]. To this end, orthogonal training has
to be adopted for channel estimation. In this case, the length
of pilot overhead increases linearly with the number of UEs,
which could be unaffordable for ultra-dense networks.

One promising way to reduce pilot overhead is allowing
pilots to be reused among UEs. Pilot reuse design has been
extensively studied in massive MIMO networks [29]–[33]
as well as device-to-device (D2D) underlaid systems [34]–
[36]. In particular, references [29]–[31] considered pilot reuse
in multiple-cell scenarios, i.e., UEs in the same cell use
orthogonal pilots, and the same set of pilots are reused in
different cells. In [32] and [33], it was shown that due to the
uncorrelation feature of massive MIMO antennas, the same
pilot could be reused by UEs with different angular positions.
In [34]–[36], pilots were allowed to be reused by D2D pairs.
Since RRHs are usually located dispersively and they use

low power for short-distance transmission, the pilot reuse by
UEs far away from each other would cause marginal pilot
contamination. This paper mainly focuses on pilot scheduling
and robust beamforming design for an ultra-dense H-CRAN.
To the best of the authors’ knowledge, this problem has not
yet been studied. The main contributions of this paper are
summarized as follows:

• This paper considers an ultra-dense H-CRAN, where
RRHs are mainly used to provide high data rates and
MBSs are deployed for guaranteeing seamless coverage
as well as control signalling delivery. Different from the
SISO scenarios in [11]–[13], it is assumed that both
RRHs and MBSs are equipped with multiple antennas.
In order to reduce CSI feedback overhead, incomplete
CSI is considered, i.e., each RRH as well as MBS only
measures the CSI from UEs in its serving cluster while
tracks the large-scale channel gains of UEs outside its
serving cluster. Let RUE and BUE represent the UEs
served by RRHs and the MBS, respectively. To reduce
pilot overhead, pilots are allowed to be reused by RUEs
in different RRH clusters. Based on these settings, a
two-stage optimization, i.e., pilot scheduling and robust
transmission design, is considered to enhance the network
performance.

• In the first stage, a problem aiming to minimize the
sum mean square error (MSE) of all channel estimates
is formulated. To distinguish the channels from different
RUEs, it is assumed that the RUEs served by the same
RRH apply orthogonal pilots for channel estimation.
Upon this constraint, a minimum number of pilots applies.
By constructing an undirected graph to describe this con-
straint and employing the Dsatur algorithm in [37], which
aims to color the vertices of an undirected graph with
the minimum number of different colors, the minimum
number of pilots can be obtained. Since this algorithm
only takes into account the constraint that RUEs served
by the same RRH apply orthogonal training, while ignores
the objective function, i.e., minimizing the sum MSE of
channel estimation, it outputs a feasible pilot allocation
solution, which may not be satisfactory. Hence, it is
necessary to adjust the pilots allocated to each RUE by
the Dsatur algorithm. A pilot scheduling algorithm (PSA)
is thus proposed to further mitigate pilot contamination
resulting from pilot reuse.

• The second stage aims to maximize the sum spectral
efficiency (SE) of the network by optimizing the beam-
vectors under incomplete CSI. Since each RRH or MBS
has only imperfect intra-cluster CSI, it is difficult to obtain
explicit expressions of the achievable rates of RUEs and
BUEs. Lower bounds on the achievable rates are derived
using the Jensen’s inequality. Then, instead of directly
solving the original problem, the achievable rate of each
UE in the objective function is replaced with the lower
bound. It is shown that the data rate lower bound of
either an RUE or a BUE can be regarded as the rate of
a mobile user in an equivalent downlink multiple-input
single-output (MISO) interfering network. An alternative
robust transmission design (RTD) algorithm along with
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its distributed realization are then provided to obtain a
suboptimal solution.

• In the simulation part, the performances of the proposed
algorithms are illustrated and compared in terms of both
sum MSE and sum SE. Simulation results show that
the sum MSE of channel estimation can be effectively
suppressed by the proposed PSA. Compared with the
existing schemes which assume perfect CSI, the sum SE
of the network can be significantly increased by pilot
reuse and the proposed RTD algorithm.

The rest of this paper is organized as follows. In Sec-
tion II, the signal transmission of an ultra-dense H-CRAN
and the estimation of intra-cluster channels are presented.
In Section III, a pilot scheduling algorithm is proposed to
minimize the sum MSE of channel estimation. In Section IV,
an alternative algorithm along with its distributed realization
are provided to maximize the sum SE of the network by
optimizing the transmit beam-vectors. Numerical results are
presented in Section V before conclusions in Section VI.

This paper follows commonly used notations. R and C
denote the real space and the complex space, respectively.
The boldface upper (lower) case letters are used to denote
matrices (vectors). IN stands for the N × N dimensional
identity matrix and 0 denotes the all-zero vector or matrix.
“ \ ” represents the set subtraction operation. Superscript (·)H
denotes the conjugated-transpose operation and E{·} denotes
the expectation operation. ∥g∥ is used to give the Euclidean
norm of g.

II. SYSTEM MODEL

A. Signal Transmission Model

Consider the downlink of a dense H-CRAN with an MBS,
a BBU pool, K RRHs and M UEs as shown in Fig. 1, where
each RRH connects with the BBU pool through an optical fiber
and the MBS connects with the BBU pool through a backhaul
link. The MBS and each RRH are respectively equipped with
B and N antennas, and each UE has a single antenna. Denote
the sets of RRHs and UEs by K and M, respectively. As
discussed in [5], there are usually two types of clustering
methods for RRHs to serve UEs namely disjoint clustering
and user-centric clustering. In this paper, user-centric cluster
method is adopted, i.e., each UE prefers to access the network
via a selected subset of neighboring RRHs and different
clusters for different UEs may overlap. If a UE cannot be
served by any RRH, the MBS will offer network access to
guarantee seamless coverage. For example, in Fig. 1, each
RUE is served by RRHs inside the circle centered on this
RUE. Hence, RUE 1, 2, 3, 4, 5 are served by RRHs, and
BUE 1 and BUE 2 are served by the MBS. Denote the sets
of RUEs and BUEs by MR and MB, respectively. Denote
Ki ⊆ K and Mk ⊆ MR as the set of RRHs serving RUE i and
the set of RUEs served by RRH k, respectively. Assume that
all transmitters use the same time-frequency RB to transmit
signals, leading to cochannel interference. Then, the received
signal at UE m is given by

ym =
∑

i∈MR

∑
k∈Ki

hH
k,mwk,ixi +

∑
j∈MB

hH
b,mwb,jxj + nm, (1)
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F
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Fig. 1. Illustration of an H-CRAN.

where hk,m ∈ CN×1 represents the channel vector from RRH
k to UE m, wk,i ∈ CN×1 denotes the beam-vector adopted
by RRH k for transmitting signal to RUE i, and xi is the
zero-mean unit-variance data symbol for RUE i. Likewise,
hb,m,wb,j ∈ CB×1 and xj are similarly defined for the MBS
and BUE j, and nm is the complex white Gaussian noise with
variance N0, i.e., nm ∼ CN (0, N0).

B. Channel Estimation

In most of the related literature, it is usually assumed that
the global CSI over the network is available for optimization.
To this end, orthogonal pilots should be adopted for channel
estimation. However, in a dense H-CRAN network with large
numbers of UEs, obtaining CSI of all links is almost infeasible
due to limited training resources. As a result, in this paper,
orthogonal pilots are adopted by BUEs and RUEs in the
same RRH cluster for channel estimation, while pilot reuse
among RUEs in different RRH clusters is allowed to reduce
pilot overhead. For further pilot overhead reduction, the pilot
sequence used by a BUE is allowed to be shared with RUEs.
For example, in Fig. 1, BUE 1 and BUE 2 both access the
network via the MBS. Hence, BUE 1 and BUE 2 adopt
orthogonal training for channel estimation. RUE 1 and RUE 2
are both served by RRH 3 and RRH 4. Therefore, RUE 1 and
RUE 2 belong to the same cluster and they should be assigned
orthogonal pilots. Since the set of RRHs serving RUE 1 and
the set of RRHs serving RUE 5 do not overlap, RUE 1 could
reuse the pilot of RUE 5. In addition, due to the long distance
between RUE 1 and BUE 2, they may be allocated the same
pilot for pilot overhead reduction.

In the uplink training phase, assume that RRH k estimates
the CSI from all RUEs in Mk and the MBS estimates the CSI
from all BUEs. The large-scale channel gains from all UEs to
each RRH and to the MBS, i.e., {αk,m, ∀ k ∈ K, m ∈ M}
and {αb,m, ∀ m ∈ M}, are assumed to be available at both
the BBU pool and the MBS. Denote Q = {1, · · · , τ} as the
available pilot set and Q = [q1, · · · , qτ ] ∈ Cτ×τ as the pilot
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matrix with orthogonal column vectors (i.e., QHQ = Iτ ).
τ (|MB| ≤ τ ≤ M ) is the length of the pilots and is
also the number of pilots available for channel estimation
(this is the smallest amount of pilots that are required).
Let P(M,Q) = {(m,πm)| m ∈ M, πm ∈ Q} denote an
arbitrary pilot assignment scheme, where (m,πm) means that
UE m is allocated pilot qπm

. In addition, let Uπ = {i| πi = π,
∀ i ∈ MR} and Vπ = {j| πj = π, ∀ j ∈ MB}, respectively,
denote the sets of RUEs and BUEs that use pilot qπ for channel
estimation. Note that since BUEs apply orthogonal pilots for
channel estimation, it follows that |Vπ| ∈ {0, 1}.

1) Channel Estimation for RUEs: Given the pilot assign-
ment scheme P(M,Q), the N×τ dimensional received signal
matrix of pilots at RRH k can be written as

Y
(R)
k =

∑
i∈MR

√
pRhk,iq

H
πi

+
∑

j∈MB

√
pBhk,jq

H
πj

+N
(R)
k , (2)

where pR and pB are, respectively, the pilot transmit powers
of RUEs and BUEs. N (R)

k is the noise matrix which consists
of independently and identically distributed (i.i.d.) Gaussian
elements with zero mean and variance N0. Then, the minimum
mean square error (MMSE) estimate of hk,i, ∀ k ∈ K, i ∈
Mk is given by [38]

ĥk,i =

√
pRαk,i∑

i′∈Uπi

pRαk,i′ +
∑

j∈Vπi

pBαk,j +N0
Y

(R)
k qπi . (3)

Given the channel estimate vector ĥk,i, the true channel vector
hk,i can be expressed as hk,i = ĥk,i + h̃k,i, where the error
vector h̃k,i represents the CSI uncertainty. Due to the property
of MMSE estimation [38], h̃k,i is statistically independent of
ĥk,i and it follows that CN (0, δk,iIN ), where δk,i is given by

δk,i =

αk,i

( ∑
i′∈Uπi

\i
pRαk,i′ +

∑
j∈Vπi

pBαk,j +N0

)
∑

i′∈Uπi

pRαk,i′ +
∑

j∈Vπi

pBαk,j +N0
. (4)

2) Channel Estimation for BUEs: Similarly, the B × τ
dimensional received signal matrix of pilots at the MBS can
be written as

Y (B) =
∑

i∈MR

√
pRhb,iq

H
πi

+
∑

j∈MB

√
pBhb,jq

H
πj

+N (B), (5)

where N (B) is the noise matrix which consists of i.i.d.
Gaussian elements with zero mean and variance N0. Then,
the MMSE estimate of hb,j , ∀ j ∈ MB is

ĥb,j =

√
pBαb,j∑

i∈Uπj

pRαb,i + pBαb,j +N0
Y (B)qπj . (6)

It follows hb,j = ĥb,j + h̃b,j , and h̃b,j ∼ CN (0, δb,jIB) is
statistically independent of ĥb,j , where δb,j is given by

δb,j =

αb,j

( ∑
i∈Uπj

pRαb,i +N0

)
∑

i∈Uπj

pRαb,i + pBαb,j +N0
. (7)

In general, sum SE is a very important metric in evaluating
a wireless network’s performance, and sum SE maximization
has been widely studied in different kinds of networks [14],
[15], [39]. Since pilot reuse is assumed in this paper, pilot
contamination inevitably exists. Hence, how to effectively
mitigate pilot contamination is also important. A two-stage
optimization framework is thus studied in the following for
network performance maximization. Specifically, the sum
MSE of channel estimation is minimized by designing a
pilot scheduling algorithm in Section III. Based on the pilot
allocation result obtained in Section III, the sum SE of the
network is then maximized by optimizing beam-vectors under
imperfect CSI in Section IV.

III. STAGE I: PILOT SCHEDULING

In this stage, a pilot scheduling algorithm is designed to
allocate pilots to UEs based on the metric of minimizing the
sum MSE of channel estimation.

A. Problem Formulation

Since pilots are reused among UEs to shorten pilot over-
head, pilot contamination inevitably exists. Considering the
location dispersion of UEs, it is preferred that pilot contami-
nation can be effectively mitigated by designing an appropriate
pilot scheduling algorithm. According to (4) and (7), the sum
MSE of all channel CSI is given by∑

i∈MR

∑
k∈Ki

E
{∥∥∥h̃k,i

∥∥∥2}+
∑

j∈MB

E
{∥∥∥h̃b,j

∥∥∥2}
=
∑

i∈MR

∑
k∈Ki

Nδk,i +
∑

j∈MB

Bδb,j . (8)

To distinguish the channels from different RUEs, it is assumed
that any two RUEs for which the sets of serving RRHs are
(partially) overlapping would need to be allocated orthogonal
pilots. This can be mathematically expressed as follows

πi ̸= πi′ , ∀ i, i′ ∈ MR, i ̸= i′, Ki ∩ Ki′ ̸= ∅. (9)

Thus, the problem of minimizing the sum MSE of channel
estimation can be formulated as

min
P(M,Q)

∑
i∈MR

∑
k∈Ki

Nδk,i +
∑

j∈MB

Bδb,j

s.t. (9). (10)

Problem (10) is a resource allocation problem, which can
be readily transformed to an equivalent mixed integer pro-
gramming problem which is, however, usually difficult to
solve. The optimal pilot scheduling scheme can be obtained
through exhaustive search (ES). However, the complexity of
ES increases exponentially with the number of UEs, becoming
infeasible for a dense H-CRAN. Therefore, a low complexity
pilot scheduling algorithm is proposed in the following sub-
section.
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Fig. 2. (a) Undirected graph consisting of all RUEs in Fig. 1; (b) The colored
undirected graph after applying the Dsatur algorithm.

B. Pilot Scheduling Algorithm

Constraint (9) indicates that any two RUEs served by at least
one common RRH should be allocated different pilots. This
constraint can be equivalently represented by an |MR|×|MR|
dimensional matrix A with each element given by

ai,i′ =

{
1, if i ̸= i′, Ki ∩ Ki′ ̸= ∅
0, otherwise , ∀ i, i′ ∈ MR. (11)

In matrix A, when two RUEs are served by at least one
common RRH, the corresponding element is one. Otherwise,
the element is zero. Obviously, to satisfy constraint (9), a
minimum number of pilots t exists. In order to obtain t, an
undirected graph can be constructed to describe constraint (9)
based on A, where any two RUEs served by at least one
common RRH are connected with each other. Then, determin-
ing t is equivalent to coloring the vertices of the undirected
graph with the minimum number of different colors, which can
be optimally solved by using the Dsatur algorithm proposed
in [37]. Note that the pilots used by BUEs are mutually
orthogonal. Therefore, the length of the pilots should satisfy
max {|MB| , t} ≤ τ ≤ M . Taking the H-CRAN in Fig. 1
for example, the undirected graph consisting of all RUEs in
Fig. 1 can be depicted as Fig. 2 (a), and the colored graph
of Fig. 2 (a) after applying the Dsatur algorithm is shown in
Fig. 2 (b). It can be seen that for the considered case, t = 3.
Since M = 7 and |MB| = 2, the pilot length should satisfy
3 ≤ τ ≤ 7.

Though the Dsatur algorithm can yield the minimum num-
ber of pilots required by RUEs as well as a feasible pilot
allocation solution, it only takes into account constraint (9)
while ignores the objective function of problem (10). Hence,
this solution may not be satisfactory. For example, in Fig. 2
(b), RUEs in the same color share the same pilot, and RUEs in
different colors use orthogonal pilots for channel estimation.
There may exist measurable pilot contamination between RUE
2 and RUE 4 since they are not so far away from each other. If
τ = t, by exchanging the colors of RUE 2 and RUE 1 without
changing t, the pilot contamination may be reduced due to
the relatively longer distance between RUE 1 and RUE 4. If
τ > t, the pilot contamination can be certainly decreased by
replacing a reused pilot in Fig. 2 (b) with an unused one.

Since channel estimation is mainly affected by pilot con-
tamination besides the effect of noise, it is thus of great
importance to further mitigate pilot contamination. To this

end, it is necessary to adjust the pilots allocated to each RUE
by the Dsatur algorithm. As stated above, it is difficult to
solve problem (10) in polynomial time. Hence, a heuristic low-
complexity pilot scheduling algorithm is provided in the fol-
lowing. In order to implement this algorithm, it is first required
to figure out how to measure the level of pilot contamination.
In [31], a multi-cell massive MIMO network was considered
and pilot reuse was assumed among different cells. To mitigate
pilot contamination, a metric was defined to indicate the
interference strength among UEs, and a graph coloring based
scheme was then proposed. In [36], a continuous-valued metric
was defined to evaluate the potential interference strength
between any two D2D pairs when the same pilot was reused,
and a pilot scheduling algorithm was then provided based on
this metric. Motivated by these works, a similar metric based
on large-scale channel gains is defined to measure the level
of pilot contamination between an RUE and another UE when
they reuse the same pilot. First, for any two unconnected RUEs
in the undirected graph, define

βi,i′ = ln

1 +

∑
k∈Ki

αk,i′∑
k∈Ki

αk,i
+

∑
k′∈Ki′

αk′,i∑
k′∈Ki′

αk′,i′

 ,

∀ i, i′ ∈ MR, i ̸= i′, Ki ∩ Ki′ = ∅. (12)

The definition of βi,i′ is inspired by the channel estimation
error in (4). Inside the ln(·) operation of (12), the second
term is defined to measure the level of pilot contamination
experienced by RUE i from RUE i′ if they are assigned the
same pilot, and vice versa for the third term. Obviously, a
larger βi,i′ means more severe potential pilot contamination
between RUE i and RUE i′ when they are assigned the same
pilot. For any RUE i, let βi,i = 0. For any two connected
RUEs, since they are assigned orthogonal pilots, there will be
no potential pilot contamination between them. Hence,

βi,i′ = 0, ∀ i, i′ ∈ MR, i ̸= i′, Ki ∩ Ki′ ̸= ∅. (13)

As for an RUE and a BUE, define

βi,j = ln

1 +

∑
k∈Ki

αk,j∑
k∈Ki

αk,i
+

αb,i

αb,j

 , ∀ i ∈ MR, j ∈ MB.

(14)
Motivated by [31] and [36], a pilot scheduling algorithm

(PSA) is proposed and summarized in Algorithm 1. According
to Algorithm 1, it is necessary to first check whether τ is larger
than or equal to the minimum required number of orthogonal
pilots or not. If the number of available pilots are not enough to
satisfy the scheduled constraints, τ has to be increased. Then,
without loss of generality, pilot qj is allocated to BUE j, and
{q1, · · · , qt} are randomly allocated to t clusters with RUEs
in each cluster using the same pilot. In order to further mitigate
pilot contamination, three steps are iteratively carried out to
adjust the pilots assigned to each RUE. The basic idea is that
the RUE experiencing larger pilot contamination possesses a
higher priority for pilot adjustment. The main steps in each
iteration can be explained as follows. First, RUE i ∈ MR \Λ
experiencing the largest interference is selected. Next, pilot π
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which causes the least interference to RUE i is chosen from
the set of available pilots, i.e., Q \ Xi. Finally, pilot qπ is
assigned to RUE i, and sets Uπi , Uπ , Λ and Xl, ∀ l ∈ MR
are updated. The algorithm will be carried out for |MR| times
until all RUEs’ pilots have been adjusted.

Algorithm 1 Pilot Scheduling Algorithm (PSA)
Initialization:

Initialize the set of RUEs which have been allocated
pilots, i.e., Λ = ∅.

Obtain matrix A from (11) and calculate t by using the
Dsatur algorithm.

If τ < max {|MB| , t}, set τ = max {|MB| , t}.
Calculate βi,m, ∀ i ∈ MR, m ∈ M.

Pilot Allocation:
Assign pilot qj to BUE j, ∀ j ∈ MB.
Divide all RUEs into t clusters by using the Dsatur

algorithm, and randomly allocate pilots {q1, · · · , qt} to
them with RUEs in each cluster using the same pilot. Let
Xi denote the set of different pilots allocated to the RUEs
connected to RUE i, ∀ i ∈ MR.
for d = 1, · · · , |MR| do

1: i = arg max
l∈MR\Λ

( ∑
i′∈Uπl

βl,i′ +
∑

j∈Vπl

βl,j

)
.

2: π = arg min
ι∈Q\Xi

( ∑
i′∈Uι

βi,i′ +
∑
j∈Vι

βi,j

)
.

3: Uπi = Uπi \ i, qπi = qπ , Uπ = Uπ ∪ i, Λ = Λ ∪ i.

Update Xl, ∀ l ∈ MR.
end for

C. Complexity Analysis

In this subsection, the computational complexity of Algo-
rithm 1 is analyzed with order notation. According to [40], the
Dsatur algorithm involves a complexity of O

(
|MR|2

)
. In or-

der to adjust the pilots allocated to RUEs, |MR| iterations are
carried out. In each iteration, a complexity of O

(
|MR|2

)
is

required to find the RUE experiencing the largest interference,
and the pilot causing the least interference to this RUE. The
total complexity of the iteration process is thus O

(
|MR|3

)
.

As a result, Algorithm 1 involves an overall complexity of
O
(
|MR|3

)
. In contrast, to obtain the optimal pilot allocation

solution, the ES scheme requires a complexity of O
(
τM
)
,

which increases exponentially with the number of UEs. Hence,
the proposed algorithm is more efficient for practical use.

IV. STAGE II: ROBUST TRANSMISSION DESIGN

After obtaining the pilot allocation result by using Algo-
rithm 1, the sum SE maximization problem under incomplete
inter-cluster CSI and imperfect intra-cluster CSI is considered
in this section. A robust transmission design algorithm and its
distributed realization are proposed to solve the problem.

A. Problem Formulation

In order to simplify the expression of (1), the beam-
vectors from all RRHs in set Ki for transmitting signal to
RUE i can be merged to form a large-dimension vector

wi, i.e., wi =
[
wH

k,i, ∀ k ∈ Ki

]H
∈ CN |Ki|×1. Similarly,

let gi,m =
[
hH
k,m, ∀ k ∈ Ki

]H
∈ CN |Ki|×1 represent the

aggregated channel vector from all RRHs in Ki to UE m.
Then, (1) can be reformulated as

ym =
∑

i∈MR

gH
i,mwixi +

∑
j∈MB

hH
b,mwb,jxj + nm. (15)

In the following, all transmit beam-vectors are designed
based on the obtained channel estimates, i.e., (3), (4), (6)
and (7), and channel statistics, i.e., the large-scale channel
gains. Consider the block fading model, where all channels
remain unchanged over the coherence interval with length T .
Then, the effective SINR and the achievable rate of RUE i
are, respectively, given by

η
(R)
i =

∣∣ĝH
i,iwi

∣∣2∣∣g̃H
i,iwi

∣∣2+ ∑
i′∈MR\i

|gi′,iwi′ |2+
∑

j∈MB

∣∣∣hH
b,iwb,j

∣∣∣2+N0

,

R
(R)
i =

T − τ

T
E
{
log2

(
1 + η

(R)
i

)}
, ∀ i ∈ MR, (16)

where ĝi,i =
[
ĥH
k,i, ∀ k ∈ Ki

]H
∈ CN |Ki|×1 and g̃i,i =[

h̃H
k,i, ∀ k ∈ Ki

]H
∈ CN |Ki|×1, respectively, denote the

aggregated channel estimation vector and the aggregated error
vector from all RRHs in Ki to RUE i. Since only MMSE
estimates of the channel vectors and the distribution of chan-
nel estimation error are available, as in [41] and [36], the
useful signal in (16) only contains

∣∣ĝH
i,iwi

∣∣2, and the terms
corresponding to the channel estimation errors are regarded
as Gaussian noise. The expectation operation in (16) is taken
over the unknown channel estimation errors h̃k,i, ∀ k ∈ Ki,
the inter-cluster channel vectors hk,i, ∀ k ∈ K \Ki and hb,i.

Similarly, the effective SINR and the achievable rate of BUE
j can be, respectively, written as

η
(B)
j =

∣∣∣̂hH
b,jwb,j

∣∣∣2∣∣∣h̃H
b,jwb,j

∣∣∣2+ ∑
i∈MR

|gi,jwi|2+
∑

j′∈MB\j

∣∣∣hH
b,jwb,j′

∣∣∣2+N0

,

R
(B)
j =

T − τ

T
E
{
log2

(
1 + η

(B)
j

)}
, ∀ j ∈ MB, (17)

where the expectation is taken over the unknown channel
estimation error h̃b,j and hk,j , ∀ k ∈ K.

Due to the fractional form of the SINR expressions and the
log(·) operation, it is difficult to obtain explicit expressions of
the achievable rate. In the following theorem, a lower bound
on the achievable rate is derived.

Theorem 1: Given the SINR formulas in (16) and (17),
the achievable rates R

(R)
i and R

(B)
j are, respectively, lower
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bounded by (18) and (19) as follows

r
(R)
i =

T − τ

T
log2

(
1 +

∣∣ĝH
i,iwi

∣∣2
J
(R)
i

)
, ∀ i ∈ MR, (18)

r
(B)
j =

T − τ

T
log2

1 +

∣∣∣ĥH
b,jwb,j

∣∣∣2
J
(B)
j

 , ∀ j ∈ MB, (19)

where

J
(R)
i = wH

i E
(R)
i,i wi +

∑
i′∈MR\i

wH
i′ G

(R)
i′,iwi′

+
∑

j∈MB

wH
b,jH

(R)
b,i wb,j +N0, ∀ i ∈ MR, (20)

J
(B)
j = wH

b,jE
(B)
b,j wb,j +

∑
i∈MR

wH
i G

(B)
i,j wi

+
∑

j′∈MB\j

wH
b,j′H

(B)
b,j wb,j′ +N0, ∀ j ∈ MB. (21)

E
(R)
i,i , G(R)

i′,i, H
(R)
b,i , E(B)

b,j , G(B)
i,j and H

(B)
b,j in (20) and (21) are

all positive definite matrices defined in Appendix A.
Proof: See Appendix A.

This paper aims to maximize the sum SE of the network
by designing robust transmit beam-vectors under incomplete
inter-cluster CSI and imperfect intra-cluster CSI. As discussed
above, explicit expressions of achievable rates of both RUEs
and BUEs are unavailable, while their lower bounds can
be obtained according to Theorem 1. The tightness between
achievable rates and their lower bounds is verified in the sim-
ulation part. Hence, R(R)

i and R
(B)
j are, respectively, replaced

with r
(R)
i and r

(B)
j , and the problem is formulated as follows

max
w

∑
i∈MR

r
(R)
i +

∑
j∈MB

r
(B)
j (22a)

s.t.
∑

i∈Mk

∥wk,i∥2 ≤ P
(R)
k , ∀ k ∈ K, (22b)∑

j∈MB

∥wb,j∥2 ≤ P (B), (22c)

where w is the collection of all beam-vectors, including
wk,i, ∀ k ∈ K, i ∈ Mk and wb,j , ∀ j ∈ MB, and P

(R)
k

and P (B), respectively, denote the maximum transmit power
of RRH k and the MBS.

B. Robust Transmission Design

Problem (22) has a form similar to the conventional sum SE
maximization problems in downlink MISO systems, which can
be effectively solved by adopting the weighted minimum mean
square error (WMMSE) algorithm based on the following
lemma [14], [15], [42]. For brevity, the proof of Lemma 1
is omitted.

Lemma 1: In a downlink interfering network, if MMSE
receive filters are adopted for signal detection, the following
relationship between the MMSE and the SINR of each link
holds

MMSE =
1

1 + SINR
. (23)

However, two factors make it difficult to directly exploit
the WMMSE algorithm to solve problem (22). First, due
to imperfect channel estimation, self-interference exists in
the achievable rate expressions, i.e., terms wH

i E
(R)
i,i wi and

wH
b,jE

(B)
b,j wb,j exist in r

(R)
i and r

(B)
j , which is different from

the typical rate expression under perfect CSI; Second, due to
the expectation operation, E(R)

i,i , G(R)
i′,i, H

(R)
b,i , E(B)

b,j , G(B)
i,j and

H
(B)
b,j are all positive definite matrices rather than conjugate

symmetric rank-one matrices as in popular rate expressions of
a downlink MISO system. Because of these two factors, Lem-
ma 1 cannot be directly applied. To deal with this difficulty,
the following theorem is first introduced.

Theorem 2: r
(R)
i in (18) can be regarded as the rate of

a mobile user in an equivalent downlink interfering MISO
network. The MSE and single-tap MMSE receive equalizer
of this user are, respectively, given by

MSE(R)
i =

∣∣∣∣(f (R)
i

)H
ĝH
i,iwi − 1

∣∣∣∣2 + ∣∣∣f (R)
i

∣∣∣2 J (R)
i , (24)

f
(R)
i =

ĝH
i,iwi

wH
i ĝi,iĝH

i,iwi + J
(R)
i

, ∀ i ∈ MR. (25)

Similarly, r(B)
j can also be regarded as the rate of a mobile user

in an equivalent downlink interfering MISO network, and its
MSE and single-tap MMSE receive equalizer are, respectively,
given by

MSE(B)
j =

∣∣∣∣(f (B)
j

)H
ĥH
b,jwb,j − 1

∣∣∣∣2 + ∣∣∣f (B)
j

∣∣∣2 J (B)
j , (26)

f
(B)
j =

ĥH
b,jwb,j

wH
b,jĥb,jĥH

b,jwb,j + J
(B)
j

, ∀ j ∈ MB. (27)

Proof: See Appendix B.
According to Lemma 1 and Theorem 2, r(R)

i and r
(B)
j can

be rewritten as

r
(R)
i = −T − τ

T
log2 MMSE(R)

i

= −T − τ

T
min
f
(R)
i

log2 MSE(R)
i , ∀ i ∈ MR, (28)

r
(B)
j = −T − τ

T
log2 MMSE(B)

j

= −T − τ

T
min
f
(B)
j

log2 MSE(B)
j , ∀ j ∈ MB, (29)

and problem (22) can be equivalently reformulated as 1

min
w,f

∑
i∈MR

lnMSE(R)
i +

∑
j∈MB

lnMSE(B)
j

s.t. (22b), (22c), (30)

where f =
(
f
(R)
1 , · · · , f (R)

|MR|, f
(B)
1 , · · · , f (B)

|MB|

)T
.

Though the fractional SINR expressions have been avoided,
problem (30) is still nonconvex and is generally difficult to

1Note that in the objective function of problem (30), T−τ
T

is omitted and
log(·) is replaced with ln(·) for the convenience of the following analysis.
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solve. To make it tractable, the following auxiliary functions
are introduced to remove the ln(·) operation in (30)

S
(R)
i

(
u
(R)
i

)
= exp

(
u
(R)
i − 1

)
MSE(R)

i − u
(R)
i , ∀ i ∈ MR,

S
(B)
j

(
u
(B)
j

)
= exp

(
u
(B)
j − 1

)
MSE(B)

j − u
(B)
j , ∀ j ∈ MB,

(31)

where u
(R)
i and u

(B)
j are newly introduced auxiliary variables.

Checking the first-order optimality condition of (31) yields

min
u
(R)
i

S
(R)
i

(
u
(R)
i

)
= lnMSE(R)

i , ∀ i ∈ MR,

min
u
(B)
j

S
(B)
j

(
u
(B)
j

)
= lnMSE(B)

j , ∀ j ∈ MB, (32)

and the corresponding optimal solutions

u
(R)∗
i = 1− lnMSE(R)

i , ∀ i ∈ MR,

u
(B)∗
j = 1− lnMSE(B)

j , ∀ j ∈ MB. (33)

Therefore, according to (32) and by substituting (31) into
(30), the problem becomes

min
w,f ,u

∑
i∈MR

[
exp

(
u
(R)
i − 1

)
MSE(R)

i − u
(R)
i

]
+
∑

j∈MB

[
exp

(
u
(B)
j − 1

)
MSE(B)

j − u
(B)
j

]
s.t. (22b), (22c), (34)

where u =
(
u
(R)
1 , · · · , u(R)

|MR|, u
(B)
1 , · · · , u(B)

|MB|

)T
. Compared

with problem (30), problem (34) is much easier to solve since
it is convex with respect to (w.r.t.) each of the individual vari-
ables. By alternatively optimizing w, f and u, a suboptimal
solution of problem (34) can be obtained.

For fixed w and u, the optimal f can be obtained from
(25) and (27). For given w and f , the optimal u can be
obtained according to (33). When f and u have been deter-
mined, for notational brevity, denote β

(R)
i = exp

(
u
(R)
i − 1

)
,

β
(B)
j = exp

(
u
(B)
j − 1

)
, and delete constants u

(R)
i as well as

u
(B)
j in the objective function of (34). Then, based on (24) and

(26), problem (34) can be equivalently transformed to 2

min
w

∑
i∈MR

{
wH

i F
(R)
i wi − 2β

(R)
i Re

[(
f
(R)
i

)H
ĝH
i,iwi

]}
+
∑

j∈MB

{
wH

b,jF
(B)
j wb,j − 2β

(B)
j Re

[(
f
(B)
j

)H
ĥH
b,jwb,j

]}
s.t. (22b), (22c), (35)

2Note that for brevity, a constant term in the objective function of (35) is
omitted, which does not affect the equivalence between (34) and (35).

where

F
(R)
i = β

(R)
i

∣∣∣f (R)
i

∣∣∣2 ĝi,iĝH
i,i + β

(R)
i

∣∣∣f (R)
i

∣∣∣2 E(R)
i,i

+
∑

i′∈MR\i

β
(R)
i′

∣∣∣f (R)
i′

∣∣∣2 G(R)
i,i′ +

∑
j∈MB

β
(B)
j

∣∣∣f (B)
j

∣∣∣2 G(B)
i,j ,

F
(B)
j = β

(B)
j

∣∣∣f (B)
j

∣∣∣2 ĥb,jĥ
H
b,j + β

(B)
j

∣∣∣f (B)
j

∣∣∣2 E(B)
b,j

+
∑

i∈MR

β
(R)
i

∣∣∣f (R)
i

∣∣∣2 H(R)
b,i +

∑
j′∈MB\j

β
(B)
j′

∣∣∣f (B)
j′

∣∣∣2 H(B)
b,j′ . (36)

From Theorem 1 and (36), it is known that both F
(R)
i and

F
(B)
j are positive definite matrices. Hence, problem (35) is a

quadratically constrained quadratic programming (QCQP), and
can be optimally solved by adopting a standard convex opti-
mization solver such as CVX, which is a toolbox developed
in MATLAB for solving convex problems [43].

Based on the above analysis, problem (34) can be effectively
solved by alternatively optimizing w, f and u. Detailed steps
are summarized in Algorithm 2.

Algorithm 2 Robust Transmission Design (RTD)
1: Set d = 0, initialize w(d) = 0, f(d) = 1, u(d) = 1 and

ρ = 10−3.
2: repeat
3: Solve QCQP problem (35) to obtain w(d + 1) by

adopting the CVX toolbox.
4: Obtain f(d+ 1) based on (25) and (27).
5: Obtain u(d+ 1) based on (33).
6: d = d+ 1.
7: until

∑
i∈MR

∥wi(d+ 1)−wi(d)∥2 +∑
j∈MB

∥wb,j(d+ 1)−wb,j(d)∥2 ≤ ρ.

C. Distributed Implementation of the Proposed RTD Algorith-
m

Solving problem (34) using the proposed RTD algorith-
m requires a control center with great computation power,
especially for an ultra-dense multi-cell network. Hence, it
is desirable to obtain the beam-vectors in a decentralized
manner with only local CSI, i.e., the BBU pool uses only{
ĥk,i, ∀ k ∈ Ki, i ∈ MR

}
to obtain w(R), and the MBS

uses
{
ĥb,j , ∀ j ∈ MB

}
to obtain w(B), where w(R) and w(B)

respectively denote the collections of all beam-vectors used
by RRHs and the MBS. Since it is assumed that both the
BBU pool and the MBS have global large-scale channel gains,
i.e., {αk,m, ∀ k ∈ K,m ∈ M} and {αb,m, ∀ m ∈ M}, it is
shown in the following that the proposed RTD algorithm can,
fortunately, be implemented in a distributed manner.

Denote f (R) =
(
f
(R)
1 , · · · , f (R)

|MR|

)T
, f (B) =

(
f
(B)
1 , · · · ,

f
(B)
|MB|

)T
, u(R) =

(
u
(R)
1 , · · · , u(R)

|MR|

)T
and u(B) =

(
u
(B)
1 ,

· · · , u(B)
|MB|

)T
. Then, the dth iteration of Algorithm 2 can
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be processed in a decentralized fashion as follows. First,
the BBU pool sends

(
f (R)(d− 1),u(R)(d− 1)

)
obtained in

the (d − 1)th iteration to the MBS, and the MBS sends(
f (B)(d− 1),u(B)(d− 1)

)
to the BBU pool. Second, divide

problem (35) into two subproblems with the first subproblem
aiming to minimize the first term of the objection function of
(35) subject to constraint (22b) and the second one aiming
to minimize the second term of the objection function of
(35) subject to constraint (22c). These two subproblems can
be independently solved, and w(R)(d) as well as w(B)(d)
can thus be respectively obtained at the BBU pool and the
MBS. The BBU pool and the MBS then exchange the ob-
tained w(R)(d) and w(B)(d) with each other, and respectively
calculate

(
f (R)(d),u(R)(d)

)
and

(
f (B)(d),u(B)(d)

)
based on

(25), (27) and (33). After checking the termination criterion,
the algorithm stops if the algorithm converges. Otherwise,
continue to the next iteration.

The computational complexity of executing the proposed
RTD algorithm is analyzed in the next subsection, from which
it can be seen that, compared with the centralized way, execut-
ing the algorithm in a distributed manner can help spread out
the compute task of the control center over the BBU pool and
the MBS. This will help reduce the computational burden of
the control center, especially for a network with multiple cells.
The cost of the distributed implementation is the exchange
of variables

(
f (R)(d),u(R)(d)

)
, w(R)(d),

(
f (B)(d),u(B)(d)

)
and w(B)(d) between the BBU pool and the MBS. However,
when distributed implementation is adopted, either the BBU
pool or the MBS solves the corresponding problem with only
local CSI, i.e., there is no need to collect the overall CSI,
which improves the scalability. In addition, it is shown in
Section V that the RTD algorithm converges rapidly within
a few iterations. Hence, the distributed implementation is
suitable for practical applications.

D. Convergence and Complexity Analysis

Since Algorithm 2 is carried out in an alternative manner, it
is necessary to characterize its convergence behavior. In each
iteration, the optimal w is first obtained by solving (35). Then,
the optimal f and u are obtained according to (25), (27) and
(33). As a result, the objective function of (34) decreases in
each iteration. Due to the fact that this objective function is
always lower bounded, the convergence of the proposed RTD
algorithm is thus guaranteed.

Then, the computational complexity of the proposed RTD
algorithm is analyzed. The complexity of this algorithm mainly
lies in solving QCQP problem (35). As stated in Subsection
IV-C, problem (35) can be divided into two subproblems,
and according to [5], both of these subproblems can be
equivalently transformed to a second-order cone programming
(SOCP). The total numbers of variables in the two equivalent
SOCP problems are, respectively, D1 =

∑
i∈MR

N |Ki| and

D2 = B |MB|. Hence, each iteration involves an approximate
complexity of O

(
D3.5

1 +D3.5
2

)
[44]. Assume that L iterations

are required for Algorithm 2 to converge. The total complexity
of Algorithm 2 is thus O

(
L
(
D3.5

1 +D3.5
2

))
. When the RTD

algorithm is carried out in a distributed way, the BBU poll

TABLE I
SIMULATION PARAMETERS

Radius of the cell 500 m
Pilot power of BUEs pB 20 dBm
Pilot power of RUEs pR 17 dBm
Maximum transmit power of the MBS P (B) 30 dBm
Maximum transmit power of each RRH P (R) 27 dBm
Additive noise power N0 -100 dBm
Path loss exponent 3.7
Standard deviation of log-normal shadowing fading 8 dB
Accuracy ρ 10−3

and the MBS will, respectively, solve the two subproblems,
and as the centralized way, L iterations are required for the
algorithm to converge. Therefore, complexities of O

(
LD3.5

1

)
and O

(
LD3.5

2

)
are, respectively, involved at the BBU pool

and the MBS.

V. SIMULATION RESULTS

In this section, representative simulation results are present-
ed to evaluate the performance of the proposed algorithms. An
isolated H-CRAN is considered with the MBS located at the
center of the cell and all UEs randomly distributed. When
a UE is close to the MBS, it usually prefers to access the
network via the MBS. Hence, it is assumed that all RRHs are
uniformly distributed in a ring area centered around the base
station with the radius of the inner ring to be 200 m and the
radius of the outer ring equal to the radius of the cell. Each
RRH has a covering radius of Dmax m. If the distance between
a UE and an RRH is within Dmax m, the UE chooses to
access the network via this RRH. Assume that each RRH can
simultaneously serve 3 UEs. If more than 3 UEs are associated
with an RRH, the RRH will choose to serve the 3 closest UEs,
and the rest UEs will be served by either the other RRHs
or the MBS. If a UE cannot be served by any RRHs, the
conventional cellular communication serves this UE. For the
sake of brevity, equal maximum power constraint for all RRHs
is assumed, i.e., P

(R)
k = P (R), ∀ k ∈ K. Unless otherwise

specified, the other system parameters are summarized in Table
I. All simulation results are obtained by averaging over 1000
channel realizations, and each channel realization is obtained
by generating a random user distribution as well as a random
set of fading coefficients.

A. Performance of the Proposed PSA alorithm

In this subsection, the performance of the proposed PSA
alorithm is investigated in terms of sum MSE of the network.
For comparison, the results obtained by the Dsatur algorithm
and the ES scheme are taken as benchmarks. In particular,
the Dsatur algorithm divides all RUEs into t clusters, and
randomly allocates pilots {q1, · · · , qt} to RUEs with RUEs
in each cluster using the same pilot. The ES scheme searches
all feasible pilot allocation schemes and can always find the
optimal solution with high calculation cost. Note that in the
simulation process, since the UEs and RRHs are randomly
generated, if the number of required pilots can not be satisfied
for given τ , i.e., τ < max {|MB| , t}, set τ = max {|MB| , t}.
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Fig. 3. Sum MSE of channel estimation versus pilot length with M = 8,
K = 25, B = 10, N = 4, Dmax = 100 and T = 50.
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Fig. 4. Sum MSE of channel estimation versus the number of UEs with
K = 25, B = 10, N = 4, Dmax = 100, τ = 5 and T = 50.

In Fig. 3, the sum MSE of channel estimation versus pilot
length is depicted. It can be seen from this figure that the pro-
posed PSA algorithm outperforms the Dsatur algorithm greatly
in terms of sum MSE. When τ increases, as expected, the sum
MSE obtained by the proposed PSA algorithm decreases with
τ and approaches that obtained by the ES scheme. While for
the Dsatur algorithm, the sum MSE remains unchanged since
it always assigns t pilots to RUEs regardless of τ .

Fig. 4 depicts the sum MSE of channel estimation versus the
number of UEs. Compared with the Dsatur algorithm, the sum
MSE of the network can be decreased greatly by the proposed
PSA algorithm. As the number of UEs grows, more channels
are required to be estimated and the probability of pilot reusing
increases for given τ , leading to more pilot contamination.
Hence, the sum MSE increases for all considered cases. When
the number of UEs is equal to the pilot length, i.e., M = τ ,
orthogonal training is the optimal pilot allocation solution. In
this case, there will be no pilot contamination, and channel
estimation is only affected by thermal noise. Hence, the sum
MSE will be very small, which can be found from both Figs.
3 and 4.
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Fig. 5. Convergence behaviors of the proposed RTD algorithm with M = 10,
B = 10, N = 4, Dmax = 100, τ = 5 and T = 50.
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Fig. 6. (a) Sum SE of RUEs versus the number of RRH antennas with
M = 10, K = 25, B = 10, Dmax = 100, τ = 5 and T = 50; (b) Sum
SE of BUEs versus the number of MBS antennas with M = 10, K = 25,
N = 4, Dmax = 100, τ = 5 and T = 50.

B. Performance of the Proposed RTD alorithm

In this subsection, the performance of the proposed RTD
alorithm is evaluated.

First, in Fig. 5, the convergence behavior of the proposed
RTD algorithm under different values of K is illustrated. It can
be seen from this figure that the lower bound on sum SE of the
network monotonically increases during the iterative procedure
and converges rapidly after only a few iterations (within 8
iterations for all considered configurations). Fig. 5 also shows
that the sum SE increases with the number of RRHs. This
is because more UEs will access the network via RRHs and
each RUE can be served by more RRHs as K grows. Due
to short transmission distance between RUEs and RRHs, SE
gains can be obtained in contrast to the conventional cellular
communication.

Since explicit expressions of achievable rate of both RUEs
and BUEs are unavailable, this paper aims to maximize the
lower bound on sum SE of the network. It is thus necessary to
verify the feasibility. In Fig. 6, the gaps between the achievable
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10 11 12 13 14 15 16 17 18 19 20
80

85

90

95

100

105

110

115

120

125

130

Number of UEs

S
um

 S
E

 o
f t

he
 n

et
w

or
k 

(b
ps

/H
z)

 

 
Proposed RTD, K=15
Proposed RTD, K=25
Proposed RTD, K=35
Algorithm 2 in [5], K=15
Algorithm 2 in [5], K=25
Algorithm 2 in [5], K=35

Fig. 8. Sum SE of the network versus the number of UEs with B = 16,
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rate of RUEs, BUEs and their corresponding lower bounds
are investigated. Fig. 6 shows that the achievable sum rates of
RUEs and BUEs are both close to their corresponding lower
bounds, indicating that it is reasonable to solve the sum SE
maximization problem based on lower bounds (18) and (19).
In addition, Fig. 6 also shows that the sum SE increases with
RRH and MBS antennas, which is consistent with intuition.

In Fig. 7, the effect of pilot length under different values of
coherence interval is investigated. It is shown that for all con-
sidered cases, the sum SE of the network first grows and then
decreases w.r.t. τ . This is because only a few orthogonal pilots
are reused among UEs for a small τ . In this case, the channel
estimation is significantly influenced by pilot contamination.
Therefore, the sum SE can be enhanced by increasing τ .
However, as τ becomes large enough, the channel estimation
accuracy can be hardly improved by further enlarging τ . Coun-
terproductively, increasing pilot length reduces the number of
symbols available for data transmission, and thereby reduces
the sum SE. Note that in Fig. 7, the minimum sum SE is
obtained when τ = M , i.e., UEs adopt the conventional
orthogonal training scheme for channel estimation. Hence, the
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Fig. 9. Sum SE of the network versus the covering radius of RRHs with
K = 25, B = 16, N = 4, τ = 5 and T = 50.

sum SE of the network can be significantly increased by pilot
reuse and the proposed RTD algorithm, especially when T is
small.

Fig. 8 depicts the sum SE of the network versus the number
of UEs under different values of K. For comparison, the
results obtained by using Algorithm 2 proposed in [5] are
depicted as benchmarks, which assume that perfect global
CSI is available. Note that reference [5] considered a C-RAN
without MBS. Hence, for the sake of fairness, the same H-
CRAN network is considered when obtaining the benchmarks.
From Fig. 8, several observations can be made. First, as
expected, the sum SE grows with K for all considered cases.
Second, as the number of UEs increases, the sum SE grows
monotonically for the proposed RTD algorithm, while first
increases and then slightly decreases for Algorithm 2 proposed
in [5]. This is because orthogonal training is used by [5] to
obtain the perfect CSI. As M grows, the number of required
pilots increases, and thereby decreases the sum SE. In addition,
it can also be seen that compared with Algorithm 2 proposed in
[5], the sum SE of the network can be significantly improved
by the proposed RTD algorithm.

In Fig. 9, the effect of covering radius of RRHs on sum
SE of the network is investigated. As Dmax increases, more
UEs will access the network via RRHs and each RUE can be
served by more RRHs. Hence, for the cases with M = 13 and
M = 16, the sum SE of the network grows with Dmax for
both the proposed RTD algorithm and Algorithm 2 proposed
in [5]. However, when M = 10, the sum SE first decreases
and then increases for both the proposed RTD algorithm and
the benchmark. This is due to the fact that as Dmax increases,
channel conditions between RRHs and RUEs become worse.
Though coverage areas of RRHs become large, the sum SE
gains brought by this are limited when M is small. Hence, the
sum SE of the network suffers a decrease.

VI. CONCLUSIONS

This paper has studied pilot scheduling and robust trans-
mission design problems in an ultra-dense H-CRAN. Since
pilot reuse was assumed among UEs to shorten pilot overhead,
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pilot contamination inevitably exists. Hence, a pilot scheduling
algorithm was proposed to minimize the sum MSE of all
channel estimates. Afterwards, robust transmit beam-vectors
were designed to maximize the sum SE of the network.
Since each RRH or the MBS only has the imperfect CSI
of intra-cluster UEs and only tracks the large-scale channel
gains of inter-cluster UEs, it was difficult to obtain the exact
achievable rate of each link. Hence, a lower bound on each
UE’s achievable rate was derived and an alternative robust
transmission design algorithm was proposed to maximize the
lower bound on sum SE. Simulation results showed that
compared with existing algorithms, the system performance
can be significantly improved by the proposed algorithms in
terms of both sum MSE and sum SE.

APPENDIX A
PROOF OF THEOREM 1

Using the convexity of log2
(
1 + 1

x

)
(∀ x > 0) and applying

the Jensen’s inequality, a lower bound on R
(R)
i can be derived

as (37) at the bottom of this page. Denote

E
(R)
i,i = E

{
g̃i,ig̃

H
i,i

}
, G

(R)
i′,i = E

{
gi′,ig

H
i′,i

}
,

H
(R)
b,i = E

{
hb,ih

H
b,i

}
, ∀ i ∈ MR, i′ ∈ MR \ i. (38)

From the definition of g̃i,i, it is known that g̃i,i consists of
i.i.d. Gaussian elements with zero mean and variance given
by (4). Hence,

E
(R)
i,i = blkdiag {δk,iIN , ∀ k ∈ Ki} . (39)

To obtain the explicit expression of G
(R)
i′,i, denote the set of

RRHs serving RUE i′ as Ki′ =
{
ki

′

1 , · · · , ki
′

|Ki′ |

}
. Then,

according to the definition of gi′,i, G
(R)
i′,i can be rewritten as

G
(R)
i′,i =


(
G

(R)
i′,i

)
1,1

. . .
(
G

(R)
i′,i

)
1,|Ki′ |

...
. . .

...(
G

(R)
i′,i

)
|Ki′ |,1

. . .
(
G

(R)
i′,i

)
|Ki′ |,|Ki′ |

 ,

(40)
where

(
G

(R)
i′,i

)
o,z

, E
{
hki′

o ,ih
H
ki′
z ,i

}
, ∀ o, z ∈ {1, · · · ,

|Ki′ |} represents the oth row and zth column block matrix
of G

(R)
i′,i. From Stage I it is known that for any RUE i, only

channel vectors hk,i, ∀k ∈ Ki are estimated, while hk,i, ∀k ∈
K\Ki are unknown. In addition, different channel vectors are
independent with each other. As a result,

(
G

(R)
i′,i

)
o,z

is given

by

(
G

(R)
i′,i

)
o,z

=


ĥki′

o ,iĥ
H
ki′
o ,i

+δki′
o ,iIN , if o = z, ki

′

o ∈ Ki,

αki′
o ,iIN , if o = z, ki

′

o ̸∈ Ki,

0, otherwise.
(41)

Since for any RUE i, hb,i is not estimated, it follows that

H
(R)
b,i = αb,iIB . (42)

Substituting (39), (40) and (42) into (37), the lower bound (18)
can be obtained.

Similarly, for BUE j, a lower bound on R
(B)
j can also be

derived as (43) shown at the bottom of this page. Denote

E
(B)
b,j = E

{
h̃b,jh̃

H
b,j

}
, G

(B)
i,j = E

{
gi,jg

H
i,j

}
,

H
(B)
b,j = E

{
hb,jh

H
b,j

}
, ∀ j ∈ MB, i ∈ MR. (44)

Since for any BUE j, only hb,j is estimated, while channel
vectors gi,j , ∀ i ∈ MR are unknown, E(B)

b,j , G(B)
b,j and H

(B)
b,j

R
(R)
i ≥ T − τ

T
log2

1 +

(
E

{
1

η
(R)
i

})−1


=
T − τ

T
log2

1 +

∣∣ĝH
i,iwi

∣∣2
E
{∣∣g̃H

i,iwi

∣∣2}+
∑

i′∈MR\i
E
{
|gi′,iwi′ |2

}
+

∑
j∈MB

E
{∣∣∣hH

b,iwb,j

∣∣∣2}+N0


, r

(R)
i , ∀ i ∈ MR, (37)

R
(B)
j ≥ T − τ

T
log2

1 +

(
E

{
1

η
(B)
j

})−1


=
T − τ

T
log2

1 +

∣∣∣ĥH
b,jwb,j

∣∣∣2
E
{∣∣∣h̃H

b,jwb,j

∣∣∣2}+
∑

i∈MR

E
{
|gi,jwi|2

}
+

∑
j′∈MB\j

E
{∣∣∣hH

b,jwb,j′

∣∣∣2}+N0


, r

(R)
j , ∀ j ∈ MB, (43)
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can thus be readily obtained as follows

E
(B)
b,j = δb,jIB ,

G
(B)
i,j = blkdiag {αk,jIN , ∀ k ∈ Ki} ,

H
(B)
b,j = ĥb,jĥ

H
b,j + δb,jIB. (45)

Substituting (45) into (43), the lower bound (19) can be
obtained.

Since large-scale channel gains and the variance of channel
estimation errors, i.e., (4) and (7) are all positive, it can be
easily verified that E(R)

i,i , G(R)
i′,i, H

(R)
b,i , E(B)

b,j , G(B)
i,j and H

(B)
b,j

are all positive definite matrices. Thus, Theorem 1 is proven.

APPENDIX B
PROOF OF THEOREM 2

In order to simplify the proof, a special case is first
considered. Denote

r = log2

(
1 +

∣∣gHw
∣∣2

wHEw + vHGv +N0

)
, (46)

where g,w,v ∈ CC×1, E = diag {θ1, · · · , θC} ∈ RC×C
+

and N0 ∈ R++. G ∈ CC×C is a positive definite Hermitian
matrix and admits an eigen-decomposition G = UΓUH ,
where U is a C × C dimensional unitary matrix with each
column being the eigenvector of G and Γ is a diagonal matrix
whose diagonal elements are the corresponding eigenvalues
of G, i.e., Γc,c = γc [45]. θc and γc, ∀ c ∈ {1, · · · , C}
are all positive real constants. Let ec denote a C dimensional
vector with one in the cth position and zeros elsewhere. E
and Γ can then be rewritten as E = [θ1e1, · · · , θCeV ] and
Γ = [γ1e1, · · · , γCeV ], respectively. Denote v̄ = UHv. It
follows that

r = log2

1 +

∣∣gHw
∣∣2

C∑
c=1

θc |eHc w|2 +
C∑

c=1
γc |eHc v̄|2 +N0

 .

(47)
Obviously, (47) shows that r can be seen as the rate of

a mobile user in an equivalent downlink interfering MISO
network. The received signal of this user is given by

y = gHwx0 +
C∑

c=1

√
θce

H
c wxc +

C∑
c=1

√
γce

H
c v̄sc + n, (48)

where the first term denotes the desired signal, and the second
to the third terms are the interference from other users.
g,

√
θcec and

√
γcec denote the channel vectors from all

transmitters to the desired receiver. w and v are the transmit
beam-vectors. x0, xc and sc represent the i.i.d. data symbols
with zero mean and unit variance. n is the complex white
Gaussian noise with variance N0, i.e., n ∼ CN (0, N0). Thus,

the MSE of the considered link can be written as

MSE = E
{∣∣fHy − x0

∣∣2}
=
∣∣fHgHw − 1

∣∣2 + C∑
c=1

θc
∣∣fHeHc w

∣∣2
+

C∑
c=1

γc
∣∣fHeHc v̄

∣∣2 +N0|f |2

=
∣∣fHgHw − 1

∣∣2 + |f |2wHEw + |f |2v̄HΓv̄ +N0|f |2

=
∣∣fHgHw − 1

∣∣2 + |f |2wHEw + |f |2vHGv +N0|f |2,
(49)

and the corresponding MMSE receiver which minimizes (49)
is given by

f =
gHw

wH (ggH +E)w + vHGv +N0
. (50)

From (39), (40), (42) and (45), it is known that E(R)
i,i , H(R)

b,i ,
E

(B)
b,j and G

(B)
i,j are all diagonal matrices as E in (46), and

G
(R)
i′,i and H

(B)
b,j are both positive definite Hermitian matrices

as G in (46). Analogously, Theorem 2 can be readily verified
as above.
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Dr. Stüber is author of the wireless textbook Prin-
ciples of Mobile Communication, Kluwer Academic
Publishers, 1996, 2/e 2001, 3/e 2011, 4/e 2017.

He was co-recipient of the Jack Neubauer Memorial Award in 1997 for
the best systems paper published in the IEEE Transactions on Vehicular
Technology. He became an IEEE Fellow in 1999 ”for contributions to mobile
radio and spread spectrum communications.” He received the IEEE Vehicular
Technology Society James R. Evans Avant Garde Award in 2003 ”for his
contributions to theoretical research in wireless communications.” He received
the 2007 IEEE Communications Society Wireless Communications Technical
Committee Recognition Award ”for outstanding technical contributions in the
field and for service to the scientific and engineering communities.” He was an
IEEE Communication Society Distinguished Lecturer (2007-2008) and IEEE
Vehicular Technology Society Distinguished Lecturer (2010-2012). He was
co-recipient of the Neal Shepherd Memorial Best Propagation Paper Award
in 2012, for the best propagation paper published in the IEEE Transactions
on Vehicular Technology. Finally, he received the 2017 IEEE ComSoc RCC
Technical Recognition Award ”for outstanding research contributions to radio
communications.”
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