6,280 research outputs found

    Variability in spawning frequency and reproductive development of the narrow-barred Spanish mackerel (Scomberomorus commerson) along the west coast of Australia

    Get PDF
    The narrow-barred Spanish mackerel (Scomberomorus commerson) is widespread throughout the Indo-West Pacific region. This study describes the reproductive biology of S. commerson along the west coast of Australia, where it is targeted for food consumption and sports fishing. Development of testes occurred at a smaller body size than for ovaries, and more than 90% of males were sexually mature by the minimum legal length of 900 mm TL compared to 50% of females. Females dominated overall catches although sex ratios within daily catches vary considerably and females were rarely caught when spaw n ing. Scomberomorus commerson are seasonally abundant in coastal waters and most of the commercial catch is taken prior to the reproductive season. Spawning occurs between about August and November in the Kimberley region and between October and January in the Pilbara region. No spawning activity was recorded in the more southerly West Coast region, and only in the north Kimberley region were large numbers of fish with spawning gonads collected. Catches dropped to a minimum when spawning began in the Pilbara region, when fish became less abundant in inshore waters and inclement weather conditions limited fishing on still productive offshore reefs. Final maturation and ovulation of oocytes took place within a 24-hour period, and females spawned in the afternoon-evening every three days. A third of these spawning females released batches of eggs on consecutive days. Relationships between length, weight, and batch fecundity are presented

    Marnda Gardairri: Facilitation of an Indigenous Ranger Rock Art Workshop

    Get PDF
    The Marnda Gardairri Indigenous Rangers Workshop was held from 3–5 October 2017 on the Burrup Peninsula in the Pilbara region of Western Australia. The event, which was hosted by the Murujuga Aboriginal Corporation (MAC), brought together rangers from across Australia to discuss rock art conservation and management. The workshop was given the title ‘Marnda Gardairri’ as this means rock scratching/engraving on the Burrup Peninsula. The workshop was developed by MAC in collaborative partnership with Rio Tinto Iron Ore-Pilbara Operations and the Nulungu Research Institute (The University of Notre Dame Australia). Rio Tinto and Woodside Petroleum funded the workshop, with Mel Marshall and Lynley Wallis of Nulungu engaged to coordinate and facilitate the event, assisted by Kate Golson.https://researchonline.nd.edu.au/nulungu_insights/1002/thumbnail.jp

    Nine new species of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) from Western Australia, with the description of a new subfamily

    Get PDF
    The genus Bennelongia De Deckker & McKenzie, 1981 is most likely endemic to Australia and New Zealand and, up to now, only two described species in this genus had been reported from Western Australia. Extensive sampling in Western Australia revealed a much higher specifi c diversity. Here, we describe nine new species in three lineages, within the genus Bennelongia: B. cygnus sp. nov. and B. frumenta sp. nov. in the B. cygnus lineage, B. gwelupensis sp. nov., B. coondinerensis sp. nov., B. cuensis sp. nov., B. lata sp. nov. and B. bidgelangensis sp. nov. in the B. australis lineage, and B. strellyensis sp. nov. and B. kimberleyensis sp. nov. (from the Pilbara and Kimberley regions respectively) in the B. pinpi-lineage. For six of the nine species, we were also able to construct molecular phylogenies and to test for cryptic diversity with two different methods based on the evolutionary genetic species concept, namely Birky’s 4 x rule and the GYMC model. These analyses support the specifi c nature of at least four of the fi ve new species in the B. australis lineage and of the two new species in the B. pinpi lineage. We also describe Bennelongiinae n.subfam. to accommodate the genus. With the nine new species described here, the genus Bennelongia now comprises 15 species, but several more await formal description

    Australasian Arachnology, Number 75, September 2006

    Get PDF
    Again, this issue is a bit late (September instead of August) but I hope the diverse and exciting contents will make up for the delay. As per usual, the Australian Arachnological Society is grateful to all who contributed to this issue! More excitingly, I already have articles for the December issue. Stay tuned for an update on the taxonomy of Australian jumping spiders by Marek Zabka

    3.46 Ga Apex chert 'microfossils' reinterpreted as mineral artefacts produced during phyllosilicate exfoliation

    Get PDF
    We acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at: Centre for Microscopy Characterisation and Analysis, The University of Western Australia; Electron Microscopy Unit, The University of New South Wales. These facilities are funded by the Universities, State and Commonwealth Governments. DW was funded by the European Commission and the Australian Research Council (FT140100321). This is ARC CCFS paper number XXX. We acknowledge Martin van Kranendonk, Owen Green, Cris Stoakes, Nicola McLoughlin, the late John Lindsay and the Geological Survey of Western Australia for fieldwork assistance, Thomas Becker for assistance with Raman microspectroscopy, Anthony Burgess from FEI for the preparation of one of the TEM wafers, and Russell Garwood, Tom Davies, Imran Rahman & Stephan Lautenschlager for training and advice on the SPIERS and AVIZO software suites. We thank Chris Fedo and an anonymous reviewer for comments that improved the manuscript.Peer reviewedPostprin

    Developing an early childhood teacher workforce development strategy for rural and remote communities

    Get PDF
    The North West Early Childhood and Primary Teacher Workforce Development Strategy offers students in the Pilbara and Kimberley the opportunity to enrol in a Western Australian University’s fully accredited Bachelor of Education (Early Childhood and Primary) part time and externally – so they can continue to live and work in their communities. The Western Australian Department of Education and Training (WA DET) and the Commonwealth Government Department of Education, Employment and Workplace Relations (DEEWR) have funded the project, enabling the University to provide mentoring support and provision for Recognition of Prior Learning, on a case-by-case basis, depending on their individual experience and levels of skill. On completion of the course students will be fully qualified to teach from Kindergarten to Year 7. Added to this they will be able to bring their own knowledge of their unique communities, languages and cultures to their teaching

    Igneous and tectonic evolution of Venusian and terrestrial coronae

    Get PDF
    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions
    • 

    corecore