26 research outputs found

    Neural Networks for Hyperspectral Imaging of Historical Paintings: A Practical Review

    Get PDF
    Hyperspectral imaging (HSI) has become widely used in cultural heritage (CH). This very efficient method for artwork analysis is connected with the generation of large amounts of spectral data. The effective processing of such heavy spectral datasets remains an active research area. Along with the firmly established statistical and multivariate analysis methods, neural networks (NNs) represent a promising alternative in the field of CH. Over the last five years, the application of NNs for pigment identification and classification based on HSI datasets has drastically expanded due to the flexibility of the types of data they can process, and their superior ability to extract structures contained in the raw spectral data. This review provides an exhaustive analysis of the literature related to NNs applied for HSI data in the CH field. We outline the existing data processing workflows and propose a comprehensive comparison of the applications and limitations of the various input dataset preparation methods and NN architectures. By leveraging NN strategies in CH, the paper contributes to a wider and more systematic application of this novel data analysis method

    Authentication of Amadeo de Souza-Cardoso Paintings and Drawings With Deep Learning

    Get PDF
    Art forgery has a long-standing history that can be traced back to the Roman period and has become more rampant as the art market continues prospering. Reports disclosed that uncountable artworks circulating on the art market could be fake. Even some principal art museums and galleries could be exhibiting a good percentage of fake artworks. It is therefore substantially important to conserve cultural heritage, safeguard the interest of both the art market and the artists, as well as the integrity of artists’ legacies. As a result, art authentication has been one of the most researched and well-documented fields due to the ever-growing commercial art market in the past decades. Over the past years, the employment of computer science in the art world has flourished as it continues to stimulate interest in both the art world and the artificial intelligence arena. In particular, the implementation of Artificial Intelligence, namely Deep Learning algorithms and Neural Networks, has proved to be of significance for specialised image analysis. This research encompassed multidisciplinary studies on chemistry, physics, art and computer science. More specifically, the work presents a solution to the problem of authentication of heritage artwork by Amadeo de Souza-Cardoso, namely paintings, through the use of artificial intelligence algorithms. First, an authenticity estimation is obtained based on processing of images through a deep learning model that analyses the brushstroke features of a painting. Iterative, multi-scale analysis of the images is used to cover the entire painting and produce an overall indication of authenticity. Second, a mixed input, deep learning model is proposed to analyse pigments in a painting. This solves the image colour segmentation and pigment classification problem using hyperspectral imagery. The result is used to provide an indication of authenticity based on pigment classification and correlation with chemical data obtained via XRF analysis. Further algorithms developed include a deep learning model that tackles the pigment unmixing problem based on hyperspectral data. Another algorithm is a deep learning model that estimates hyperspectral images from sRGB images. Based on the established algorithms and results obtained, two applications were developed. First, an Augmented Reality mobile application specifically for the visualisation of pigments in the artworks by Amadeo. The mobile application targets the general public, i.e., art enthusiasts, museum visitors, art lovers or art experts. And second, a desktop application with multiple purposes, such as the visualisation of pigments and hyperspectral data. This application is designed for art specialists, i.e., conservators and restorers. Due to the special circumstances of the pandemic, trials on the usage of these applications were only performed within the Department of Conservation and Restoration at NOVA University Lisbon, where both applications received positive feedback.A falsificação de arte tem uma história de longa data que remonta ao período romano e tornou-se mais desenfreada à medida que o mercado de arte continua a prosperar. Relatórios revelaram que inúmeras obras de arte que circulam no mercado de arte podem ser falsas. Mesmo alguns dos principais museus e galerias de arte poderiam estar exibindo uma boa porcentagem de obras de arte falsas. Por conseguinte, é extremamente importante conservar o património cultural, salvaguardar os interesses do mercado da arte e dos artis- tas, bem como a integridade dos legados dos artistas. Como resultado, a autenticação de arte tem sido um dos campos mais pesquisados e bem documentados devido ao crescente mercado de arte comercial nas últimas décadas.Nos últimos anos, o emprego da ciência da computação no mundo da arte floresceu à medida que continua a estimular o interesse no mundo da arte e na arena da inteligência artificial. Em particular, a implementação da Inteligência Artificial, nomeadamente algoritmos de aprendizagem profunda (ou Deep Learning) e Redes Neuronais, tem-se revelado importante para a análise especializada de imagens.Esta investigação abrangeu estudos multidisciplinares em química, física, arte e informática. Mais especificamente, o trabalho apresenta uma solução para o problema da autenticação de obras de arte patrimoniais de Amadeo de Souza-Cardoso, nomeadamente pinturas, através da utilização de algoritmos de inteligência artificial. Primeiro, uma esti- mativa de autenticidade é obtida com base no processamento de imagens através de um modelo de aprendizagem profunda que analisa as características de pincelada de uma pintura. A análise iterativa e multiescala das imagens é usada para cobrir toda a pintura e produzir uma indicação geral de autenticidade. Em segundo lugar, um modelo misto de entrada e aprendizagem profunda é proposto para analisar pigmentos em uma pintura. Isso resolve o problema de segmentação de cores de imagem e classificação de pigmentos usando imagens hiperespectrais. O resultado é usado para fornecer uma indicação de autenticidade com base na classificação do pigmento e correlação com dados químicos obtidos através da análise XRF. Outros algoritmos desenvolvidos incluem um modelo de aprendizagem profunda que aborda o problema da desmistura de pigmentos com base em dados hiperespectrais. Outro algoritmo é um modelo de aprendizagem profunda estabelecidos e nos resultados obtidos, foram desenvolvidas duas aplicações. Primeiro, uma aplicação móvel de Realidade Aumentada especificamente para a visualização de pigmentos nas obras de Amadeo. A aplicação móvel destina-se ao público em geral, ou seja, entusiastas da arte, visitantes de museus, amantes da arte ou especialistas em arte. E, em segundo lugar, uma aplicação de ambiente de trabalho com múltiplas finalidades, como a visualização de pigmentos e dados hiperespectrais. Esta aplicação é projetada para especialistas em arte, ou seja, conservadores e restauradores. Devido às circunstâncias especiais da pandemia, os ensaios sobre a utilização destas aplicações só foram realizados no âmbito do Departamento de Conservação e Restauro da Universidade NOVA de Lisboa, onde ambas as candidaturas receberam feedback positivo

    Automatic Pigment Classification in Painted Works of Art from Diffuse Reflectance Image Data

    Get PDF
    Information about artists\u27 materials used in paintings, obtained from the analysis of limited micro-samples, has assisted conservators to better define treatment plans, and provided scholars with basic information about the working methods of the artists. Recently, macro-scale imaging systems such as visible-to-near infrared (VNIR) reflectance hyperspectral imaging (HSI) are being used to provide conservators and art historians with a more comprehensive understanding of a given work of art. However, the HSI analysis process has not been streamlined and currently requires significant manual input by experts. Additionally, HSI systems are often too expensive for small to mid-level museums. This research focused on three main objectives: 1) adapt existing algorithms developed for remote sensing applications to automatically create classification and abundance maps to significantly reduce the time to analyze a given artwork, 2) create an end-to-end pigment identification convolutional neural network to produce pigment maps that may be used directly by conservation scientists without further analysis, and 3) propose and model the expected performance of a low-cost fiber optic single point multispectral system that may be added to the scanning tables already part of many museum conservation laboratories. Algorithms developed for both classification and pigment maps were tested on HSI data collected from various illuminated manuscripts. Results demonstrate the potential of both developed processes. Band selection studies indicates that pigment identification from a small number of bands produces similar results to that of the HSI data sets on a selected number of test artifacts. A system level analysis of the proposed system was conducted with a detailed radiometric model. The system trade study confirmed the viability of using either individual spectral filters or a linear variable filter set-up to collect multispectral data for pigment identification of works of art

    Unmixing and pigment identification using visible and short-wavelength infrared: Reflectance vs logarithm reflectance hyperspaces

    Get PDF
    Hyperspectral imaging has recently consolidated as a useful technique for pigment mapping and identification, although it is commonly supported by additional non-invasive analytical methods. Since it is relatively rare to find pure pigments in aged paintings, spectral unmixing can be helpful in facilitating pigment identification if suitable mixing models and endmember extraction procedures are chosen. In this study, a subtractive mixing model is assumed, and two approaches are compared for endmember extraction: one based on a linear mixture model, and the other, nonlinear and Deep-Learning based. Two spectral hyperspaces are used: the spectral reflectance (R hyperspace) and the -log(R) hyperspace, for which the subtractive model becomes additive. The performance of unmixing is evaluated by the similarity of the estimated reflectance to the measured data, and pigment identification accuracy. Two spectral ranges (400 to 1000 nm and 900 to 1700 nm) and two objects (a laboratory sample and an aged painting, both on copper) are tested. The main conclusion is that unmixing in the -log(R) hyperspace with a linear mixing model is better than for the non-linear model in R hyperspace, and that pigment identification is generally better in R hyperspace, improving by merging the results in both spectral ranges.MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” [grant number PID2021-124446NB-100]Ministry of Universities (Spain) [grant number FPU2020-05532

    An ADMM Based Network for Hyperspectral Unmixing Tasks

    Get PDF
    In this paper, we use algorithm unrolling approaches in order to design a new neural network structure applicable to hyperspectral unmixing challenges. In particular, building upon a constrained sparse regression formulation of the underlying unmixing problem, we unroll an ADMM solver onto a neural network architecture that can be used to deliver the abundances of different (known) endmembers given a reflectance spectrum. Our proposed network – which can be readily trained using standard supervised learning procedures – is shown to possess a richer structure consisting of various skip connections and shortcuts than other competing architectures. Moreover, our proposed network also delivers state-of-the-art unmixing performance compared to competing methods

    Blind Unmixing Using A Double Deep Image Prior

    Get PDF
    In this paper, we propose a novel network structure to solve the blind hyperspectral unmixing problem using a double Deep Image Prior (DIP). In particular, the blind unmixing problem involves two sub-problems: endmember estimation and abundance estimation. We, therefore, propose two sub-networks, endmember estimation DIP (EDIP) and abundance estimation DIP (ADIP), to generate the estimation of endmembers and estimation of corresponding abundances respectively. The overall network is then constructed by assembling these two sub-networks. The network is trained in an end-to-end manner by minimizing a novel composite loss function. The experiments on synthetic and real datasets show the effectiveness of the proposed method over state-of-art unmixing methods

    Image Separation with Side Information: A Connected Auto-Encoders Based Approach

    Get PDF
    X-radiography (X-ray imaging) is a widely used imaging technique in art investigation. It can provide information about the condition of a painting as well as insights into an artist’s techniques and working methods, often revealing hidden information invisible to the naked eye. X-radiograpy of double-sided paintings results in a mixed X-ray image and this paper deals with the problem of separating this mixed image. Using the visible color images (RGB images) from each side of the painting, we propose a new Neural Network architecture, based upon ’connected’ auto-encoders, designed to separate the mixed X-ray image into two simulated X-ray images corresponding to each side. This connected auto-encoders architecture is such that the encoders are based on convolutional learned iterative shrinkage thresholding algorithms (CLISTA) designed using algorithm unrolling techniques, whereas the decoders consist of simple linear convolutional layers; the encoders extract sparse codes from the visible image of the front and rear paintings and mixed X-ray image, whereas the decoders reproduce both the original RGB images and the mixed X-ray image. The learning algorithm operates in a totally self-supervised fashion without requiring a sample set that contains both the mixed X-ray images and the separated ones. The methodology was tested on images from the double-sided wing panels of the Ghent Altarpiece , painted in 1432 by the brothers Hubert and Jan van Eyck. These tests show that the proposed approach outperforms other state-of-the-art X-ray image separation methods for art investigation applications

    Neural network-based classification of X-ray fluorescence spectra of artists' pigments: an approach leveraging a synthetic dataset created using the fundamental parameters method

    Get PDF
    X-ray fluorescence (XRF) spectroscopy is an analytical technique used to identify chemical elements that has found widespread use in the cultural heritage sector to characterise artists' materials including the pigments in paintings. It generates a spectrum with characteristic emission lines relating to the elements present, which is interpreted by an expert to understand the materials therein. Convolutional neural networks (CNNs) are an effective method for automating such classification tasks—an increasingly important feature as XRF datasets continue to grow in size—but they require large libraries that capture the natural variation of each class for training. As an alternative to having to acquire such a large library of XRF spectra of artists' materials a physical model, the Fundamental Parameters (FP) method, was used to generate a synthetic dataset of XRF spectra representative of pigments typically encountered in Renaissance paintings that could then be used to train a neural network. The synthetic spectra generated—modelled as single layers of individual pigments—had characteristic element lines closely matching those found in real XRF spectra. However, as the method did not incorporate effects from the X-ray source, the synthetic spectra lacked the continuum and Rayleigh and Compton scatter peaks. Nevertheless, the network trained on the synthetic dataset achieved 100% accuracy when tested on synthetic XRF data. Whilst this initial network only attained 55% accuracy when tested on real XRF spectra obtained from reference samples, applying transfer learning using a small quantity of such real XRF spectra increased the accuracy to 96%. Due to these promising results, the network was also tested on select data acquired during macro XRF (MA-XRF) scanning of a painting to challenge the model with noisier spectra Although only tested on spectra from relatively simple paint passages, the results obtained suggest that the FP method can be used to create accurate synthetic XRF spectra of individual artists' pigments, free from X-ray tube effects, on which a classification model could be trained for application to real XRF data and that the method has potential to be extended to deal with more complex paint mixtures and stratigraphies

    Digital restoration of colour cinematic films using imaging spectroscopy and machine learning

    Get PDF
    Digital restoration is a rapidly growing methodology within the field of heritage conservation, especially for early cinematic films which have intrinsically unstable dye colourants that suffer from irreversible colour fading. Although numerous techniques to restore film digitally have emerged recently, complex degradation remains a challenging problem. This paper proposes a novel vector quantization (VQ) algorithm for restoring movie frames based on the acquisition of spectroscopic data with a custom-made push-broom VNIR hyperspectral camera (380–780 nm). The VQ algorithm utilizes what we call a multi-codebook that correlates degraded areas with corresponding non-degraded ones selected from reference frames. The spectral-codebook was compared with a professional commercially available film restoration software (DaVinci Resolve 17) tested both on RGB and on hyperspectral providing better results in terms of colour reconstruction
    corecore