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Abstract

Art forgery has a long-standing history that can be traced back to the Roman period and
has become more rampant as the art market continues prospering. Reports disclosed that
uncountable artworks circulating on the art market could be fake. Even some principal
art museums and galleries could be exhibiting a good percentage of fake artworks. It
is therefore substantially important to conserve cultural heritage, safeguard the interest
of both the art market and the artists, as well as the integrity of artists’ legacies. As a
result, art authentication has been one of the most researched and well-documented fields
due to the ever-growing commercial art market in the past decades. Over the past years,
the employment of computer science in the art world has flourished as it continues to
stimulate interest in both the art world and the artificial intelligence arena. In particular, the
implementation of Artificial Intelligence, namely Deep Learning algorithms and Neural
Networks, has proved to be of significance for specialised image analysis. This research
encompassed multidisciplinary studies on chemistry, physics, art and computer science.
More specifically, the work presents a solution to the problem of authentication of heritage
artwork by Amadeo de Souza-Cardoso, namely paintings, through the use of artificial
intelligence algorithms. First, an authenticity estimation is obtained based on processing of
images through a deep learning model that analyses the brushstroke features of a painting.
Iterative, multi-scale analysis of the images is used to cover the entire painting and produce
an overall indication of authenticity. Second, a mixed input, deep learning model is
proposed to analyse pigments in a painting. This solves the image colour segmentation
and pigment classification problem using hyperspectral imagery. The result is used to
provide an indication of authenticity based on pigment classification and correlation with
chemical data obtained via XRF analysis. Further algorithms developed include a deep
learning model that tackles the pigment unmixing problem based on hyperspectral data.
Another algorithm is a deep learning model that estimates hyperspectral images from
sRGB images. Based on the established algorithms and results obtained, two applications
were developed. First, an Augmented Reality mobile application specifically for the
visualisation of pigments in the artworks by Amadeo. The mobile application targets the
general public, i.e., art enthusiasts, museum visitors, art lovers or art experts. And second,
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a desktop application with multiple purposes, such as the visualisation of pigments and
hyperspectral data. This application is designed for art specialists, i.e., conservators and
restorers. Due to the special circumstances of the pandemic, trials on the usage of these
applications were only performed within the Department of Conservation and Restoration
at NOVA University Lisbon, where both applications received positive feedback.

Keywords: Cultural Heritage, Authentication, Artificial Intelligence, Deep Learning,
Hyperspectral Analysis, Visualisation, Amadeo de Souza-Cardoso
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Resumo

A falsificação de arte tem uma história de longa data que remonta ao período romano
e tornou-se mais desenfreada à medida que o mercado de arte continua a prosperar.
Relatórios revelaram que inúmeras obras de arte que circulam no mercado de arte podem
ser falsas. Mesmo alguns dos principais museus e galerias de arte poderiam estar exibindo
uma boa porcentagem de obras de arte falsas. Por conseguinte, é extremamente importante
conservar o património cultural, salvaguardar os interesses do mercado da arte e dos artis-
tas, bem como a integridade dos legados dos artistas. Como resultado, a autenticação de
arte tem sido um dos campos mais pesquisados e bem documentados devido ao crescente
mercado de arte comercial nas últimas décadas.Nos últimos anos, o emprego da ciência
da computação no mundo da arte floresceu à medida que continua a estimular o interesse
no mundo da arte e na arena da inteligência artificial. Em particular, a implementação da
Inteligência Artificial, nomeadamente algoritmos de aprendizagem profunda (ou Deep
Learning) e Redes Neuronais, tem-se revelado importante para a análise especializada de
imagens.Esta investigação abrangeu estudos multidisciplinares em química, física, arte e
informática. Mais especificamente, o trabalho apresenta uma solução para o problema da
autenticação de obras de arte patrimoniais de Amadeo de Souza-Cardoso, nomeadamente
pinturas, através da utilização de algoritmos de inteligência artificial. Primeiro, uma esti-
mativa de autenticidade é obtida com base no processamento de imagens através de um
modelo de aprendizagem profunda que analisa as características de pincelada de uma
pintura. A análise iterativa e multiescala das imagens é usada para cobrir toda a pintura e
produzir uma indicação geral de autenticidade. Em segundo lugar, um modelo misto de
entrada e aprendizagem profunda é proposto para analisar pigmentos em uma pintura.
Isso resolve o problema de segmentação de cores de imagem e classificação de pigmentos
usando imagens hiperespectrais. O resultado é usado para fornecer uma indicação de
autenticidade com base na classificação do pigmento e correlação com dados químicos
obtidos através da análise XRF. Outros algoritmos desenvolvidos incluem um modelo
de aprendizagem profunda que aborda o problema da desmistura de pigmentos com
base em dados hiperespectrais. Outro algoritmo é um modelo de aprendizagem profunda
que estima imagens hiperespectrais a partir de imagens sRGB. Com base nos algoritmos

viii



estabelecidos e nos resultados obtidos, foram desenvolvidas duas aplicações. Primeiro,
uma aplicação móvel de Realidade Aumentada especificamente para a visualização de
pigmentos nas obras de Amadeo. A aplicação móvel destina-se ao público em geral, ou
seja, entusiastas da arte, visitantes de museus, amantes da arte ou especialistas em arte.
E, em segundo lugar, uma aplicação de ambiente de trabalho com múltiplas finalidades,
como a visualização de pigmentos e dados hiperespectrais. Esta aplicação é projetada para
especialistas em arte, ou seja, conservadores e restauradores. Devido às circunstâncias
especiais da pandemia, os ensaios sobre a utilização destas aplicações só foram realizados
no âmbito do Departamento de Conservação e Restauro da Universidade NOVA de Lisboa,
onde ambas as candidaturas receberam feedback positivo.

Palavras-chave: Património Cultural, Autenticação, Inteligência Artificial, Aprendiza-
gem Profunda, Análise Hiperespectral, Visualização, Amadeo de Souza-
Cardoso
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1

Introduction

1.1 Background and Motivation

The world is developing rapidly and so is humankind who no longer seeks fulfilment of
the most basic requirements for survival, but also seeks to improve its living standards
through the acquisition of objects with spiritual and cultural value. Art collectors in
particular play a significant philanthropist role, given the fact that supporting arts and
thriving artists, as well as preserving historical legacy are on many occasions some of the
important reasons behind their art collection [247]. This has driven the increase in the
demand for valuable pieces of artwork which unfortunately has become the target of art
forgers for their financial gain.

Art forgery can be traced back for at least two thousand years and as early as to the
Roman period, when Roman sculptors reproduced Greek sculptures. Even the world-
renowned sculptor Michelangelo started his career by forging and selling fake antiquity
[46]. Art forgers not only perturbed the art market, some even made a name for their own
artworks. Examples of these include the infamous Elmyr de Hory, Han van Meegeren,
Wolfgang Beltracchi, Thomas Patrick Keating and John Myatt, who forged some of the
world’s most famous artists including Johannes Vermeer, Pablo Picasso, Max Ernst, van
Gogh, Edgar Degas and Henri Matisse among others [120, 243, 246, 263]. It is estimated
that about 20% of artworks in principal British museums were possibly fake [240]. A
report in 2014 by Fine Art Expert Institute (FAEI) from Switzerland noted that at least half
of the artworks circulating in the art market were fake [34, 190]. Another report recorded
that the exhibitions with the largest number of faked and forged artworks occurred in
2018 [34]. A typical example is that more than half of the paintings in a French museum
were found to be fake [95].

The Art Loss Register (ALR), established in 1991, is the primary private governance
body based in London where the most extensive database of missing art and artefacts
in the world is stored. Although it is challenged by the Art Recovery Group since 2014
due to multiple reasons, the ALR still holds a high record of 500,000 items that can be
reviewed without much effort, unlike other databases such as National Police, where only
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CHAPTER 1. INTRODUCTION

a few thousand items are recorded [224]. The authentication of the art objects, especially
the newly-emerged items without a clear track record, is quintessential prior to their
entrance to the art market. This is required to avoid unnecessary financial loss by both the
museums and art collectors. Museums, in particular, rely on both analytical techniques
and connoisseurship. Even though connoisseurship has been widely used to resolve the
authenticity problem of many artworks due to the experts’ enormous experience, it is
often disputed as being one of the most effective methods and often resulted in further
feuds and controversies among art institutions. For example, regardless of the inclusion
of a painting by Pierre-Auguste Renoir in the catalogue of Bernheim-Jeune Galerie, one of
the oldest galleries in Paris, as well as several art experts’ approval, Wildenstein Institute,
the French art institute that publishes scholarly inventories and catalogues raisonnés,
disapproved its authenticity of the painting, providing their own connoisseurship [9]. A
similar event occurred to the Monet painting Bords de la Seine à Argenteuil, where even
though extensive evidence was presented to Wildenstein Institute for its authenticity, the
institute dismissed it as a real Monet [125]. Subsequently, scientific investigation tends to
be more reliable. Such analysis includes both invasive approaches and non-destructive
techniques. Exemplary invasive methods where a small sample is required for analysis,
are Scanning Electron Microscopy (SEM) and Micro Energy Dispersive X-ray Fluorescence
(𝜇EDXRF) spectroscopy, although the latter is on many occasions considereda non-invasive
technique since the sampling is at micro level [35, 36, 127, 193, 253]. Examples of non-
invasive techniques include X-ray Fluorescence (XRF) spectroscopy, Infrared Radiation
(IR) spectroscopy, Raman Spectroscopy and so on. The former approach is destructive
and therefore not often recommended, particularly on legacies and heritages.

Computer science has been evolving rapidly over the years, and its employment in
many fields including the identification, conservation and restoration of artworks has
also advanced. The application of machine learning in the research of artworks is a non-
destructive approach. Machine learning is applied by Montagner from the Department of
Conservation and Restoration (DCR) of NOVA University Lisbon (NOVA) on the analysis
of artworks by the late Portuguese artist Amadeo de Souza-Cardoso for the determination
of the authenticity of his paintings. In Montagner’s work, both brushstroke and material
analysis were considered equally significant to authenticate an artwork by Souza-Cardoso
[171, 172], and both analyses are investigated via implementing a series of conventional
machine learning algorithms like image processing and feature extraction techniques.

Our research is motivated by Montagner’s study, and intended to enhance the original
method to be applied to a broader setting. To achieve this, our study focused on exploiting
the use of artificial neural networks which imitate the human brain in order to assess the
effects of both approaches on the data, i.e., different artists, styles and genres. Our research
evaluates the proposed authentication and its generalisation on paintings and drawings
by other artists and other genres and is deemed to contribute to the development of a
more generic method for the non-destructive evaluation and identification of artwork.

Theoretically, further data on Souza-Cardoso’s drawings as well as other artists would
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be obtained so that the holistic method could be generalised and evaluated potentially
leading to the development of a unified software solution for the identification and
authentication of a particular artist or genre. However, no further data were acquired and
thus all work was performed with the available data at hand only collected by Montagner
and provided by DCR.

1.2 Research Questions

Based on the problem and the challenges associated with the analysis of cultural heritage
artwork discussed, this thesis aims to improve and provide a new set of algorithms
based on Artificial Intelligence (AI) techniques. With this in mind, the thesis answers the
following questions through the various chapters:

• How can deep learning be used for the identification and ultimately the authen-
tication of artwork through the analysis of brushstroke? The brushstroke is the
signature of an artist that typically changes through his/her career as the artist
evolves and experiments with new materials and techniques. This work evaluates
the use of deep learning models to determine the feasibility to determine the artist
attribution and therefore contribute to the authentication prediction.

• Can machine learning be used to identify pure and/or mixed colour pigments
in artwork? Artists use a finite number of pigments in a palette when creating
paintings. These pigments can be used on their own as pure colours or mixed with
other pigments to create an infinite variety of colours. Our research explores the use
of machine learning techniques to identify potential areas of a painting as pure or
mixed colours from a known set of pigments.

• How can the knowledge and techniques developed be used for the dissemina-
tion of cultural heritage? Although the ultimate goal of the research is to develop
algorithms to tackle the challenges associated with artwork analysis, it is important
to ensure that the knowledge and methodologies developed have a lasting impact
on the art world and society. Our work also explores the potential practical appli-
cations of the methodologies developed to generate tools that can contribute to the
dissemination of cultural heritage information for the benefit of society.

1.3 Contribution

The work described in this thesis covers the review of previous efforts to authenticate
artwork from Amadeo de Souza-Cardoso using minimal, conventional machine learning
algorithms. This has led to the development of methodologies for the analysis of artwork
by means of more complex and suitable deep learning models. These included the analysis
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of brushstroke, the artist’s signature, and the analytical analysis of pigments within a
painting for identification.

Brushstroke analysis is performed by the feature analysis of sRGB images of paintings
through a deep learning model based on 2-dimensional CNN architecture. The network
highlights features of the images analysed at different levels which are then passed through
a Multilayer Perceptron (MLP) for classification. A methodology for the analysis of large,
high-quality images is proposed where multiple samples of a given image are used to
obtain the probability of the artwork belonging to the artist in question. The method
proposed has been successfully implemented to identify artwork by Amadeo de Souza-
Cardoso. The solution proposed has also been tested with different datasets to verify the
generalisation capability between the identification of other artists and genres.

For the analysis of pigments, hyperspectral imaging and processing were implemented
in conjunction with deep learning methods. A methodology for pure pigment prediction
was achieved by combining hyperspectral metric functions and 3-dimensional CNNs. A
methodology to produce artificial colour mixtures and artificial imagery for training was
also successfully developed. Colour mixing prediction on the other hand was achieved
by the implementation of deep Neural Network (NN)s which reconstructed pigment
reflectances based on a dictionary of reference reflectances. While the reconstruction
was accurate, the practicalities of the results were better served by the use of standard
hyperspectral metric functions. The resulting figures are used to estimate the probability
of authenticity based on pigment analysis and for the potential use of colour matching for
conservation and restoration purposes.

The algorithms developed and results obtained supersede and improved previous
work leading to the implementation of tools and algorithms for the use of the DCR at
the NOVA University of Lisbon and by curators and art specialists involved in analysis,
conservation and restoration of heritage artwork.

1.3.1 Publications

The research work included in this thesis has successfully led to the dissemination and
publication of achievements in the following peer-reviewed publications:

• A. Chen, R. Jesus, M. Vilarigues, "Using Deep Learning Techniques for Authentica-
tion of Amadeo de Souza Cardoso Paintings and Drawings", In: P. Moura Oliveira et
al. (Eds.) Progress in Artificial Intelligence. EPIA 2019, Springer Nature Switzerland
AG, LNAI 11805, 2019, 1–12.

• A. Chen, R. Jesus, M. Vilarigues, "Authentication of Art: assessing the performance
of a machine learning based authentication method", ArtsIT 2019 – 8th EAI Interna-
tional Conference: ArtsIT, Interactivity & Game Creation, Aalborg, Denmark, 6-8
November 2019.
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• A. Chen, R. Jesus, M. Vilarigues. "Identification of Pure Painting Pigment Using
Machine Learning Algorithms", In Artificial Intelligence in Music, Sound, Art and
Design: 10th International Conference, EvoMUSART 2021, Held as Part of EvoStar
2021, VirtualEvent, April 7–9, 2021, Proceedings. Springer-Verlag, Berlin, Heidelberg,
52–64 (Best Paper Award).

• A. Chen, R. Jesus, M. Vilarigues. "Convolutional Neural Network-Based Pure
Paint Pigment Identification Using Hyperspectral Images", In ACM Multimedia
Asia (MMAsia ’21), December 1-3, 2021. Association for Computing Machinery,
New York, NY, USA, Article 64, 1–7.

• A. Chen, R. Jesus, M. Vilarigues. "Hyperspectral Image Reconstruction of Heritage
Artwork Using RGB Images and Deep Neural Networks", In Proceedings of 19th
International Conference on Content-based Multimedia Indexing (CBMI2022). ACM,
New York, NY, USA, 6 pages

• A. Chen, R. Jesus, M. Vilarigues. "Identification and Visualisation of Pure and Mixed
Pigments in Heritage Artwork Using Machine Learning", SN Computer Science. 4,
115 (2023).

1.3.2 Software

Some of the algorithms, models developed and results generated have been deployed in
the following set of desktop and mobile applications. Further information regarding these
applications is included in

• Amadeo AR. An Augmented Reality (AR), colour visualisation mobile application
used to highlight pigments in paintings from Amadeo de Souza-Cardoso. Further
details are included in Chapter 6.

• Amadeo Image Analysis Tool. A desktop application for analysis and visualisation
of Amadeo de Souza-Cardoso paintings. Further details are included in Chapter 6.

1.4 Thesis Outline

The thesis structure is organised into 8 chapters.
Chapter 2 provides an introduction to the paradigm of artwork analysis and authenti-

cation. It presents the concepts and the literature review pertinent to work in similar fields
of study including a review of the original set of algorithms for brushstroke and pigment
analysis previously developed at NOVA DCR. A discussion on potential improvements is
included along with results obtained from the evaluation of these. Finally, a brief overview
of the concepts of machine learning relevant to this work is given.

Chapter 3 focuses on the solution proposed for brushstroke analysis used for artist
identification. The deep learning model used is discussed and the methodology for
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training and evaluation of the model is described. Classification results obtained with the
model are presented and compared against previous attempts of automatic classification
using Machine Learning (ML) algorithms. The chapter concludes with a discussion of the
results where limitations and possible improvements are included.

Chapter 4 describes the methodology proposed for the authentication of paintings us-
ing pigment identification via deep learning implementations. A CNN model is proposed
for image segmentation and classification of pure pigments. The strategy for training and
testing using artificial data and its limitations are examined. This chapter also includes a
discussion of the techniques used for mixed pigment identification including requirements
and constraints. Results of the pigment analysis are presented and compared against pre-
vious work. Finally, a summary of results obtained in sections 3 and 4 is presented. These
are used in the final estimation of the indication of authenticity of artwork being authored
by Amadeo de Souza-Cardoso.

Chapter 5 presents the results obtained from the work achieved on estimating hyper-
spectral images from sRGB images. This is a by-product of the work completed which
uses deep neural networks in combination with colour science to estimate hyperspectral
data that can be used for potential study and analysis of heritage artwork.

Chapter 6 includes a description of the implementation of some of the work achieved
by means of two software applications. The first application, a desktop-based tool, uses the
developed algorithms to analyse and visualise hyperspectral images including pigment
prediction and data visualisation. The second tool, a mobile application, showcases the
results of the pure pigment prediction method using an AR application. The results of
the trial of these applications are also discussed.

Chapter 7 concludes by summarising the achievements and contributions obtained.
The chapter also presents a discussion of the limitations, future work and possible appli-
cations for the authentication of artwork using different media.
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Background

2.1 Introduction

In this section, the significance of cultural heritage preservation, and artwork analysis for
the purpose of conservation and restoration are discussed.

2.1.1 The Importance of Cultural Heritage

United Nations Educational, Scientific and Cultural Organization (UNESCO) described
heritage as the cultural legacy that is passed on from generation to generation from the
past, to the present and into the future [63] and it can be categorised into different types
of heritage depending on distinguishing characteristics. Based on whether the heritage
can be moved or not, it is considered as movable and immovable heritage, where the
meaning is self-identifiable. Based on the fact that the heritage can be touched or not,
it is grouped as tangible and intangible heritage. History in different nations would be
intangible, whereas clothing would be tangible. Different resources noted heritage could
be classified into two types of heritage, i.e., cultural heritage and natural heritage, or it
could be classified into three types of heritage, i.e., cultural, natural and constructive, or
cultural, natural and mixed type. Regardless of how it is classified, it is understandable
that preserving, conserving and protecting heritage and legacies is significant in terms
of maintaining the particular characteristics and "resilient communities", i.e, the identity of
local culture [200, 264, 268].

Historical works of art, for example, paintings, are a part of cultural heritage mostly
done by people who are world-renowned artists but no longer exist. Such artworks are not
replaceable and replicable and have historical significance, hence are priceless, and must
be conserved [18]. Historical objects have endured the hardship of the time, which resulted
in the inevitable decay and erosion, and on many occasions have been adversely affected
by negligence or unscrupulous damage. Subsequently, art conservation or restoration
must be performed so that the status of artworks can be maintained, preserved, restored
and protected from future deterioration [14, 265].
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2.1.2 Artwork Analysis

A comprehensive understanding concerning the material construction and composition
of the painting by an artist is substantial in the heritage conservation field [154, 184].
For the purpose of restoring, conserving and preserving historical artwork, or identify-
ing if an artwork is fake or authentic, a series of scientific analyses must be done. The
reason being that most of the techniques can reveal features that are not visible to the
human naked eye. Those techniques include, for example, Raman Spectroscopy (Ra-
man), hyperspectral imaging, high-definition imaging in Normal Light (NL), Ultra Violet
(UV) induced fluorescence, digital X-Radiography (XR), Infrared Reflectography (IRR),
Polarizing Microscopy and Hirox Microscopy, High Performance Liquid Chromatogra-
phy - Diode Array Detector (HPLC-DAD), 𝜇EDXRF, Fourier Transform Infrared (FTIR)
spectroscopy, Micro-Fourier Transform Infrared (𝜇-FTIR) spectroscopy, Micro-Raman
Spectroscopy (𝜇-Raman), Micro-spectrofluorimetry (𝜇-SPEX), Micro-X-ray Absorption
Near-Edge Spectroscopy (𝜇-XANES), Scanning Electron Microscopy and Energy Disper-
sive X-ray Spectrometry (SEM-EDS), X-ray Diffraction Computed Tomography (XRD-CT),
Synchrotron [13, 171, 201].

In terms of oil paintings, which are the principal objects for analysis in our research,
are usually composed of the basic components of the support, the ground and preparatory
layers, the paint layer and the varnish layer [135, 180]. The support varies, ranging from
historically widely-used solid wood support, to plywood or hardboard support, to fabric
support, depending on the expedient factor as well as reasons for artistic expression. The
ground and preparation layer also differs depending on the surface being worked on. This
can be textured grounds or absorbent grounds for example. Although white ground is
mostly used, it can also be coloured ground. The ground layer not only serves as a physical
function of adhering the paint to the support, but also functions aesthetically based on
the painters’ intent. The paint layer consists of elements like pigment, binder and fillers.
Historically, paint pigments could be both organic compounds that were derived from
natural sources like animal and vegetable dyes, or inorganic compounds that were derived
from minerals and salts often with the basis of oxide, sulphate, sulphide, carbonate
etcetera [135, 188]. Although painters’ range of palettes depends on the availability,
expense and purposes, modern synthesised pigments produced in the late eighteenth
century expanded painters’ palettes in general. Concerning historical oil paintings, binders
are binding media that adhere the pigments together and hold them to the previous layer.
These were typically egg tempera, distemper such as glue size (a gelatinous substance),
and drying oils. Later on, acrylic paints introduced around the mid-twentieth century
replaced such historical practice for paintings. Fillers or extenders are additives added for
economic reasons, but mainly to improve the performance of the paint [27, 86, 110, 124].
Finally, the varnish layer serves as both protection of the paint layer and the aesthetic look
of the painting.

In this work, for example, the paint layer is the primary component that is being

8



2.1. INTRODUCTION

investigated. In terms of the pigment of the paint, scientific techniques like Raman, XRF,
XR can be used for the analysis of pigment for various purposes; further details can
be found in section 2.4.2. Concerning binders, analytical techniques like FTIR and Gas
Chromatography-Mass Spectrometry (GC-MS) can be used to determine the chemical
content, for example, if it is natural or synthetic, or chemical structure in order to establish
any deterioration problems [98, 168, 182]. With respect to fillers, together with other
elements of a paint, can also be analysed and identified, for example, with 𝜇EDXRF or
FTIR, so that information such as structure and formulation of a paint can be determined
[12, 218].

In our research, different types of imaging techniques were used, including the most
commonly applied three-channel sRGB images with an average size of 3365 × 3029 pixels,
and hyperspectral images with 33 channels in the range of 400nm to 720nm. Hyperspectral
imaging is a technique based on spectroscopy that allows analysing images at different
wavelengths, this is, it analyses a wide spectrum of light instead of just using primary
colours like red, green and blue. Typically, light is projected onto an object and the reflected
light is recorded using a hyperspectral camera that breaks down the light measured into
multiple bands producing a hyperspectral image. This is of high importance for cultural
heritage because it is a non-destructive and non-invasive technique. This means that
there is no need to obtain samples of the painting for analysis. Another advantage
of hyperspectral imaging is that it allows highlighting hidden features by analysing
certain wavelengths for example, or for visualisation, analysis, restoration and ultimately
authentication of artwork. The problem with hyperspectral imaging is that it requires
direct access to the artwork, it is time-consuming and therefore expensive. A more detailed
explanation concerning hyperspectral imaging analysis can be found in section 2.4.2.

As mentioned previously, skilled forgers intentionally mimicked famous artists’ styles
and produced fake artworks of that artist for financial gain, especially under the circum-
stance that the art market has been flourishing rapidly in the past years. More and more
unknown artworks are surfacing from every corner of the world and without a proper
track record of provenance, it is not easy to identify a newly-emerged artwork to be au-
thentically valuable or not, so that the interested art collectors can be protected financially.
Fortunately, many of the analytical tools mentioned can be applied for art authentication
purposes. Interesting examples concerning authentication of artworks by world masters
would be: a portrait of a young woman originally believed to be by an unknown artist but
later attributed to Rembrandt after meticulous and rigorous restoration and authentication
process; and a portrait of a young woman, La Belle Ferronnière, that was thought to be by
da Vinci, however, is still on dispute and is still uncertain till today whether it belongs
to da Vinci’s work, or one of his followers. It can be understood that determination of
the authenticity of an artwork directly determines its value, whether it is a low-priced
reproduction or an invaluable masterpiece [242].

Taking for example the analysis of artistic paintings, XRF is used for elemental anal-
ysis with microscopic cross-sections to study the stratigraphy of the paintings [13] and
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to reveal distinguishing chemical compositions with their specific characteristics [197].
Underdrawings and pentimenti are two of the most interesting topics in artwork analysis;
both are concerning the early creation stage of drawings and paintings respectively. Pen-
timenti are in the form of hidden paintings under the current state of a painting. This is
because they are the footprints or traces of prior work or changes conducted by the same
or another artist on the same painting panel before the final product of a masterpiece [31,
104, 105]. These could be employed as documentation of an artist’s revision [43], or an
indication or a confirmation of an artist’s genuine work [31]. While underdrawings are
typically highlighted using Near Infrared (NIR), pentimenti are usually discovered with
X-ray imaging techniques [104, 105]. For example, the existence of a Cupid in the painting
Girl Reading a Letter at an Open Window by Johannes Vermeer has been known since 1979 via
one of the most powerful X-ray sources: synchrotron radiation. It was originally believed
that it was not Vermeer himself who covered the Cupid with paint in the 18th century,
but this was restored recently by Staatliche Kunstsammlungen Dresden in Germany who
considered that the Cupid should be present following the master’s own interpretation.
This restored masterpiece was on display as a centrepiece, from 10th September 2021 to
2nd January 2022, at the Gemäldegalerie Alte Meister in Dresden, Germany [209]. One of
the most recent discoveries via X-ray imaging is a self-portrait of van Gogh on one of his
most famous paintings, Head of a Peasant Woman (Figure 2.1), uncovered by conservators
at the National Galleries of Scotland [114]. Another example is the discovery of three
sketches hidden beneath one of the paintings by Amedeo Modigliani, Nude with a Hat, by
curators at an Israeli museum [251].

(a) Original View (b) X-Ray View

Figure 2.1: Hidden self-portrait by van Gogh. Images courtesy of [259, 269].

Although X-ray is the most common method for uncovering pentimenti, they can also be
unearthed by implementing other analytical methods, such as Raking Angle Photography
[55], Visible-Near Infrared (VIS-NIR) Reflectance Imaging Spectroscopy (RIS) synchro-
nised with three-dimensional (3D) acquisition [234], multispectral techniques at different
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wave ranges [144], a combination of thermographic and reflectographic techniques at
different wave ranges [49], and so on. For example, in the study by [201], XRD-CT was
implemented and the chemical properties of Rembrandt’s work were researched and its
paint condition was analysed and diagnosed. The results of the analysis of the thin white
crust cover of Rembrandt’s 1663 painting, Homer, enabled the scientific team to apply the
correct restoration and conservation process [201, 210].

Another example of the application of analytical methods is the analysis of Craquelure,
i.e., distinguishing patterns or networks of cracks that are considered an old painting’s
fingerprint because they only develop over time. Craquelure is distinct from different
periods and countries and thus can be used for authentication purposes [74, 102, 245].
Techniques involving microscopic analysis allow not only observation and analysis of
Craquelure, but also, they can disclose detailed information concerning the stratigraphy of a
painting. Other techniques like Raman are used for the identification of pigments, binding
media as well as varnishes [164, 255]. For example, Mukhopadhyay [266] demonstrated
the advantage of Surface-Enhanced Raman Spectroscopy (SERS) while detecting plant
dye madder in an Egyptian painted quiver, and emphasised its capacity of discovering
hidden secrets in artworks and national treasures.

In summary, different analytical technologies have distinguishing functions and play
different roles in cultural heritage analysis. These techniques can be applied jointly or
individually, and can identify and unearth distinct features in the artworks, be it to
determine a specific pigment, to reveal hidden details, to expose fake information, or
to uncover reasons behind certain characteristics of the artworks. All newly uncovered
information is always helpful in deciding the precise and relevant measures to be taken
for the restoration and conservation of artwork.

2.2 Amadeo de Souza-Cardoso

In this section, the major events in the life of the Portuguese artist Amadeo de Souza-
Cardoso are briefly presented.

Amadeo de Souza-Cardoso (Figure 2.2) was born in Mancelos, Amarante in Portugal
in 1887 and unfortunately perished of Spanish flu at the thriving age of 30 in Espinho
in 1918. In 1905, he entered the Lisbon Academy of Fine Arts; the following year on
his 19th birthday he went to Paris intending to study architecture, but opted to study
painting instead. In Paris, he befriended a series of important contemporary artists, with
both Portuguese origin and roots in other countries, including Thomaz Costa, Francis
Smith, Acacio Lino, Alberto Nunes Cardoso, Eduardo Viana, Amedeo Modigliani, Picasso,
Guillaume Apollinaire, Max Jacob, Ortiz de Zárate, Serge Diaghilev, Zadkine, Archipenko
and Sonia Delaunay [94].

Amadeo was a relatively prolific Portuguese artist. His widow, Lucie Cardoso, and his
friend Paulo Ferreira donated to the Calouste Gulbenkian Foundation (FCG) numerous
documents in relation to Amadeo, which include a set of photographs. Conserved in the
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Figure 2.2: Amadeo de Souza-Cardoso (Biblioteca de Arte Fundação Calouste Gulbenkian).

Centre of Modern Art (CAM) are 200 pieces of artworks by Amadeo: 63 paintings, 136
drawings and watercolours and 1 illustrated manuscript.

Amadeo considered his work different from the academic and classic genre, claiming
"I do not follow any school. The schools died . . . I’m an impressionist, cubist, futurist, or
abstractionist? A bit of everything" [9]. He enjoyed experimenting and expressing his artistic
ideas mixing both antiquity and modernity [94]. Amadeo’s Portuguese root as well as
his experience in Europe left footprints in his artistic creations; he was appraised by his
contemporary of the same Portuguese origin José de Almada Negreiros, as "Portugal’s
first discovery in 20th century Europe" [93]. José Augusto França, who dedicated the first
monograph to Amadeo, defined him as "reluctant Portuguese"; Portuguese artist José Escada
considered him as "European painter" [94].

Amadeo had the most productive years in 1911 and 1912 in terms of artworks creations
and exhibition presentations, including the Salon des Indépendants in Paris in both years,
the Salon d’Automne in Paris in 1912, Der Sturm Gallery exhibition in Berlin in 1912, the first
exhibition of Modern Art in the United States in 1912, the Armony Show in New York
in 1913. The XX Dessins album of drawings and La Légende de Saint-Julien L’Hospitalier
were also created in 1912 [94]. It was believed by art historians that Amadeo achieved
the most success during his career in the year 1917 [94, 225]. At least 6 untitled paintings
were painted around 1916/1917, where elements like violins and lithographic letters and
numbers were present in the paintings [92].

In 1914, Amadeo and his wife Lucie carried out a journey starting from Paris and
continued following through Rocamadour, London, Barcelona and then back to Porto
in Portugal, when the war was declared between France and Germany, which forced
them to remain in Portugal longer than they expected [9]. During his stay in Portugal,
he partook in a variety of artistic activities with his artist friends Sonia Delaunay, Robert
Delaunay, Almada Negreiros, Eduardo Viana, José Pacheco, Guillaume Apollinaire and
Blaise Cendrars. Amadeo exhibited his artworks for the first time in Portugal, in November
1916 in Porto, and in December 1916 in Lisbon. Both exhibitions received sensational
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success as well as controversial responses in Portugal [94]. Amadeo and Lucie planned to
return to Paris as soon as they could but unfortunately, it was not possible due to the war
and he died of the Spanish flu pandemic at the prime of his life at 30 in 1918.

Two volumes of Catálogo Raisonné dedicated to Amadeo de Souza-Cardoso have
been published by Fundação Calouste Gulbenkian: Catálogo Raisonné Amadeo de Souza-
Cardoso Fotobiografia [47] and Catálogo Raisonné Amadeo de Souza-Cardoso Pintura [48].
The two catalogues documented Amadeo’s life and systematically collected Amadeo’s
photographs and paintings respectively. DCR is one of the leading participants in the
compilation of these catalogues. In particular, the scientific research performed at DCR
focused on the analysis of the colour palette used by Amadeo, the principal pigments used
and the molecular analysis of these pigments [258]. The data obtained by the research in
[258] are of special importance as it provides the basis for the pigment analysis included
in this thesis.

2.3 Brushstroke: The Artist’s Signature

In this section, the definition of brushstroke analysis and its applications in various fields
implementing different algorithms are depicted.

2.3.1 What is Brushstroke?

Our research focuses mainly on the genre of paintings, therefore other artistic genres are
not significantly discussed in this work. With regard to artistic paintings, the study and
analysis of brushstroke have been attracting a lot of attention in recent years. Merriam-
Webster [39] defines brushstroke as "the configuration given to paint by contact with the
bristles of a brush", and "the paint left on a surface by a single application of a brush or palette
knife", or figuratively "to describe the quality especially of a narrative or description". Herbert
[113] also noted "from the romantics through the impressionists and post-impressionists, the
brushstroke bespoke autonomous artistic individuality and freedom from convention", that is,
specific painting brushstrokes can embody the artistic signature of a particular style. [96,
130, 165] also mentioned that brushstrokes are considered as artists’ "handwritings". Many
resources equally emphasised the significance of brushstrokes in terms of communicating
distinguishing emotions, various states of mind, physics and environment [38, 40, 239,
241]. Research performed by [129] revealed that even a simple brush bristle can indicate
a particular artist’s style while analysing four different artists’ brushstrokes after having
applied identical brushes, paints and canvases to create an identical theme. [272] also
emphasised that brushstroke plays the most important role in terms of classifying artistic
style, out of so many other characteristics such as colour and objects in the paintings.
Accordingly, it can be concluded that the brushstrokes of individual painters are like
personal signatures. They have their own characteristic brushstroke patterns and styles
and use their specific brushstroke style to convey their own sentiments, experiences, and

13



CHAPTER 2. BACKGROUND

views of the world surrounding them. Historically, one of the common ways for artist
identification is via visual examination of the artist’s brushstroke style by art experts, who
have extensive experience with the artworks of the painters of their interest [165]; that
is, art connoisseur - "an expert on matters involving the judgement of beauty, quality or skill
in art, food or music" [61], and art connoisseurship - "a specifically visual knowledge gained
from looking at works of art" [62] - such method is still widely used today as one of the most
essential methods for artwork authentication. The analysis of brushstroke with the aim of
identifying artistic styles is coined as "stylometry" [204], where brushstrokes are studied
statistically and mathematically with extracted features from brushstrokes [122].

One typical example would be van Gogh’s works, which can be differentiated without
much effort by art enthusiasts because of his distinct brushstroke style. [146] described
van Gogh’s brushstrokes as "abstract ornaments and threads of woven tapestries". Art experts
also observed his unique brushstroke style and research has been done to date to discern
van Gogh’s works from his contemporaries by analysing characteristics of his brushstrokes
vs his contemporaries’ [153]. Other renowned painters with idiosyncratic brushstrokes
include for example, Paul Cézanne [113, 266], Rembrandt [181], Gustave Courbet, Édouard
Manet, Claude Monet, Georges Seurat, and Pablo Picasso [113].

2.3.2 Brushstroke Analysis on van Gogh’s Paintings

It appears that a considerable amount of research has been done to study van Gogh’s
brushstrokes due to his distinct brushstroke style but with different research objectives [3,
64, 91, 123, 147, 155, 260, 261]. These include for example [153], where conventional meth-
ods such as edge detection and segmentation were implemented to analyse van Gogh’s
brushstrokes. This concluded that there exists a strong rhythm in his brushstroke, that
his brushstroke was consistent throughout periods of his artistic development and that it
is distinguishable from that of his contemporaries. The work discussed by [130] was the
first major project to collect and analyse a set of high-resolution painting data from both
van Gogh and Kröller-Müller museums to be used across several different universities;
the purpose was to study van Gogh’s brushstrokes with the objective of artist attribution,
that is, artwork identification and authentication. Since this work was one of the earliest
attempts to study brushstrokes, the algorithms throughout the project were still typical
and conventional; they concerned for example wavelet transform, Support Vector Machine
(SVM) and Hidden Markov Model (HMM). Similarly, [165] reported the implementation
of machine learning on the analysis of van Gogh’s brushstrokes to identify van Gogh’s
works out of his contemporaries, which can also be used for artwork identification and
authentication; the method applied was coined as "brushstroke textons", that is, brush-
strokes characteristics were emphasised with the employment of a series of filters, and
then translated as distinguishing spatial frequencies with different scales and orientations,
that could formulate a bank of texton histograms for visualisation and classification of
different artists. More recent research includes for example the work by [204, 205] that
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extracted and analysed the features, like texture and colour, that were obtained from
van Gogh’s brushstrokes region by region, to classify his artistic styles out of different
artistic movements and differentiate his works from his peers’ using CNNs. Likewise,
[89] studied van Gogh’s painting in comparison with his contemporaries, and applied
CNN to extract discriminative features from brushstrokes, followed by machine learning
classification algorithm SVM and a fusion process, which then used for decision making
relating to the authorship of a painting while different fusion approaches were analysed
and compared. In the work on [89], 27,000 images were collected out of 200 categories
from Wikimedia Commons [267], and a dataset named "VGDB-2016" was created and is
comprised of 207 van Gogh’s works and 124 non-van Gogh; it was claimed to be the first
public database, with high-quality digital images as well as density standardisation for
tainting identification.

2.3.3 Brushstroke Analysis on Paintings of Other Artists

Excluding the studies that focus mainly on the examination of van Gogh’s brushstrokes,
the number of researchers that investigate artists’ brushstrokes, in general, is also growing.
For instance, in the work by [96], an automatic and rapid brushstroke extraction algo-
rithm based on DNN and a foreground and background image matting technique was
proposed; it was inspired by Pix2Pix network [126] and Soft Segmentation [8], and was
coined as "Dstroke" which stands for Deep Network-based Brushstroke Extraction Method.
"Dstroke" was proved to be more reliable and outperformed other methods; it was said to
work effectively with most brush painting styles, such as oil paintings, acrylic paintings,
Chinese paintings as well as watercolour. [140] provided an important argument and
interesting application making use of the characteristics of brushstroke, that is, artistic
style transfer, this is, the translation and reformulation of a real photographic image or
a digitalised artistic work from one style to another style, for example, the style trans-
formation from an ordinary contemporary digital image content to impressionism style.
Unsurprisingly, one of the most widely-targeted styles in [140] is van Gogh’s brushstroke
style; the other interesting styles are also mentioned previously, for example, Pablo Picasso
and Claude Monet. [140] stated that style transformation research was mainly centred
around the studies within pixel domain in a majority of the cases. Nevertheless, such
consideration was not natural for representations of paintings, because they are formu-
lated with brushstrokes instead of pixels. Subsequently, [140] work implemented a series
of image processing tools so that images could be rendered stylistically; the techniques
involved optimisation of parameterised brushstrokes, followed by a rendering mechanism
to differentiate the styles. The work by [82] introduced a different perspective by exam-
ining only the strokes in line drawings by artists, in lieu of the full-scale brushstrokes in
the more frequently studied paintings; the objective was for artist attribution of unknown
drawings. A collection of 80,000 strokes out of 300 digitalised drawings was created and
experimented in this study; the database was comprised of primarily the drawings by
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Pablo Picasso, Henry Matisse, Egon Schiele, Amedeo Modigliani and a small portion of
representative drawings by other artists. Those line strokes were firstly segmented in
order to quantify and classify the strokes accordingly; during the process, features were
extracted with the application of one of the deep learning techniques, Recurrent Neural
Network (RNN). Afterwards, the drawings then could be classified appropriately with
the aggregated classification results of the line strokes. The proposed algorithm achieved
a promising accuracy of over 80%, in the meanwhile was very robust while detecting fakes.
Similarly, [57] also investigated line-based drawings implementing computer science with
the aim of not solely determining artists of individual artworks, but also identifying the
gender of the targeting audience; features such as angles between lines, line orientation,
density of line segments and line strength were taken into consideration, and the drawing
styles were classified efficiently. Notwithstanding the research done based on Manga
artworks is still of important value for the exploration of brushstroke analysis. Not only
western artworks benefited from the examination of brushstrokes, the brushstroke in-
vestigation on eastern artworks, for instance, Chinese Ink Wash Paintings (IWPs), also
plays an important role in the identification of artwork authorship. Given as an example,
[235] studied 120 IWPs of six renowned Chinese painters, a novel sparse hybrid CNN was
devised to extract brushstroke features automatically; it was claimed to have produced
promising results while being compared with two other algorithms.

In the study of [171, 172], of which a review is included in section 2.6, both brushstrokes
and chemical analysis were deemed to be equally important in terms of authentication and
identification of Amadeo’s artwork. During the process of brushstroke analysis, image
processing tools as well as conventional machine learning algorithms such as Gabor filter,
SVM, Scale-Invariant Feature Transform (SIFT), K-Means Clustering (KM) were utilised.
Four methods: simple Gabor, simple SIFT, Gabor in regular points, and Gabor in SIFT
key points, namely SIFT+Gabor, were compared for the efficiency and accuracy of the
classification results; it was claimed that SIFT+Gabor algorithm outperformed all the other
three methods and achieved a very high accuracy of more than 95% in multiple cases.
Although some issues were identified as described in section 2.6, the research by [171,
172] is still a significant milestone concerning several aspects in the analysis of artistic
heritage artwork. This was not only one of the first works that explored brushstroke
analysis as well as artwork authentication, but also it incorporated both image analysis
from brushstroke analysis and material analysis together. Additionally, it was one of the
few works that researched works by local and national artists that are not yet worldly
well-known although it should have been the case.

The aforementioned examples are only a small part of the studies in relation to
brushstroke analysis. Further works include for instance the report by [32, 33, 133, 169,
175, 177] among others. In summary, it can be concluded that a majority of investigations
pertaining to brushstroke analysis are aimed at artist authorship, that is, artist identification
andartworkauthentication; more details will be discussed in the following section. In other
cases, the research has purposes like image transformation, artistic style determination,
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and artwork audience categorisation.

2.4 Pigment Analysis

In this section, the techniques and algorithms concerning pigment analysis, and how they
are implemented in cultural heritage are described.

2.4.1 What is Pigment Analysis?

Pigments are the materials whose molecules are responsible for the colour perceived due
to the effects of absorption, reflection, scattering and diffusion of light. These pigments
are typically applied in various materials, such as paints, dyes and inks for decorative
purposes in archaeological and cultural settings. The colour perceived from pigments
differ from each other depending on whether they are organic (e.g., dyes), inorganic
mineral pigments, or compounds of both inorganic and organic materials [194, 196].
Pigment analysis is the execution of different scientific techniques to identify and analyse
pigment for a variety of purposes in artistic contexts: dating the age of the artworks,
artist authorship, artwork authentication, artwork conservation and restoration and so on
[194, 196]. On many occasions, it is also called "elemental analysis", "material analysis"
or "chemical analysis" and traditional investigation of pigments was performed mainly
invasively with the removal of samples from the artwork [66]. These techniques for
pigment analysis thus differ depending on the requirement for samples to be taken, and
whether the test or measurement is of destructive or non-destructive nature to the samples
or object analysed [194]. Examples of techniques in terms of pigment analysis are XRF,
Raman, FTIR, hyperspectral imaging, SEM, SEM-EDS, to name a few [167].

The analysis of pigments has been widely implemented in various fields, for instance,
in archaeology [196], in aquaculture [148, 149, 156, 216, 217], in biology and medicine [270],
in chemistry and agriculture [191, 249], in geology and cartography [24], in sociology and
heritage [24, 51] and so on. As a matter of fact, many of the areas are intertwined with
each other, and the research outcome from any individual field often benefits another.

2.4.2 Pigment Analysis in Cultural Heritage

One of the most commonly-utilised areas for pigment analysis is in the cultural heritage
context, more specifically, in the conservation and restoration field where it is particularly
crucial for the purposes previously mentioned. The analysis of pigment on an artwork is
deemed to be able to identify and determine specific pigments, which can then be used
as a reference for conservators and restorers to conserve and restore historical heritage
artwork. Moreover, they can be adopted as an important indication of the period, the
region as well as the author of the artwork. In other words, pigment anachronism, in
which the presence of certain pigments in an artwork, that shouldn’t exist around the
period of the creation of the artwork, can suggest that this artwork is forged, or due to past
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restoration process [41, 50, 87, 88, 118, 159]. For instance, with the help of non-invasive
pigment analysis techniques of Raman and XRF, [51] examined the evolution of Bolognese
illuminated manuscript around the thirteenth and fourteenth centuries and confirmed the
evidence of the pigments usually-adopted during this period. Based on the definition of
pigment anachronism, if a newly-discovered Bolognese manuscript purporting to be from
this period while containing the pigments that were not generally used during this period,
it is possible to deduce that this manuscript might be falsified. In the work by [50] applying
Raman microscopy, a more concrete example related to an artwork claiming to be created
by Russian-French artist Marc Chagall in the year 1910, was proved to be forged and thus
was destroyed by requirement, due to the presence of phthalocyanine pigments, since
such blue and green organic pigments did not yet exist until 1928 [50, 56, 100]. Similarly,
the research by [233] employed a series of techniques with regards to pigment analysis to
determine the authenticity of a painting asserting to be attributed to Russian artist Vassily
Kandinsky around the year 1932; the technical approaches implemented were 𝜇-Raman,
UV and XR. Cross-examination of the samples applying all three methods concluded
that this painting cannot be a work by Kandinsky. One of the reasons is the existence of
the Synthetic Organic Pigments (SOP) in this painting, that were still rarely present prior
to 1945. Another factor being the presence in several samples of the Synthetic Inorganic
Pigment, titanium white, which was first available only in 1921 [42, 100]. Indeed, the group
of inorganic pigment whites, that is, lead white, zinc white, and titanium white is one of the
most typical examples for dating cultural heritage like artistic paintings with the purpose
of artwork authentication or artist authorship, thanks to their prevailing production and
usage periods in each case. Lead white is said to be the oldest white synthetic pigment
for centuries until around the 1930s when legislation surrounding health concerns started
to take place, zinc white began its prominent production around the 18th century while
titanium white around the 20th century [83, 103, 121]. The research by [159] claimed to be
the first work attempting to apply multiple analytical techniques to examine an artwork
pertaining to world-renowned Spanish artist Pablo Picasso because it bears the signature
of "Picasso"; a variety of spectroscopic and chromatographic techniques were employed
to investigate both pigments and binders; they included 𝜇-Raman, SEM-EDS, Attenuated
Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and GC-MS. Cross-
examination and cross-reference proved that all identified materials from the painting
were chronologically consistent with the references and documentation available for the
period when the painting was executed.

Evidently, the aforementioned few examples demonstrated that pigment analysis is
substantially important for art conservation and restoration; more specifically, pigment
dating is one of the essential tools for artwork authentication.
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2.4.3 Pigment Identification in Cultural Heritage

The examples regarding pigment analysis or identification applying various analytical
techniques are a plethora; the cases referenced above are for exemplification purposes only.
It can be found that they are mostly related to the determination of chemical components
and composition with the application of different analytical techniques. Nevertheless,
there also exists the perspective of pigment analysis, where the implementation of com-
puter science is involved. In this situation, the scientific technique frequently applied
is hyperspectral imaging. The pigment unmixing problem is often implicated, where
data are collected along different wavelengths, image-wise or pixel-wise. The former
acquisition process records spectral data for all pixels on the image at once while the latter
process records spectral data from selected individual pixels on the image (e.g., line scan-
ning). In a majority of the cases, pigments present on artworks, for example on paintings,
are mixed pigments instead of pure pigments, therefore, pigment unmixing is necessary
and important for various reasons, such as painting conservation and restoration [69].
As a matter of fact, operations like pigment mapping, pigment identification, pigment
classification, image segmentation, etc., on many occasions relate to one another and
involve the same or similar objective of pigment unmixing, or namely, spectral unmixing,
given the fact that such task is performed in spectral space [84].

Pigment unmixing refers to the decomposition of a spectrum to quantitative values
and proportions of individual pure pigments [84, 213], usually with the exploitation of a
variety of machine learning algorithms and it is one of the most-discussed and actively-
researched areas in terms of hyperspectral imaging analysis of pigments. For example,
the work published in [69] studied the painting Old Man in Warnemünde by Norwegian
painter Edvard Munch; the author made use of the mixing law of colourants, Kubelka-
Munk theory, and applied a simple linear unmixing model, fully constrained least squares
unmixing, for Hyperspectral Unmixing (HU), which resulted in promising results. A
similar model was explored by the same author in the study of another painting, The
Scream, also by Edvard Munch with the objectives of pigment unmixing and pigment
mapping [66, 67]. Similarly, in [26] it was studied the Gough Map of Britain (c.1400) and the
Selden Map of China (c.1619) with the application of the Grand Matrix and MaxD to extract
endmembers, followed by non-negative linear least square and the K-Means algorithm
as well as spectral angle spatial patterns method to classify and map pigments. Other
examples include the work published in [271] and [162] where analysis on a laboratory-
prepared sample and both laboratory-prepared samples and the real Chinese painting
data from Qing Dynasty respectively were used to devise an effective model utilising the
derivative of ratio spectroscopy.

On the other hand, while studying a 15th-century folio, the approaches proposed
in [212, 213] employed an automatic non-linear unmixing model of one DNN to first
decompose the given spectra to pure pigments, then another DNN to identify them to
achieve the final objective of pigment unmixing. Likewise, in the work published in
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[199], a study was done on a Buddhist painting in the Shortwave Infrared (SWIR) range or
extended NIR while implementing DNNs. The comparison of the results obtained via both
conventional mathematical model Spectral Angle Mapper (SAM) and DNNs was made,
with the latter outperforming the former while dealing with the intrinsically-complex
SWIR data range. Another example includes four paintings around the year 1340 that were
analysed and used to build a large database so that a spectral CNN could be constructed
[138]. The outcome was robust and promising when tested on paintings of similar styles.

It can be observed that the major difference between different pigment unmixing
algorithms is whether they involve conventional mathematical and machine learning
models, or state-of-art artificial neural networks. Investigations in the cultural heritage
field for the first situation include for example work published in [2, 25, 28, 68, 85, 108,
137, 152, 158, 166, 189, 202, 211, 237, 254, 273], and for the second situation include
for instance in [136, 161, 236]. It is noticeable that the conventional models in terms
of pigment unmixing problem in the art field are still prevalent, whilst artificial neural
network methods are still relatively scarce. Nevertheless, there is a plethora of research
taking place in remote sensing areas with regard to pigment unmixing in both cases, since
it was one of the areas where hyperspectral imaging was first introduced, and spectral
unmixing was one of the most researched topics in remote sensing field [68, 109].

The study in [171, 172] might be the first work that incorporates spectral data of the
painting pigments from the original tubes that the artist used during his lifetime, with
spectral data of the paintings by the artist, as well as the elemental data of the pigments
from the artist’s paintings acquired applying some of the pigment analysis techniques
mentioned previously. It works step by step to achieve primarily pigment identification
and then artwork authentication objective: firstly, the spectral data of the tube pigments
were compared with the spectral data of individual pixels of the paintings using Euclidean
Distance (ED) to determine the presence of pure black and white pigments, followed by
the determination of the presence of the same or similar pigments as the tube pigments
employing SAM, where when the distance applying SAM was small enough within a
defined threshold, the analysed pigment was considered as pure; all the pure pigments that
were confirmed to be present in the paintings then were compared against the chemical
data to define eventually whether an artwork is an authentic work by the artist or not.
Although the process does not involve machine learning algorithms, it is novel in this
field in the sense that it not solely considered the spectral data from the paintings, like all
the other research, more importantly, it consolidated spectral pigment data from original
tubes and chemical data of those pigments on the paintings.

All in all, pigment analysis is significantly important in various fields for multiple
purposes; one of the most applied areas is in cultural heritage for conservation and
restoration purposes. Usually, pigment identification can be achieved through a variety
of scientific techniques implementing different pigment analytical devices; in the case
of spectral imaging for pigment analysis, computer science is implicated, where both
traditional machine learning algorithms and artificial neural networks are employed by
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numerous researchers, with the former currently still outnumbering the latter.

2.5 Artwork Authentication

In this section, following the background information provided in the previous sections,
further detailed knowledge regarding art authentication is delivered.

2.5.1 What is Artwork Authentication?

The work published in [65] proposed that authenticity in art comes in different forms
for a work of art when it is considered authentic and it distinguishes between nominal
authenticity and expressive authenticity [80]. Artwork authentication appears to fall in the
category of nominal authenticity; as the name suggests, is a process of using specialised
techniques or expertise to authenticate if an artwork is authentic or forged, usually with
reference to world-renowned artists. Artwork authentication is not just limited to works
of art in the genre of artistic paintings; any works of art, including music, performance,
cinema, sculpture, and architecture among others, can all implicate procedures of artwork
authentication. Since the current research specifically involves artistic paintings, therefore,
artwork authentication discussed in this dissertation only covers the genre of paintings.
Artwork authentication is significantly important and imperative to safeguard the interest
ofboth the artmarket and the artists, as well as the integrity of artists’ legacies [174, 229]. For
this ideal, there exists a network of international authentication research organisations,
consisting of members for example, Authentication in Art Foundation (AiAF) in the
Netherlands, International Foundation for Art Research (IFAR) in New York, and the Art
Due Diligence Group (ADDG) in London, where cultural heritage forgery is primarily
dealt with within the domain of the West although art forgery is severe also in the East
[185].

The preceding discussions brought to light that there are multitudinous techniques
in relation to art authentication. Approaches published in [229, 230] determined three
fundamental channels for artwork authentication: firstly, artwork evaluation via art con-
noisseurship, secondly artwork provenance and thirdly, scientific examination. It can
be noticed that all three items have been mentioned briefly or in detail in the previous
sections.

2.5.1.1 "Connoisseur" and "Connoisseurship"

The words "connoisseur" and "connoisseurship" originated from the French language. The
French verb "connaître" means "to know, to be acquainted with", hence the original meaning
of "connoisseur" in French means "the person who knows" and "connoisseurship" "the state or act
of being a connoisseur". They are in fact not merely restricted to the usual perspective of fine
arts; aspects in gastronomy like cuisines and fine wines also implicate such profession. In
the art world, connoisseur is defined as experts who "have ’the eye’ or instinct to pronounce
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whether an object is ’consistent’ with the style of the artist or period" because of their substantial
knowledge and experience in said topic [119, 224, 229]. "connoisseurship" is "The ability
to tell almost instinctively who painted a picture" [186], or "the determination of similarity and
difference and assessment of quality in works of art and material culture" [52], or "the endeavour to
identify artworks by time, culture and authorship" [79]. Historically, it is closely related to the
expertise ofknowledgeable art experts, i.e. "the eye"; in recentyears, as technology advances,
connoisseurship appears to encompass further domain, just like the definitions noted in
[52, 79], which did not merely limit such concept to the territory of art art-historical
connoisseurship, but simultaneously embraced the scientific investigation of physical
materials in artworks, that is, scientific connoisseurship, which in fact corresponds to the
third possible channel of artwork authentication defined in [229, 230]. Indeed, studies like
those published in [52, 183, 206, 207, 256, 274] also mentioned the new art connoisseur,
i.e., scientific connoisseurship in their studies. A connoisseur differs from an art historian,
in the way "The connoisseur might be defined as a laconic art historian, and the art historian as
a loquacious connoisseur" [192]. In fact, connoisseurship has been historically popular and
has been considered one of the most credible and rudimentary techniques for artwork
authentication and identification. Art historians are not content with such a profession
due to various reasons, for example, the subjectivity of connoisseurship, thus scepticism
for its credibility was raised considerably [81, 187]. Indeed, errors can occur with some
of the most authoritative connoisseurs and art historians [151, 224]. For example, Supper
at Emmaus, by the world-infamous art forger Han van Meegeren, who specialised in
faking the works by old masters Johannes Vermeer, Frans Hals, Gerard ter Borch and
Pieter de Hooch, was faked in the style of Johannes Vermeer, and was recognised as
a genuine Vermeer masterpiece, by one of the most influential art historians and art
experts like Abraham Bredius as well as Nazi field marshal Hermann Göring [78, 111,
170]. Furthermore, the views and decisions of the connoisseurs can be affected by many
external factors [81, 101, 224]. Hence, a more objective approach and scientific methods
with higher confidence and greater certitude are needed [81, 206, 207].

2.5.1.2 Artwork Provenance

The word "provenance" also originated from the French language. The French verb "provenir"
derivedcame from Latin "provenio", meaning "come forth, come from", and"provenance" means
"the origin of someone or something". In the art world, one of the most reliable and most
utilised art authentication measures is provenance, that is, ownership history, which often
involves exhibition history and publication history [195, 208]. It is usually defined as
historical documentation concerning for instance the artist identification, the period and
the historical whereabouts of the artworks [198]. A comprehensive provenance documents
the history of the locations of the artwork that facilitate artist attribution and artwork
authentication; nevertheless, it can be very problematic and challenging due to illegitimate
acquisition or loss of artwork during the war period, especially Nazi era [208, 252].
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Ownership of artwork takes into account a wide spectrum of forms: a label from an
exhibition or gallery displayed on the artwork, an original sales receipt directly from the
artist, or from a gallery knowledgeable about the artwork, or both, names of previous
owners of the artwork that can be corroborated, catalogues for sales at auction, collections
inventories, a film or recording of the artist speaking about the artwork, or a photograph
of the artist with the art, an illustration or a discussion in an exhibition catalogue or in a
book, and so on and so forth [17, 203]. In the meanwhile, the authenticity of provenance
could also be questionable and necessitates verification [16, 34, 90, 99, 115, 176, 195,
262]. One of the most notorious art forgers John Myatt and his partner-in-crime John
Drewe not only faked artworks but also falsified documents of provenance by infiltrating
some of the most influential museums and galleries in the world [176]. A more recent
example was Michigan art dealer Eric Ian Hornak Spoutz originating from a family
of artists, who also owned a legitimate art gallery, but was selling artworks with fake
provenance documentation he himself forged [90]. The work published by [198] proposed
four ways of establishing the authenticity of provenance: the artist’s signature on the
artwork confirmed to be authentic, historical documents proving the history of artwork
to be authentic; confirmation via scientific analysis, confirmation via connoisseurship.
Ultimately, just like art connoisseurship, art provenance stand-alone cannot be relied
on to prove an artwork is authentic or not [16], and further scientific investigation and
confirmation are preferred, sometimes required.

2.5.1.3 Forgery as a Work of Art

It has been mentioned before that some of the most prolific art forgers had made a name
for themselves due to their own inherent artistic talents; many of them also converted to
collaborate alongside law enforcement and to assist in tackling art fraud [15]. There exists a
debate surrounding "forgery as a work of art", where multiple authoritative critics argued that
if a forged artwork was so adept, and was able to provide the same aesthetic gratification, to
the extent that its authenticity was left open with ambiguity even after having undergone
the most meticulous inspection, why and how it could not be acknowledged as a genuine
work of art, and could not be placed together in the same exhibitions of the works of the
plagiarised artist [29, 58, 107, 139, 150]. The work proposed in [29] contended that the
conception of authenticity is implied within the conception of forgery because one cannot
happen without the other; it is irrelevant to aesthetic perception whether an artwork is of
aesthetically high calibre because it is authentic or of low-calibre because it is forged [150].
It is ultimately conditioned by the manner in which art is viewed by us [58].

2.5.2 Artwork Authentication Applying New Technology and Computer
Science

The implementation of computer science with regard to art authentication has been
flourishing rapidly over the past years. The issues surrounding artwork authentication by
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applying various technologies have been discussed in the previous sections. Some of them
involve solely the examination of the data acquired via different analytical instruments
while others involve further investigation and computation of the data obtained. A
few examples that are slightly different from the aforementioned methods are introduced
herein. In the work by [275], a decision tree model was trained using 55 artworks, including
12 forged artworks with determined attribution markers; although the preliminary results
produced promising results, artworks with larger databases and known provenance are
necessary to construct robust classification models. In [228] it is proposed a stand-alone
solution and an internet-based solution that is established upon mobile architecture
with random intrinsic object characteristics; it connects the certificate of authenticity
and the relevant artwork. A Radio Frequency Identification (RFID) Tag and a two-
dimensional (2D) barcode, along with an online Authentication Archive was applied. An
approach proposed in [157] introduced an effective anti-counterfeiting and authentication
method for ceramic artworks based on 2D code and Wireless Application Protocol (WAP)
technology; the method proved to be practical, safe and easy to implement and manoeuvre
after performance analysis. In [163], it is demonstrated a statistical model comprising first
and higher-order wavelets; tests on the determination of paintings by Pieter Bruegel the
Elder and Pietro Perugino showed promising results.

All the examples given above and before established that art authentication comes
in different forms, either manually involving human intervention like connoisseurship,
provenance or artwork analysis, or automatically implementing computer science and high
technologies. Either way, artwork authentication is significantly important to guarantee
that an artwork is an authentic artwork by famous artists and that art enthusiasts can
appreciate a genuine piece of artistic creation.

2.6 Previous Work Review

This section presents a review of the previous work completed and documented by
Montagner in [171]. An overview of the algorithms proposed, the issues identified,
corrections, improvements made and updated results are discussed.

2.6.1 Brushstroke Algorithm

The work completed by Montagner aimed to develop an algorithm to predict the prob-
ability of a bitmap image belonging to a particular class. More specifically, the prob-
ability of a painting being the work from Amadeo de Souza-Cardoso. To do this, the
algorithm proposed the use of image processing techniques, numerical statistics and
unsupervised/supervised machine learning methods. The summary of the process is
described below.

Montagner conducted the brushstroke investigation based on four computation meth-
ods: Gabor on the full image (simple Gabor), SIFT on the full image (simple SIFT), Gabor
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on cropped blocks (Gabor Regular) and Gabor on cropped blocks around SIFT keypoints
(SIFT+Gabor). A total of 24 Gabor filters with 4 scales and 6 orientations are applied for all
methods. Montagner reported results that suggested that the combination of SIFT+Gabor
produced the highest classification accuracy making it the preferred algorithm for the
authentication of paintings and the one reviewed in this work. The flowchart of the
original method proposed by Montagner and derived from this review can be found in
Figure 2.3 where blue and orange colours are used to highlight data used for training and
testing respectively.

The SIFT+Gabor algorithm start with feature extraction by assessing images from both
positive and negative training sets with keypoints and descriptors highlighted by SIFT.
Blocks centred around the keypoints are then excerpted from the original training images
and rotated accordingly based on the angle of the keypoint vectors.

The KM algorithm is then used to group features and find centroids that are thought
to be the representations of a particular style of the artist during his career life. These
centroids are referred to as visual words.

Next, the technique known as Bag of Features (BoF), originally designed for analysis
of text and known as Bag of Words, is used to represent the data in terms of the number
of occurrences of each of the visual words. Then, the Term Frequency-Inverse Document
Frequency (TF-IDF) function is used to balance the weight of the visual words. This is,
visual words that occur multiple times are assigned a low weight while visual words that
are found with a lower frequency are assigned a high weight as these might be more
useful to make distinctions.

The data are split into training and testing data sets. The training set is used for training
a Regularised Least-Squares Classifier (RLSC) while the test data are used for evaluation of
the method. The output of the classifier is assigned one of two labels: positive or negative.
Positive classifications are indications that the data belong to a true and authentic painting
while a negative classification suggests the painting does not match the requirements of
the process and is therefore considered fake or not attributed to Souza-Cardoso.

The algorithm proposed by Montagner reported accuracies over 90% that seemed to
increase as the number of visual words was increased with the SIFT+Gabor combination.
However, the review of the implementation revealed a series of issues during the pro-
cessing of the data. These included: the exclusion of keypoints identified by SIFT near
the edge of the images, inconsistent rescaling of images, incorrect handling of the TF-IDF
values for new data, unbalanced positive and negative datasets. However, the primary
concern identified with the original method is found in the inclusion of the test data
during the identification of centroids estimated with the KM algorithm. The idea behind
clustering the features is to identify centroids that represent key features or visual words
of the dataset allowing defining any painting in the dataset in terms of the presence of
these visual words. The inclusion of the test dataset and other images to be evaluated
in the clustering process thus results in the centroids being biased towards the test data.
This is, the algorithm will describe the test data based on features that were known to the
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Figure 2.3: Flowchart of the brushstroke algorithm proposed in [171].
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algorithm. The biasing error found is propagated through to the classifier which results
in calculated accuracies over 90%.

To illustrate the effect of the biasing error identified, the algorithm was run a number
of times for all four processing methods with the number of visual words set to those used
by Montagner. Table 2.1 and Figure 2.4 show the results when the test data are included
in the clustering step.

Updating the four implementations of the algorithm to exclude the test data from the
clustering process generates the results shown in Table 2.2 and Figure 2.5. As observed,
when the test data are included in the clustering process, the produced results are close to
the ones reported in [171]. Additionally, the results produced from SIFT, Gabor and Gabor
Regular methods show even better accuracies than reported. Nevertheless, SIFT+Gabor
method appears to be less accurate than the Gabor Regular and SIFT methods in general
where the latter is the most computation-intensive method. Note that for the standalone
Gabor method, the number of words does not apply as no clustering was used.

Table 2.1: Accuracy obtained when testing data are included in KM clus-
tering.

100 76.39% 80.56% 75.00% 72.22%

200 77.78% 80.56% 79.86% 75.69%

400 85.42% 80.56% 87.50% 75.69%

1000 93.06% 80.56% 91.67% 85.42%

1200 93.06% 80.56% 90.97% 87.50%

1400 95.14% 80.56% 91.67% 86.81%

1600 94.44% 80.56% 90.97% 90.97%

2000 95.83% 80.56% 93.75% 90.28%

Number of Words SIFT Gabor Gabor Regular SIFT+Gabor

Table 2.2: Accuracy obtained when testing data are excluded in KM clus-
tering.

100 74.31% 80.56% 71.53% 76.39%

200 70.83% 80.56% 70.83% 78.47%

400 74.31% 80.56% 70.83% 81.94%

1000 75.00% 80.56% 75.69% 84.72%

Number of Words SIFT Gabor Gabor Regular SIFT+Gabor

Continued on next page
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Figure 2.4: Accuracy obtained when testing data are included in KM clustering.

Table 2.2: Accuracy obtained when testing data are excluded in KM clus-
tering. (Continued)

1200 75.69% 80.56% 76.39% 86.81%

1400 75.69% 80.56% 75.00% 86.81%

1600 72.92% 80.56% 73.61% 87.50%

2000 74.31% 80.56% 74.31% 87.50%

Number of Words SIFT Gabor Gabor Regular SIFT+Gabor
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Figure 2.5: Accuracy obtained when testing data are excluded in KM clustering.

In the algorithm by Montagner, small cropped areas at the keypoints identified with
SIFT were rotated in accordance with the angle detected by SIFT. A comparison was
made to evaluate the performance of the method when the rotation is excluded from the
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process. The results show that differences are much larger than the 3% that was initially
suggested in [171]. The results in Table 2.3 and Figure 2.6 were generated when the test
set is excluded from clustering since the objective of our research and this review will
move forward with an unbiased algorithm for a true representative classification.

Table 2.3: Comparison of accuracy obtained with SIFT-Gabor with and without rota-
tion of SIFT keypoints.

100 69.44% 76.39% 6.95%

200 70.14% 78.47% 8.33%

400 64.58% 81.94% 17.36%

1000 70.83% 84.72% 13.89%

1200 70.83% 86.81% 15.98%

1400 72.22% 86.81% 14.59%

1600 71.53% 87.50% 15.97%

2000 70.83% 87.50% 16.67%

Number of Words Without Rotation With Rotation Numerical Difference
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Figure 2.6: Comparison of accuracy obtained with SIFT-Gabor with and without rotation of SIFT
keypoints.

The rotation of data is used only for the areas around the keypoints in the SIFT+Gabor
method and therefore only results for comparison are available for this implementation.
The general explanation is that the Gabor filter analyses frequency in a given direction.
In order to make it independent of the orientation of the features that are trying to be
identified, the features have to be oriented in the right way, otherwise, the same Gabor
filter for the same feature will generate different results.
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Two modified KM algorithms, K-Means++ Clustering (KM++) [19] and K-Means||
Clustering (KM||) [23], which are designed to reduce the computation load while gen-
erating better, optimised centroids, were considered as a way to improve the selection of
centroids or visual words. KM works on a trial-on-error approach. A seed is the first value
chosen as a centroid, the error is calculated and the centroid moves. The process is then
repeated until the error is very small. Since the seed in KM is completely random each
time, it will not always yield the same result. KM++ on the other hand uses seeds that
are initialised and estimated based on the data provided, where the seeds are optimised,
hence not random. Subsequently, the algorithm converges faster and more accurately.
Although all three types of KM methods have both pros and cons, the overall superiority
level is considered as KM|| > KM++ > KM. Although KM|| uses fewer iterations than
the other two methods, the seeding process is slower and its efficiency is small for small
data sets, thus this was excluded from the evaluation of potential improvements.

To compare the performance of KM++ as an improvement, the algorithm was executed
10 times and the final classification accuracy was recorded and averaged. Similarly, the
original KM method was executed but with random seeds as opposed to the original
method used in [171] where seeds were set to the first points in the dataset. The results
of this test are shown in Figure 2.7. Although the results of KM with random seeds are
similar to those of KM++ the latter was found to be over 100 times faster making it the
preferred clustering method.
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Figure 2.7: Comparison of accuracy obtained with SIFT-Gabor using KM, KM with random seeds
and KM++.

The final updated algorithm based on Montagner’s is shown in the flow diagram of
Figure 2.8. This excludes the test dataset, highlighted in orange, entirely from all steps
that produce data used in the training of the classifier. As a result of the exclusion and in
the interest of evaluating new, unseen data, the centroids must be saved as well. Similarly,
the Inverse Document Frequency (IDF) values of the TF-IDF process must be saved; the
Term Frequency (TF) values are always computed on the data at hand but the IDF values
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are only those of the original corpus.
Regarding authentication, Montagner proposed calculating the probability of an image

being the work of Amadeo given the result of brushstroke analysis based on the class
discriminant function of the RLSC classifier 𝑓 (𝑥). The proposed calculation is shown in
Eq. 2.1 where 𝐼𝑎(𝐵/𝐴𝑚) is the probability of an image being the work of Amadeo given
the result of brushstroke analysis. In Eq. 2.1, a sigmoid function is applied to the output of
the classifier effectively rescaling the output value to the [0, 1] range with slope parameter
𝐴 set to 8 [171]. The resulting indicator of authenticity values using brushstroke reported
in [171] are shown in Table 2.4. In [171] it is suggested that the value obtained for painting
77P9 might be low due to missing features related to text which are not identified by SIFT.

𝐼𝑎(𝐵/𝐴𝑚) = 1
1 + 𝑒−𝐴 𝑓 (𝑥)

(2.1)

Table 2.4: Indicator of authenticity in [171]
using brushstroke analysis.

68P11 89.00%

77P2 80.00%

77P5 95.00%

77P8 82.00%

77P9 35.00%

77P16 99.00%

77P20 71.00%

86P19 73.00%

86P21 70.00%

86P23 98.00%

92P209 98.00%

Fake 42.00%

Painting 𝐼𝑎(𝐵/𝐴𝑚)

2.6.2 Material Analysis

The material analysis part of the algorithm proposed by Montagner in [171] is based
on the examination and correlation of a painting against a known database of reference
pigments whose chemical properties are known. Such a database of reference pigments
consists of paint tubes that were used by the painter in known artworks and therefore
their authenticity is indubitable.
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Figure 2.8: Flowchart of the brushstroke algorithm proposed in [171] updated to prevent biasing
of results.
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The correlation of reference pigments against a particular painting is done in five
essential checks:

• Pre-processing

• Pure pigment identification

• Mixed pigment identification

• Authentication

The first stage of the material analysis method consists in creating artificial mixtures
of 2 and 3 reference pigments using the pigment reflectance and additive colour mixing.
Mixtures exclude the use of white and black colours. For each artificial mixture, the
corresponding colour components are also obtained. The second stage of pre-processing
consists in evaluating the colour from each point in the hyperspectral image against the
colour of each sample in the collection of previously analysed points of the painting using
XRF and referred to as the XRF database. If the colour difference between the point and
the XRF samples is small (below a given threshold), the point in the painting is assumed
to be identical to the point of the XRF sample. On the other hand, if the colour difference
exceeds the minimum threshold for all samples the in the XRF database then the point is
categorised as Not Analysed. This allows identifying areas in the painting for which no
XRF data exist. These areas will not be analysed further.

Identification of pure pigments consists of finding points that closely resemble a
pigment in the reference database. To achieve this, the reflectance difference from each
point is measured against the pigment reference database. This is done using the SAM
function which is considered invariant to illumination. The closest pigment in the reference
database is marked as the potential match. Next, to check if the chemical composition
of the reference pigment matches the pixel, the closest XRF sample to the point being
analysed is used. As previously described, this XRF sample is assumed to be identical
to the point and therefore a chemical element match between the XRF sample and the
pigment on the reference database suggests the point analysed is Pure. Points that do not
fall in this category are assumed to be a potential mixture of pigments and are analysed
further.

A similar matching process as in pure pigment identification is performed in this
stage. The reflectance of each point is matched against the artificial mixture of 2 pigments
using SAM. The closest XRF sample to the point analysed is then assumed identical to the
point and its chemical composition is checked against the two reference pigments in the
mixture. If all chemical elements match, the point is classified as Mixed and corresponds
to a mixture of 2 pigments. Otherwise, the point is further analysed.

For those points that did not match a mixture of two pigments, the process is repeated
but using a three-pigment combination. Points that satisfy the conditions above described
are marked as a three-pigment mixture. Otherwise, the point is marked as a Negative
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pixel, this is, the pixel has a different chemical composition to that found in the reference
database.

The final step consists in quantifying the areas or number of points that are marked
as pure or a mixture of pigments. The proportion of these areas is proportional to the
probability of the painting under evaluation being positive or authentic, this is, authored
by Amadeo de Souza-Cardoso.

For visualisation purposes, the algorithm in [171] recolours each point of the hyper-
spectral image analysed with approximated sRGB values of the point reflectance. Points
classified as Not Analysed and Negative are coloured using pink and purple colours respec-
tively. Using the software supplied by [171] which contains 17 pigments in the reference
database, it is produced the recoloured image of Figure 2.9 for the hyperspectral image of
the painting 68P11 (refer to Appendix B for details of the paintings).

Figure 2.9: Results produced by the pigment analysis algorithm in [171] for painting 68P11 using
17 pigments in the reference database and recoloured using approximated sRGB values.

The primary issues with the algorithm proposed in [171] are the use of additive colour
mixing for the generation of artificial colour mixtures, the exclusion of black and white
colours in the artificial colour mixtures, and the use SAM as the metric function for spectral
matching. Additive colour mixing is suitable when using light sources only as the sum of
all reflectances yields white (white light). For paint pigments however colour mixing is of
a subtractive nature and thus subtractive mixing should have been used in the algorithm
proposed. Similarly, the inclusion of black and white in the artificial colour mixtures
should have been considered as these would more accurately represent the mixtures
created by Souza-Cardoso. Further details are available in chapter 4.

Finally, the use of alternative metric functions other than SAM should have been
evaluated. SAM can be used as the metric function to evaluate the matching of reflectances
that might exhibit a certain degree of illumination variance. This is, SAM is relatively
insensitive to scaling of the spectra due to changes in pixel illumination [4, 132]. However,
this is also a disadvantage as it is unable to accurately identify base colours that are brighter
or darker, this is, pigments that have been mixed with white or black colours. On the
other hand, Root Mean Square Error (RMSE) evaluates the true difference in amplitudes
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between reflectances allowing the method to distinguish mixtures that contain white and
black colours. To exemplify this, hypothetical mixtures of up to 3 pigments including black
and white were created. Then, the reflectance of each pixel in the hyperspectral image
was matched using SAM and RMSE for comparison. The resulting matched hypercube
was then converted to sRGB using the D65 illuminant and the resulting images are shown
in Figure 2.10.

(a) SAM (b) RMSE

Figure 2.10: sRGB representation of hyperspectral matching results of painting 68P11 using SAM
and RMSE.

Evidently, RMSE produces an accurate colour reconstruction of the image when black
and white are used in the artificial mixture while SAM struggles to distinguish between
dark and light colours. While RMSE shows a promising result, its implementation requires
careful use as consistent illumination between the reference database and the hyperspectral
images analysed is required. Yet, RMSE for colour matching has the potential to be used
to highlight all areas in a painting that contain a certain pigment including black and
white colours as shown in Figure 2.11 where certain pigments are highlighted.

Improvements made to the algorithm proposed in [171] are included in chapter 4
where the use of subtractive colour mixing, the inclusion of white and black colours and
the use of alternative methods to predict pure and mixed pigments are presented.

Authentication of paintings using the pigment analysis method proposed by Montag-
ner is calculated based on the area identified as positive 𝐴𝑚, relative to the area where no
analysis was made 𝑁𝑜𝑡𝐴𝑛, as shown in Eq. 2.2. The resulting values as indicated in [171]
are shown in Table 2.5.

𝐼𝑎(𝑀/𝐴𝑚) = 𝐴𝑚 ∗ (1 − 𝑁𝑜𝑡𝐴𝑛) (2.2)

The final indicator of authenticity proposed in [171] is a linear combination of the indi-
cator of authenticity obtained with brushstroke 𝑝(𝐵/𝐴𝑚) and pigment analysis 𝐼𝑎(𝑀/𝐴𝑚)
as shown in Eq. 2.3. Here, the contribution from each indicator of authenticity has been
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(a) Chinese Vermilion (b) Terra Rosa

(c) Cobalt Violet (d) Cerulean Blue

(e) White (f) Black

Figure 2.11: Areas where the presence of colours in pure or mixed pigments was identified using
RMSE for painting 68P11.
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evenly distributed by setting the value of the weight 𝑎𝑙𝑝ℎ𝑎 = 0.5 suggesting both methods
are equally important for the authentication process.

𝐼𝑎(𝐴𝑚) = 𝛼𝑝(𝐵/𝐴𝑚) + (1 − 𝛼)𝐼𝑎(𝑀/𝐴𝑚) (2.3)

Table 2.6 summarises the authentication results obtained in [171], using both brush-
stroke and pigment analysis.

Table 2.5: Indicator of authenticity in [171]
using pigment analysis.

68P11 91.00%

77P2 99.00%

77P5 100.00%

77P8 99.00%

77P9 100.00%

77P16 100.00%

77P20 100.00%

86P19 74.00%

86P21 91.00%

86P23 84.00%

92P209 97.00%

Fake 49.00%

Painting 𝐼𝑎(𝑀/𝐴𝑚)

Table 2.6: Indicator of authenticity in [171].

77P2 80.00% 99.00% 89.50%

77P5 95.00% 100.00% 97.50%

77P8 82.00% 99.00% 90.50%

77P9 35.00% 100.00% 67.50%

77P16 99.00% 100.00% 99.50%

77P20 71.00% 100.00% 85.50%

Painting 𝑝(𝐵/𝐴𝑚) 𝐼𝑎(𝑀/𝐴𝑚) 𝐼𝑎(𝐴𝑚)

68P11 89.00% 91.00% 90.00%

Continued on next page
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Table 2.6: Indicator of authenticity in [171].
(Continued)

86P19 73.00% 74.00% 73.50%

86P21 70.00% 91.00% 80.50%

86P23 98.00% 84.00% 91.00%

92P209 98.00% 97.00% 97.50%

Fake 42.00% 49.00% 45.50%

Painting 𝑝(𝐵/𝐴𝑚) 𝐼𝑎(𝑀/𝐴𝑚) 𝐼𝑎(𝐴𝑚)

68P11 89.00% 91.00% 90.00%

2.7 Deep Learning Concepts

In this section, background information concerning Deep Learning (DL) will be briefly
introduced. This includes some of the DL concepts and methods that are used in this
research.

2.7.1 Artificial Intelligence

The concept of AI is often confused with ML and DL and is frequently considered
interchangeable with the other two terms. As a matter of fact, the terms differ and do
not exactly refer to the same thing. According to [6, 7, 20, 59, 70, 72, 76], AI, as the name
suggests, incorporates human intelligence with machines, so that characteristics of human
intelligence can be mimicked through processing by machines. ML is a subset of AI, and
DL is a subset of ML (Figure 2.12).

Artificial Intelligence

Machine Learning

Deep Learning

Figure 2.12: Hierarchy of AI, ML and DL [72].

AI is generally categorised as: Artificial Narrow Intelligence (ANI), that is, Weak AI
with narrow capability; Artificial General Intelligence (AGI), that is, Strong AI with general
capability; and Artificial Super Intelligence (ASI), that is, Strong AI with transcendent
capability [7, 21]. American philosopher John Searle noted that Strong AI seeks to create
artificial persons; machines that have all the mental powers we have, including phenom-
enal consciousness. Weak AI, on the other hand, seeks to build information-processing
machines that appear to have the full mental repertoire of human persons [219]. The
applications of Weak AI, with the ability to perform specific tasks, include for example
chess playing and identification of individuals in photos while the applications of Strong
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AI, with the ability to understand sentiments and interpret emotions, should be able to
behave like how human behave, and it is when machines become human-like, as depicted
in movies such as I, Robot and Ex Machina.

2.7.2 Machine Learning

The concept and implementation of ML have existed for many years. They not only
involve robotics, which we often and immediately think of, but also the applications
that are closely related to our daily lives, like spam filters or advertising optimisation
[11, 214]. Machine learning is the implementation of a series of uniquely designed
algorithms to solve specific problems; it is generally identified as the following types of
systems depending on the amount of human supervision and intervention: supervised
learning, unsupervised learning, semi-supervised learning and reinforcement learning
[11, 214]. Other examples of machine learning applications include: learning associations,
whose typical application is basket analysis, that is, the determination of the association
between the products purchased by customers; classification, as the name suggests, the
determination of the classes among different categories with distinguishing properties or
characteristics; regression, the prediction of an output based on a series of characteristics
of the studied subject. Both classification and regression are identified as supervised
learning problems, where the output is subject to the learned patterns in relation to the
input determined by the supervisor, that is, through input-output examples. On the other
hand, unsupervised learning is when the supervisor does not exist and the patterns are
learned through unlabelled input data and through mimicry. Finally, semi-supervised
learning is when a small portion of the data is labelled and a large portion of the data is
unlabelled during training [11, 116, 215].

Some of the typical machine learning algorithms include SVM, KM and RLSC, which
are used and discussed in this dissertation. SVM is a type of supervised learning algorithm
and aims at classification and regression analysis as well as detection of outliers [232].

SVM works by plotting data with a series of features in a 𝑛-dimensional space, where
the value of each feature corresponds to the value of a particular coordinate, followed by
the implementation of classification, regression, or outliers detection in the hyper-plane
space [250]. The basic SVM is linear SVM with hard and soft margins with its extensions
including for example Support Vector Clustering (SVC), multiclass SVM, transductive
SVM, structured SVM, regression SVM, Bayesian SVM.

K-Means (KM) is a type of unsupervised learning algorithm and works for the purpose
of clustering. There are various types of clustering: hierarchical clustering and partitioning
clustering, where the former is subdivided into agglomerative clustering and divisive
clustering, and the latter is subdivided into KM clustering and fuzzy C-Means clustering
[131]. KM divides the samples into 𝐾 clusters with similar characteristics in each cluster
and it is initiated with randomly assigned centroids. The number of centroids 𝐾 needs to
be allocated and can be defined optimally for a given set of data. The initiation process is
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followed by the determination of the shortest distance between the randomly allocated
centroids and other data points in the starting clusters respectively so that the centroid
can be reassigned to that data point where the shortest distance is found in each cluster.
Such a process is repeated until the re-allocation of the centroid stops, which means the
𝐾 cluster is determined.

RLSC is a group of methods to solve the least squares problem while using regular-
isation to constrain further the resulting outcome. This is a type of supervised learning
for classification purposes. Its principle is to minimise the sums of squares by finding
the smallest sum of squared residuals through the calculation of the distance between
the observed data value and the projected value of the proposed function, hence it is
coined as "least squares". While applying for example least squares method, problems
like overfitting and underfitting might occur. The implementation of techniques such as
regularisation, cross-validation and pruning make sure the resulting solution is further
constrained, penalised or evaluated so that the algorithmic model can fit optimally to the
new unseen data.

The work proposed in [214] describes overfitting as an over-generalisation of the data.
It happens when the problem is over-complicated than necessary to fit the training data
so that the predicted outcome fits and performs too well on the training set. This is,
the predictive model is overly dependent on the training data, hence it will very likely
produce a higher error rate when encountering new unseen data. Figure 2.13(b) shows
an example of overfitting where a 50-degree polynomial is used to fit a given set of data.
Whilst overfitting over-complicates the problem, underfitting is the opposite of overfitting;
that is, the problem is over-simplified while there is a high bias within the training data.
Figure 2.13(a) shows an example where a 1-degree polynomial is used to fit the same data
as in Figure 2.13(b). As [11] noted "If there is bias, this indicates that our model class does not
contain the solution; this is underfitting. If there is variance, the model class is too general and also
learns the noise; this is overfitting".
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Figure 2.13: Examples of (a) underfitting and (b) overfitting.
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One important concept in ML is scoring which is used to measure the performance of
a method. For example, to measure the accuracy of a binary classifier where two classes
exist it is required to calculate the following outcome possibilities [141]:

• True Negatives (TN): the number of elements correctly classified as belonging to the
negative class.

• True Positives (TP): the number of elements correctly classified as belonging to the
positive class.

• False Negatives (FN): the number of elements incorrectly classified as belonging to
the negative class.

• False Positives (FP): the number of elements incorrectly classified as belonging to
the positive class.

The classification accuracy of a binary classifier evaluating 𝑁 elements is therefore the
proportion of correctly classified elements as defined in Eq. 2.4.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑁
(2.4)

The precision of the binary classifier is defined as the fraction of correctly classified
positive elements relative to the total number of positive predictions (Eq. 2.5).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.5)

Another metric used for a binary classifier is recall defined as the fraction of correctly
classified elements relative to the total number of positive elements (Eq. 2.6).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.6)

Finally, the F1 score is defined as the harmonic mean of precision and recall (Eq. 2.7).

𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (2.7)

2.7.3 Deep Learning

DL is said to simulate the structure of a human brain with more complex and multi-
layered neural networks, hence it involves more accuracy, more mathematics and more
computation. It often refers to deep artificial Neural Networks (NN) [6, 20] and therefore,
it is a subset of NNs, as illustrated metaphorically in the form of Matryoshka dolls in
Figure 2.14 [7, 21].
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Figure 2.14: Metaphorical representation of the hierarchy of deep learning (image from [7])
.

2.7.3.1 Neural Networks

In computer science, Neural Networks are the implementation of a set of algorithms
resembling how the human brain functions and performs a learning process by examples
like how the human brain learns. The term is often interchangeable with Artificial Neural
Network (ANN) or Simulated Neural Network (SNN) [7, 178, 179], as opposed to natural
human or biological neural networks. Nevertheless, debate exists as certain data science
experts consider ANNs standalone as a type of NN, that is, Feedforward Artificial Neural
Network (FFANN) [5, 106].

Different types of NNs serve for specific data types and applications. Types or architec-
tures of NNs are noted differently by different data science experts, in general, it appears
that most agreed with the following major categories: Perceptron, MLP NN, FFANNs,
Radial Basis Function Neural Network (RBFNN), RNN, Modular Neural Network (MNN),
Long Short-Term Memory Network (LSTM), CNNs, Sequence-to-Sequence models and
Autoencoders [1, 5, 60, 71, 106, 178, 179, 248]. A comprehensive guide to the types and
architectures of NNs is compiled and illustrated by Fjodor van Veen from Asimov institute
in Figure 2.15.

A NN usually consists of three basic components: an input layer, hidden layer(s), and
an output layer [7, 179]. More specifically, inputs 𝑥, weights 𝑤, a bias or threshold 𝑏, and
an output 𝐹(𝑥) for a given number of inputs 𝑚, and resembles the mathematical formula
in Eq. 2.8.

𝐹(𝑥) =
𝑚∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (2.8)

Similar to a single neuron, a Perceptron model, also known as Threshold Logic Unit
(TLU) or McCullough-Pitts neuron, is a Single Layer Neural Network, and was first
implemented by Frank Rosenblatt [179, 248]. It is the most fundamental and ancient form
of NN and applies only the activation function on the input via the single neuron to
produce a binary output. Therefore, it does not have any hidden layers and is only used
for binary classification and is useful for logic functions like AND, OR, and NAND. In
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Figure 2.15: The Neural Network Zoo: https://www.asimovinstitute.org.
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terms of MLP NNs, as the name implies, the input will be passed through more layers
and is applied for complex classification. Its applications include, for example, speech
recognition [1, 248]. FFANN, is sometimes referred to as ANN [60] or MLP NN [179]
and as the name suggests, the processing flows merely in the forward direction and there
is no backpropagation, therefore, the weights are not updated. Its applications include
for example face recognition and speech recognition. Although it performs beyond the
scope of traditional machine learning models, it does not achieve the complexity that
exists in deep learning models [5, 106, 178, 248]. RBFNNs are different from traditional
MLP NNs: the hidden layer uses Radial Basis Function neurons (RBFs) like Gaussian,
thin plate spline, multi-quadratic with different parameters, as an activation function.
Its major application is power restoration [1, 5, 106, 178]. Similarly, in RNNs, as the
name "recurrent" implies, the operation occurs multiples times and repeatedly using
sequential data [5, 106] and it resembles the structure of FFANNs, except that the memory
from previous words influences the next prediction [1, 5, 106]. Its applications include
for example sentiment analysis and text-to-speech processing. LSTM is the improved
version of RNN and implements designated memory units along with the standard units
used in RNN that preserves information for a prolonged period of time [1, 5, 106, 248].
Its applications include, for example, gesture recognition, speech recognition and text
prediction [5, 106]. On the other hand, a Sequence-to-Sequence model is composed of
two RNNs, with an encoder to process the input and a decoder to process the output,
which works simultaneously. It differentiates itself from an actual RNN in its same
length of input and output data [1, 248]. Its applications include, for instance, machine
translation and chatbots. Autoencoders are a particular type of NN composed of three
major parts: encoder, code, and decoder, where both the encoder and decoder possess
a structure similar to FFANNs mirroring each other [5, 106] and it is mostly applied for
image processing [244]. MNNs are a sequence of individual networks, each performing an
independent sub-task without interacting with each other yet working towards achieving
the final outcome. Therefore, the processing is broken down into independent and smaller
components, resulting in the reduction of the computation complexity and computation
load, that is, more rapid processing. Its applications include for example stock market
prediction and character recognition [1, 5, 106, 248]. Last, but not least, CNNs are one
of the most popular DL methods [60] and apply typically the mathematical principles,
more specifically, matrix multiplication from linear algebra, and are said to be similar to
FFANNs [179]. Its applications include for example image, video and natural language
processing [1, 5, 60, 71, 106, 179, 248].

2.7.3.2 Convolutional Neural Networks

CNNs involve mathematical calculation, and convolution, which is an important imaging
processing operation to extract features from images. Therefore, CNNs technique is
particularly acclaimed and prevalent in image and video processing applications, although
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its implementation is multifaceted in other fields as well. The basic principle of convolution
in image processing is the implementation of kernels, i.e., filters, to highlight discernible
features in images. CNNs work in a similar manner through kernels in the hidden layers
and intend to comprehend both spatial and temporal information via a series of relevant
kernels [106].

As a type of ANNs, CNNs also share the three fundamental elements: an input layer,
hidden layer(s), and an output layer. In general, the hidden layer is comprised of one or
multiple sequences of three types of layers: Convolution (CONV) Layer, Pooling (POOL)
Layer and Fully Connected (FC) Layer. Subject to the depth or the architecture of the
CNN, additional layers of the same or further operations can be added accordingly in the
hidden layers. Other operations include for instance padding, flatten, activation function
or Rectified Linear Unit (ReLU), Maximum Pooling (MaxPool), Softmax and normalisation,
to name a few. The CONV layer is the convolution processing applying a pre-designated
stride on the kernel passing through an image from left to right and from top to bottom
until the complete analysis of the image in both directions of height and width. As
mentioned previously, the purpose of CONV operation is to extract features, for instance,
edges and colour at lower-level layers, and more specific depiction and information of
images at higher-level layers [5, 106]. For example, Figure 2.16 shows the features or
activations of the first convolution layer of the model in section 3 using painting 86P21.

Figure 2.16: Example of output from the first convolution layer of the brushstroke model in section
3 using painting 86P21.

The POOL layer follows suit to extract dominant features, in the meanwhile minimises
the number of parameters so that computation load can be reduced; it also helps to
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minimise overfitting. The FC layer is an ordinary FFANN and connects the outcome
from the previous layers so that classification can be made at the output layer. CNNs can
contain both forward propagation and backward propagation, where the former, mainly
in CONV layer, processes the information, and the latter, in both FC and CONV layer,
gauge the error and update the parameters [73]. CNNs have been popular in the AI field,
with most applications in image and video processing [1, 5, 60, 71, 106, 179, 248]. One of
the most well-known CNNs is AlexNet [143] which consists of five layers of CONV with
more kernels in comparison with other CNNs as well as three layers of FC. Following each
CONV and FC layer, ReLU activation function is implemented. AlexNet is an inspiration
to many CNN structures concerning the application of artist attribution; nearly all research
demonstrated their superiority over the conventional image classification projects [143].
In this PhD research, not only the AlexNet architecture was used for examination, but
also other CNNs structures were applied for analysis producing optimistic and promising
results.

To design or analyse a CNN, the size of the data before (input) and after (output) a
layer is typically calculated to ensure compatibility between layers. The output size or
number of output features 𝑛𝑜𝑢𝑡 of a convolution layer is calculated using Eq. 2.9 where
𝑛𝑖𝑛 is the input size or number of input features, 𝑘 is the filter kernel size, 𝑝 is the padding
size and 𝑠 is the stride [77].

𝑛𝑜𝑢𝑡 =
𝑛𝑖𝑛 + 2𝑝 − 𝑘

𝑠
+ 1 (2.9)

Similarly, the output size of a pooling layer is calculated using Eq. 2.10. Other
arithmetic variations of these two equations exist for other layers with convolution and
pooling being the primary layers.

𝑛𝑜𝑢𝑡 =
𝑛𝑖𝑛 − 𝑘
𝑠

+ 1 (2.10)
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3

Brushstroke Analysis

This chapter describes brushstroke classification using convolutional neural networks,
data augmentation for deep learning training and the application of the trained model for
artwork authentication. Comparative results using the methodology proposed in [171]
are discussed.

3.1 Deep Learning Approach

As discussed, brushstroke can be considered the artist’s signature as it tends to be
unique and representative of each artist, as shown in the exemplary images of Figure
3.1. This however changes through the career of an artist as the style matures and the
artist experiments with different techniques and materials. Yet, it is believed that the core
style of the artist can be distinguished from others by analysing the intricate features like
brush pressure, stroke length, brush flow and colour among others. It is thus important
to make use of analysis techniques to enhance these features for the easy identification
and classification of results.

(a) (b) (c)

Figure 3.1: Brushstroke examples.

One of the main techniques used for brushstroke analysis is the enhancement of
edges, also known as edge detection. This image processing technique enhances edges by
differentiating (filtering) the colour content of a painting in a given direction. For example,
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horizontal pixel differentiation or filtering can be used to enhance vertical edges (Figure
3.2(a)). Similarly, vertical filtering can be used to detect horizontal edges (Figure 3.2(b)). A
combination of these or more complex filters like Gabor or Sobel for example can be used
to detect edges in multiple directions making it easier for the human eye and for machines
to distinguish the features of a single brushstroke.

(a) Horizontal Filtering (b) Vertical Filtering

Figure 3.2: Edge detection of brushstroke using filtering.

In this work, we propose the use of a deep learning model for the automatic detection
of edges or features and the final classification of the object analysed. The model proposed
is based on the AlexNet architecture developed by Alex Krizhevsky [142] originally used
for the automatic classification of objects in raster images. The original AlexNet model,
shown in Figure 3.3, contains up to five levels of CONV - ReLU - MaxPool layers which
create feature maps that summarise the important features that define the images. The
feature maps are then used to classify the input image into one of 1000 different sets of
data or classes via three fully-connected layers.

Input Image

CONV+ReLU
+MaxPool

CONV+ReLU
+MaxPool

CONV+ReLU CONV+ReLU
+MaxPool

CONV+ReLU

FC FC FC

Figure 3.3: Block diagram of AlexNet CNN.

The proposed model for the classification of Souza-Cardoso paintings shown in Figure
3.4 contains two primary class outputs: positive and negative. The former class label is
used to attribute an input image to Souza-Cardoso while the latter class label is used to
attribute the image to a different artist or artists. The classification of a sample image into
one of these two classes is done by finding the maximum value of the two outputs. In
the network proposed, an input image size of 227 × 227 pixels is used. This input size
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image has been kept small to reduce the computational requirements for the training and
classification process. Furthermore, the input size was found to be adequate given the
average image size of the entire dataset of 3365 × 3029 pixels and the data augmentation
process described in 3.3.
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Figure 3.4: Block diagram of AlexNet-based model used for brushstroke classification.

3.2 Data Selection

Deep learning models require large datasets for correct training, for example, the original
AlexNet model was trained with 1.2 million samples from the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) yielding overall classification error rates of 39.7% and
18.9% for the datasets tested [142]. A second requirement that affects the classification
results is the balance of the training datasets, this is, how equally distributed between
classes are the datasets used. Training data imbalance can lead to results that are biased
towards a particular class and therefore it is important to carefully balance the training
datasets.

To aid comparison with the method proposed in [171], the same datasets used for
training and validation have been used; 200 positive sRGB images and 109 negative images
with a combined average image size of 3365×3029 pixels. Exemplary images in the positive
and negative datasets are shown in Figure 3.5 and Figure 3.6 respectively.

Figure 3.5: Exemplary images from the positive dataset containing images of paintings by Souza-
Cardoso.

The datasets have been split into training and validation sets where the quantities
and selected images have been kept identical to those used in [171] for direct comparison.
These quantities are shown in Table 3.1 below.

49



CHAPTER 3. BRUSHSTROKE ANALYSIS

Figure 3.6: Exemplary images from the negative dataset containing images of paintings by Fernand
Leger, Jose de Almada, Kazimir Malevich, Robert Delaunay and Eduardo Viana.

Table 3.1: Reference training and testing sets of Souza-Car-
doso paintings.

Training Set 105 60

Validation Set 95 49

Reference Set Positive Paintings Negative Paintings

3.3 Pre-Processing and Data Augmentation

To tackle the problem described in Section 3.2 regarding the need for large datasets and
to reduce the imbalance of data, a method to generate sample images from the original
datasets is required. The proposed method is based on data augmentation whereby
training samples are generated from the original full-sized images. The augmentation
methodology proposed includes the following pre-processing steps which are used simul-
taneously:

• Random rotation between 0 and 360 degrees

• Random scaling between 10% and 100%

• Random vertical and horizontal reflection

• Random cropping with final size of 227 × 227 pixels

Using the above methodology, a large number of new sub-samples can be created
from a single painting as required; for example, new sub-samples can be created for each
training loop. The data augmentation process also helps the model proposed with the
learning process by reducing overfitting to a certain degree due to the transformations
applied to the images [223]. The scaling factor in particular allows the model to learn to
recognise the brushstroke and other painted features at different scales or sizes. While the
values of the rotation angle and randomness of the reflection are important, the selected
values of the scaling range to be used are critical as must be set based on the overall average
size of the training and validation images; low-resolution images would be unsuitable as
the features of the painting at the scales provided would be too small or too large for the
model.
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Examples of the images generated using the data augmentation process proposed for
Souza-Cardoso’s painting P192 (Figure 3.7) are shown in Figure 3.8. As observed, multiple
sections of the painting can be used for either training or validation.

Figure 3.7: Amadeo de Souza-Cardoso exemplary painting P192.

3.4 Test Results

The model proposed with two classification outputs was trained using the training and
validation set of images described in Table 3.1 with random data augmentation on each
epoch and with a maximum of 1000 epochs. Figure 3.9 shows the accuracy and loss of the
training process.

As observed in Figure 3.9, the accuracy and loss seem to settle after 1000 iterations
with an overall final classification accuracy of 75%. The results obtained suggested the
trained model is suitable for the classification of the Souza-Cardoso paintings.

For comparison, the same set of paintings was analysed using the method proposed in
[171] where a combination of techniques including SIFT, Gabor filtering, KM clustering,
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Exemplary data augmentation samples from panting P192 (Figure 3.7) used to train
the proposed model.
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Figure 3.9: Training accuracy and loss using the AlexNet-based model proposed.
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TF-IDF processing and RLSC were used. The results of the classification process are
shown in Table 3.2. Note that the method proposed in [171] was found to be biased due to
the manner in which the training and validation sets were combined in the KM clustering
step as described in section 2.6. The results reported herein for the method in [171] contain
the correct, unbiased values obtained.

Table 3.2: Reference accuracy of the algorithm in [171] and the proposed method.

No. of Words 100 200 400 1000 1200 1400 1600 2000 N/A

Accuracy 70.83 66.67 65.97 70.14 70.83 70.83 73.61 71.53 75.00

Method from [171] Method

Proposed

As the model used contains a spatial input size of 227 × 227 pixels the classification
of paintings could be done using a single sub-sample of the painting, for example, a
centrally cropped sample of the painting [54]. However, the approach proposed is to
analyse multiple random samples of a painting that have been subjected to the same
data augmentation process used during the training process. In this case, the approach
proposed consists in calculating the fraction of samples predicted for that class as defined
in Eq. 3.1:

𝑃𝑐1 =
1
𝑛

𝑛∑
𝑖=1

𝑥𝑖 where 𝑥𝑖 =


1, 𝑐1

0, otherwise
(3.1)

where 𝑃𝑐1 is the probability of the painting belonging to class 1 (positive class = Souza-
Cardoso class), 𝑛 is the total number of samples taken from the painting analysed, and 𝑥𝑖
is a value of 1 if the 𝑖𝑡ℎ sample was predicted as 𝑐1 (class 1, positive), or 0 otherwise.

The test dataset was analysed using the methodology proposed and using 100 samples
per image. The probability of each image analysed belonging to Souza-Cardoso was then
calculated using 3.1. Image classification was evaluated by thresholding the estimated
probabilities in the range of 0.55 to 1.00 in steps of 0.05. The results are shown in Table
3.3 where the TP, TN, FP, FN, Accuracy (Acc), Precision (Prec), Recall (Rec) and F1-Score
(F1-S) values have been calculated.

Figure 3.10 shows the values from Table 3.3 where a probability threshold of 0.8 was
found to produce the best-balanced results between precision and recall. This is, the
highest F1-S value is achieved. Classification of further images is therefore recommended
using this threshold when using at least 100 augmented samples per image tested.
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Table 3.3: Effect of thresholding the estimated probability using 100 samples per image.

TP 95 95 95 95 95 94 87 78 64 28

TN 7 9 11 13 16 18 25 35 38 47

FP 42 40 38 36 33 31 24 14 11 2

FN 0 0 0 0 0 1 8 17 31 67

Acc. 0.708 0.722 0.736 0.750 0.771 0.778 0.778 0.785 0.708 0.521

Prec. 0.693 0.704 0.714 0.725 0.742 0.752 0.784 0.848 0.853 0.933

Rec. 1.000 1.000 1.000 1.000 1.000 0.989 0.916 0.821 0.674 0.295

F1-S 0.819 0.826 0.833 0.841 0.852 0.855 0.845 0.834 0.753 0.448

Thold. 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
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Figure 3.10: Accuracy, Precision, Recall and F1-Score of model proposed for the test set.

3.5 Authentication Through Brushstroke Analysis

To evaluate the suitability of the proposed method for authentication of Souza-Cardoso
artwork, the same 11 images of paintings belonging to Souza-Cardoso plus a Fake image
created at DCR and used in [171] were evaluated using the trained deep learning model.
An overview of the test images is shown in Figure 3.11 (numbering corresponding to
inventory code at CAM [47, 48, 171]).

For authentication, the numeric probability of each of the 12 images being authentic is
required. Thus, 1000 samples per image were evaluated and the probability was calculated
using Eq. 3.1. The results are summarised in Table 3.4 where high values were obtained
for the authentic images. Using the threshold of 0.8 proposed in section 3.4 would result
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68P11 77P2 77P5 77P8

77P9 77P16 77P20 86P19

86P21 86P23 92P209 Fake

Figure 3.11: Test images used for evaluation.

in correct classification of all 12 images analysed. The results are thus encouraging and
support the use of deep learning techniques as a tool for the authentication of artwork.

Table 3.4: Probability of authenticity using
brushstroke analysis.

68P11 89.20%

77P2 100.00%

77P5 100.00%

77P8 95.10%

Painting Probability of Authenticity

Continued on next page
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Table 3.4: Probability of authenticity using
brushstroke analysis. (Contin-
ued)

77P9 86.90%

77P16 97.00%

77P20 91.00%

86P19 93.50%

86P21 99.40%

86P23 95.60%

92P209 99.90%

Fake 53.60%

Painting Probability of Authenticity

3.6 Further Testing

The suitability of the proposed deep learning model only using a single sample for artist
identification was evaluated by means of training and testing the network with a variety of
datasets [54]. The first additional dataset included a collection of 39 drawings by Amadeo
de Souza-Cardoso obtained from the Calouste Gulbenkian Museum; 29 loose watercolour
drawings (Figure 3.12) and 10 drawings from the manuscript La Légende de Saint-Julien
L’hospitalier (Figure 3.13). These drawings were added to the test set only and evaluated
with the proposed model and the algorithm in [171]. The classification results shown in
Table 3.5 show an overall higher accuracy obtained with the model proposed while the
algorithm in [171] did not produce better results with the increasing number of visual
words.

(a) (b) (c) (d)

Figure 3.12: Sample drawings by Souza-Cardoso.

56



3.6. FURTHER TESTING

(a) (b) (c) (d)

Figure 3.13: Sample drawings by Souza-Cardoso from La Légende de Saint-Julien L’hospitalier.

Table 3.5: Classification accuracy of the algorithm in [171] and the proposed model using
paintings + 39 drawings.

No. of Words 100 200 400 1000 1200 1400 1600 2000 N/A

Accuracy 64.48 61.75 62.84 65.03 66.67 65.57 68.31 66.67 73.77

Method from [171] Method

Proposed

The second additional set of data included 91 paintings from the Chinese artist Daqian
Zhang 1. Samples of the images analysed are shown in Figure 3.14. Adding these to the
negative test set produced significantly lower accuracies for the model proposed than
for the algorithm in [171] as shown in Table 3.6. This is highly likely due to our model
not being trained with examples of any paintings other than Souza-Cardoso’s and his
contemporaries.

(a) (b) (c) (d) (e)

Figure 3.14: Sample Chinese drawings.

1Images courtesy of Pennsylvania State University.
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Table 3.6: Classification accuracy of the algorithm in [171] and the proposed model using
paintings by Souza-Cardoso and Chinese artist Daqian Zhang.

No. of Words 100 200 400 1000 1200 1400 1600 2000 N/A

Accuracy 75.32 78.30 75.32 78.30 79.15 78.30 81.70 79.15 51.06

Method from [171] Method

Proposed

The third dataset included 210 paintings by the Dutch painter Vincent van Gogh 2

(Figure 3.15). These were added to the test set and evaluated using both methods. The
classification results are shown in Table 3.7 where the accuracy of both methods was found
to be low as many of the newly introduced test paintings were misclassified as positive,
i.e., belonging to Souza-Cardoso.

(a) (b) (c) (d)

Figure 3.15: Sample Vincent van Gogh drawings.

Table 3.7: Classification accuracy of the methodology in [171] and the proposed method
using paintings by Souza-Cardoso and Dutch artist Vincent van Gogh.

No. of Words 100 200 400 1000 1200 1400 1600 2000 N/A

Accuracy 57.34 57.34 53.67 50.00 52.54 52.26 50.28 52.82 46.61

Method from [171] Method

Proposed

To further evaluate the network proposed and to understand if it can be used to
distinguish artists other than Souza-Cardoso and his contemporaries, the training set was
updated to include only Chinese artwork. This is, the positive dataset was updated to
include 46 paintings from Daqian Zhang only with the negative dataset set to include
49 paintings of his contemporaries. The test dataset was updated to include 45 and 49

2Images courtesy of the van Gogh Museum.
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paintings respectively to keep the training and test set as balanced as possible. Table 3.8
shows the results of the classification process which shows higher classification accuracy
than the algorithm in [171].

Table 3.8: Classification accuracy of the methodology in [171] and the proposed method
using paintings by Daqian Zhang and his contemporaries.

No. of Words 100 200 400 1000 1200 1400 1600 2000 N/A

Accuracy 68.09 70.21 70.21 69.15 70.21 68.09 69.15 70.21 86.17

Method from [171] Method

Proposed

Finally, a similar assessment was performed using 105 paintings from Vincent van
Gogh and 37 from his contemporaries for training and with 105 and 36 paintings for
testing respectively. The classification results are shown in Table 3.9.

Table 3.9: Classification accuracy of the methodology in [171] and the proposed method
using paintings by Vincent van Gogh and his contemporaries.

No. of Words 100 200 400 1000 1200 1400 1600 2000 N/A

Accuracy 72.34 75.18 74.47 78.01 75.89 76.60 76.60 77.30 77.30

Method from [171] Method

Proposed

3.7 Discussion

The original method designed in [171] was found to produce biased results as discussed
in section 2.6. The unbiased results, where the validation/test set is fully segregated from
the training process, produced low-accuracy classification results. The method proposed
here, on the other hand, resulted in significantly higher classification accuracy of both
the training and validation/test sets. The improvement is attributed to the more complex
feature extraction produced by the convolution layers and the higher number of features
produced and learnable parameters of the model compared to a standard RLSC model as
used in [171].

In both cases, the method proposed in [171] and the method proposed in this work,
training requires a significant amount of data for the feature learning process to be
successful. This aspect however is very challenging in the art world given the limited
number of artworks of a single artist. As proposed here, a large number of samples can
be generated via data augmentation. This process was proven to be useful to achieve a
high classification accuracy. The number of augmented samples generated however must
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be kept low enough to prevent overfitting but large enough to generate a variance in the
features learned.

The size of the images to evaluate must be consistent with the average size of the
images used for training. This is, the quality and size of any image to be analysed must
be sufficiently large to ensure the data augmentation process generates images whose
features are suitable for analysis; augmented images of size 227 × 227 pixels must contain
sufficient detail for analysis. In the case of the images used for training and validation, the
average image size of the sets used is 3365 × 3029 pixels. The use of significantly different
size images will likely result in features not being identified correctly by the convolution
process ultimately leading to incorrect classification.

Finally, the method proposed was found to be suitable for the classification of genres
and other artists. The results obtained support the use of the model in other settings where
art attribution or author identification is required. Although the classification process
was limited to 2 classes per test, multiple classes can be added to the final classification
layer of the model to increase the number of outputs and use the model in multi-author
classification applications.
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4

Pigment Analysis

This chapter discusses the methodology proposed for pigment analysis. The methodology
focuses on the identification of pure pigments and pigment mixtures used in artwork by
Amadeo de Souza-Cardoso. Results obtained are compared against the reference method
proposed in [171].

4.1 Pure Pigment Identification

The identification of pure pigments is a task that can be achieved using a variety of tools
including mathematical approaches like FCLS, spectral matching functions like SAM, or
machine learning methods like SVM or other classifiers. These typically involve the corre-
lation of colour components or spectral reflectances to a predetermined reference database
considered as ground truth. Where mathematical analyses are used, the spectral or colour
similarity is usually quantified followed by a thresholding function that discriminates
those points that exhibit a significant difference in either colour or spectral components.
Machine learning methods, on the other hand, classify the points analysed into a finite
number of classes and thus require exemplary data of non-pure pigments.

Other methods to identify pure pigments include analytical techniques like 𝜇EDXRF
thatprovide qualitative andquantitative information ofpoints analysed. The data obtained
can then be used to match the analysed point against a reference set of data for classification.
The disadvantage of such techniques is that these are typically point-based, this is, they
provide information of a small sample area only making analysis of a full painting a
laborious and expensive process. In [171], an image segmentation method was proposed
using the spectral metric function SAM and a thresholding function. SAM, defined in Eq.
4.1, is calculated for all points of the reference reflectance 𝑧 and the reflectance evaluated
𝑧̂. This method proposed extending the results of a point-based analysis of a segmented
area to all points within the segmented area. The segmentation process, thresholding
function and spectral metric function used are therefore critical and require fine-tuning to
achieve optimal results. The use of the SAM function, while widely used, has been shown
to be sub-optimal in certain cases and therefore other approaches are recommended.
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𝑆𝐴𝑀 = cos−1
∑𝑛
𝑖=1 𝑧̂𝑖𝑧𝑖√∑𝑛

𝑖=1 𝑧̂
2
𝑖

∑𝑛
𝑖=1 𝑧

2
𝑖

(4.1)

4.1.1 Pure Pigment Deep Learning Model

In this research, we propose the use of a deep learning model for image segmentation
based on the analysis of colour reflectance. To achieve this, we propose the analysis of
a hyperspectral image Z ∈ R𝑊×𝐻×𝐵 with width 𝑊 , height 𝐻 and 𝐵 spectral bands of
a painting of interest for classification using the reflectances of the reference database
S ∈ R𝐵.

The deep learning model proposed [53], shown in Figure 4.1, includes a three-branch,
mixed-input network for the analysis of hyperspectral data.
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Figure 4.1: Block diagram of the three-branch, mixed-input deep learning model proposed for
pure pigment classification.

The first input branch of the model implements a convolutional neural network that
analyses a hypercube centred around a point of interest of the hyperspectral image Z being
analysed. This analysis highlights features in the hypercube at different wavelengths. The
spatial nature of the data on the other hand allows the identification of the transitions
between the central and adjacent points. The second input branch of the network processes
the derivative of the hypercube reflectances after smoothing using a Savitzky-Golay filter
of size 9 and degree 2. This pre-processing step de-noises the hypercube reflectances
while enhancing points of inflexion in the reflectance and removing any offset caused by
differences in illumination during the acquisition process.
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The size of the hypercube around a pixel of interest has been set to 9 × 9 × 33. The
spatial size was chosen to be small enough to ensure sufficient details of adjacent points
are included, but not too large to not include too much data that would be detrimental to
the performance of the classification process.

The third input branch of the model contains the measured error of the central point
reflectance and each of the reflectances in the reference database. For this model the
error is calculated using the Spectral Correlation Mapper (SCM) metric function which
estimates the correlation between two spectral signatures [44, 45]. Unlike SAM, SCM
allows distinction of negative correlation and tends to perform better in the presence of
a larger number of reference reflectances [222]. SCM is defined in Eq. 4.2 where 𝑧 is the
reference reflectance 𝑧̂ the reflectance evaluated.

𝑆𝐶𝑀 =

∑(𝑧̂𝑖 − 𝑧̂)(𝑧𝑖 − 𝑧)√∑(𝑧̂𝑖 − 𝑧̂)2
∑(𝑧𝑖 − 𝑧)2

(4.2)

The output of the three parts of the model is flattened and concatenated. Then, the data
are analysed by a series of MLP layers that reduce the dimensionality of the data before
being passed through to a Softmax activation function. This computes the probability
of the input data belonging to one of the pigments in the reference database. To further
improve the classification, a thresholding function is used on the computed probabilities
to discard borderline predictions.

4.1.2 Reference Pigments

To train the model proposed, a set of ground truth data is required. This includes a
dictionary of reference reflectances and, most importantly, hyperspectral imagery with
ground truth labels. For the dictionary of reference pigments, a set of 16 pure pigment
reflectances have been selected from a hyperspectral image of samples provided in [171].
The reflectances have a range of 400nm to 720nm in steps of 10nm and include the pigments
listed below. Further information is available in Appendix A:

• Cobalt Violet

• Chinese Vermilion

• Carmine Lake

• Terra Rosa

• Raw Sienna

• Yellow Ochre

• Chrome Yellow

• Cadmium Orange
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• Cobalt Blue

• Cerulean Blue

• Prussian Blue

• Ultramarine

• Viridian

• Emerald Green

• Lead White

• Ivory Black

An overview of the reflectances in the pure pigment database is shown in Figure 4.2.
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Figure 4.2: Reflectances in the reference pigment database. The colour of the reflectances is set to
a representative sRGB colour with white shown in grey.

4.1.3 Data Augmentation: Pure Pigments

To train the model to classify correctly a sample reflectance into any of the 16 pure pigments
of the reference database or a non-pure pigment, a large number of ground truth samples
is required for each of these 17 classes. Data however are limited so to overcome this
problem the use of the following data augmentation processes is proposed.

Data augmentation for the generation of pure pigment samples can be achieved by
generating samples of a pure pigment with additive white Gaussian noise as in Eq.4.3
where 𝑃𝜆 is the noise-free reflectance, 𝑁𝜆 is the noise and 𝑃𝜆𝑁 the noisy reflectance. This
is random noise with a probability distribution with zero mean and finite variance 𝜎2.
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𝑃𝜆𝑁 = 𝑃𝜆 + 𝑁𝜆

𝑁𝜆 ∼ 𝑁(0, 𝜎2)
(4.3)

In this task, a Signal to Noise Ratio (SNR) value of 30dB was used to generate pure
pigment samples. This value is low enough to ensure the data are still statistically
representative of the pure pigment reflectance. In addition to this, a random reflectance
intensity offsetdrawn from a normaldistribution centredat 0 and witha standarddeviation
of 0.005 was added to the new sample. This simulates changes in the acquisition process
(e.g., changes in illumination). Figure 4.3 shows an example of augmented reflectances of
Cerulean Blue using the methodology proposed.

Figure 4.3: Reflectance of Cerulean Blue (left) and augmented reflectances using the method
proposed (right).

4.1.4 Data Augmentation: Artificial Mixtures

For non-pure pigment identification, reflectances representative of mixed pigments or
pigments not included in the reference database are required. To achieve this, a new
expanded dataset can be generated by artificially mixing the reflectances of pigments
in the reference database using colour mixing theory. In [171], artificial mixtures were
generated using the linear mixing model in Eq. 4.4, where 𝑐𝑖 is the proportion of the 𝑖𝑡ℎ

pigment reflectance 𝑃𝑖 ,𝜆 and 𝑃𝜆 is the resulting mix pigment reflectance.

𝑃𝜆 =

𝑛∑
𝑖=1

𝑃𝑖 ,𝜆𝑐𝑖 (4.4)

In colour mixing theory, additive mixing is suitable for mixing colours in lighting
applications where the superposition of all colours yields white as shown in Figure 4.4.
However, colour mixing of paints produces a different result where a darker colour is
generated which makes additive mixing an unsuitable model for the generation of artificial
colour mixtures of oil paint pigments.
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(a) (b)

Figure 4.4: Effect of additive (a) vs. subtractive (b) colour mixing.

In this research, we propose the use of the more suitable subtractive colour mixing
model defined in Eq. 4.5 [226] where 𝑐𝑖 is the proportion of the 𝑖𝑡ℎ pigment reflectance
𝑃𝑖 ,𝜆 and 𝑃𝜆 is the resulting mix pigment reflectance with the sum of all proportions equal
to 1. Alternative colour mixing models like the Kubelka-Munk model [145] can produce
improved results if parameters like the absorption and backscattering coefficients of the
base pigments are known.

𝑃𝜆 =

𝑛∏
𝑖=1

𝑃
𝑐𝑖
𝑖 ,𝜆 (4.5)

The effect of applying Eq. 4.5 can be observed in Figure 4.5; additive mixing increases
the reflectances linearly without correctly handling the amplitude mix. This effect distorts
the colour as it increases the overall amplitude of the mix at all wavelengths.
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Figure 4.5: Effect of additive (a) vs. subtractive (b) colour mixing using Cerulean Blue and Yellow
Ochre pigments.

Another example is shown in Figure 4.6 where the effect is more visible when Black
and White are used in the mix with Cerulean Blue. For subtractive mixing, the blue tone
and reflectance shape are preserved for mixes as low as 10% of blue and 90% white. On
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the other hand, additive mixing changes the blue tone to white at a much faster rate.
This confirms the suitability of the subtractive mixing model for the generation of all
hypothetical mixing of paint pigments.

400 450 500 550 600 650 700

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

fl
e

c
ta

n
c
e

(a)

400 450 500 550 600 650 700

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

fl
e

c
ta

n
c
e

(b)

400 450 500 550 600 650 700

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

fl
e

c
ta

n
c
e

(c)

400 450 500 550 600 650 700

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e

fl
e

c
ta

n
c
e

(d)

Figure 4.6: Additive (a,c) vs. subtractive (b,d) mixing of Cerulean Blue and White/Black.

To generate artificial pigment mixtures, the number of combinations 𝐶(𝑛,𝑟) choosing
the number of pigments 𝑟 from the total number of pigments 𝑛 is calculated using Eq. 4.6,
corresponding to a combination without repetition.

𝐶(𝑛,𝑟) =
𝑛!

𝑟!(𝑛 − 𝑟)! (4.6)

For each combination of pigments, artificial mixtures are generated using increments
of 10%. Thus, the number of artificial mixtures for 2 out of 16 pigments and 3 out of 16
pigments is 1080 and 20160 respectively, this is, a total of 21240 unique artificial reflectances.
These are shown in Figure 4.7 and are used in the training image described in Section
4.1.5.
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Figure 4.7: Artificially generated mixed pigment reflectances using subtractive mixing of 3 out of
16 pigments.

4.1.5 Training Image

To train the model described in Section 4.1.1, a ground truth hypercube is required, this is,
a hyperspectral image where the label of each pixel is known. Obtaining such data can be
impossible since the number of artworks produced by an artist, in our case Souza-Cardoso,
is very limited. Furthermore, a well-preserved painting where the label of each and all
points is known is not available. To solve this problem, we propose the generation of
a hyperspectral training image using augmented data synthesised using the methods
described in sections 4.1.3 and 4.1.4. The hyperspectral image must contain augmented
samples of each reflectance in the reference database (16 in total), plus a collection of
mixed pigments to represent the non-pure class.

To understand the effect of the training image during the design and evaluation of the
model, preliminary results were obtained where a training image was constructed using
vertical bars filled with reflectances of the pigments in the reference database and artificial
mixture reflectances. The labels of the points in the generated image correspond to the
zero-based index of the pure pigment (0-15) with artificial mixtures set to 16. The sRGB
representation artificial image generated using the D65 illuminant is shown in Figure 4.8.

The model was trained with the training image for 5 epochs and using a sample patch
of size 25 × 25 × 33. The sample patches were then split into 70% for training and 30% for
testing. The final probability thresholding function was not used in this evaluation.

The training image was evaluated with the trained model to determine its suitability.
Figure 4.9 illustrates the classification results where the training, Figure 4.9(a), and
predicted, Figure 4.9(b), images were recoloured with sRGB colours representative of
each pure pigment in the database plus grey for mixtures. A greyscale version of the
training image is shown in Figure 4.9(c) where pixels classified incorrectly are coloured
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in red. Note however that in this case all pixels were classified correctly so no red pixels
are visible.

Figure 4.8: Artificially generated training image with vertical bars containing pure and mixed
pigment reflectances.

(a) (b) (c)

Figure 4.9: Training image built using vertical bars: (a) ground truth and (b) predicted. Greyscale
image highlighting misclassified pixels in red (c).

Although no misclassifications were observed, evaluating an actual hyperspectral
painting with the trained model produced images where vertical artefacts were observed
as shown in Figure 4.10. These were thought to be a result of the geometrical content of
the training image, this is, colour transitions are present in the horizontal access only.

The training image was rotated to generate horizontal bars as shown in Figure 4.11.
The model was trained with the updated image which was then evaluated with the trained
model. The resulting classification results of the training image are shown in Figure 4.12
where no misclassifications were observed.

Evaluating a hyperspectral image of a painting by Souza-Cardoso produced horizontal
artefacts as shown in Figure 4.13 confirming that the geometrical content of the training
image affects the performance of the model.

To address the effect of the training image on the performance of the model, we propose
the use of a hyperspectral training image containing 50 × 50 squares of size 10 × 10 pixels
each. Each square contains either augmented pure pigment reflectances or artificial mix
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Figure 4.10: Classification results of painting 86P21 when using vertical bars in the training image.

Figure 4.11: Artificially generated training image with vertical bars containing pure and mixed
pigment reflectances.

(a) (b) (c)

Figure 4.12: Training image built using horizontal bars: (a) ground truth and (b) predicted.
Greyscale image highlighting misclassified pixels in red (c).
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Figure 4.13: Classification results of painting 86P21 when using horizontal bars in the training
image.

pigment reflectances and is arranged in an alternating manner in both horizontal and
vertical directions as shown in Figure 4.14.

Figure 4.14: sRGB representation of the artificially generated training image.

4.1.6 Predicted Pure Pigments

The three-input model was trained using the training image generated following the
process described in Section 4.1.5. From this artificial image, 250000 hypercubes of size
9 × 9 × 33 were created. Hypercubes extending beyond the edge of the training image
were padded with zeros. These hypercubes were used for the first input. For the second
input, the derivative of each reflectance was calculated along the wavelength direction.
Finally, for the third input, the SCM value of the central point of each hypercube and each
entry in the pure pigment reference database was calculated. The training data were split
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using 70% of the values for training and 30% for validation. Training of the model was
stopped after 20 epochs to prevent overfitting.

The final classification of each hypercube was achieved by applying a threshold of
0.90 to the predicted output of the model. This value was found experimentally and
proved to be adequate to reject borderline predictions. The result of the training process
and classification of the training image is shown in Figure 4.15(b) where predicted pure
pigment points have been coloured using representative sRGB colour components of the
predicted pigment. Points classified as non-pure are recoloured in grey.

(a) (b)

(c) (d)

Figure 4.15: Training image results: (a) ground truth, (b) predicted using the proposed model, (c)
predicted using the validated method in [171] and (d) using FCLS.
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To compare the performance of the proposed method, the same hyperspectral training
image was analysed with the algorithm in [171] which is summarised as:

• Measuring the Euclidean distance of the reflectance of the point analysed and the
reflectance of the Ivory Black pigment

• Measuring the Euclidean distance of the reflectance of the point analysed and the
reflectance of the Lead White pigment

• If the distance to the Lead White reflectance is greater than a threshold of 4.0 and
the distance to the Ivory Black reflectance is less than 0.29 then mark the point as
Ivory Black

• If the distance to Lead White reflectance is less than 2.06 then mark the point as
Lead White

• Find the smallest SAM value of the derivative of the smoothed point reflectance and
the derivative of the reflectance of each pigment in the database

• If the smallest value is less than 0.75 times the second smallest value then mark the
point as pure pigment

The result of classifying each point in the hyperspectral training image is shown in
Figure 4.15(c). As observed, a large number of mixed pigments were misclassified as Ivory
Black resulting in low accuracy as observed in Table 4.1.

Table 4.1: Classification accuracy of the artificially
generated hyperspectral image.

Method Proposed 99.93%

Method in [171] 54.59%

FCLS 88.67%

Classification Method Classification Accuracy

In addition to the algorithm in [171], the FCLS linear unmixing method defined in
[112] was evaluated for comparative purposes. FCLS solves the linear mixing model in
Eq. 4.7 where 𝑟 is the reflectance of a given pixel, M is the endmembers matrix, 𝛼 the
abundance matrix and 𝑛 noise.

𝑟 = M𝛼 + 𝑛 (4.7)

FCLS approximates a given reflectance by linearly mixing a subset of reflectances and
minimising the error. This results in reflectances that typically contain a large number
of base reflectances albeit in small proportions or abundances, some more than others.

73



CHAPTER 4. PIGMENT ANALYSIS

However, using a high threshold on these abundances can be used to determine the purity
of a given reflectance. This is, if the 𝑖𝑡ℎ abundance is higher than a high threshold, e.g.
90%, then the reflectance analysed can be considered "pure" and belonging to the 𝑖𝑡ℎ

pigment in the reference database. All points of the training image were classified using
this approach with the result shown in Figure 4.15(d) where a good correlation of the
ground truth to the predicted pigments is observed. The classification accuracy with
FCLS, Table 4.1, was found to be higher than the one obtained with the method in [171]
but lower than the classification accuracy of the method proposed in this work.

To evaluate the algorithm, 12 hyperspectral images used by [171] were used. These
images include 11 off images corresponding to paintings from Souza-Cardoso plus 1
Fake image created DCR. These test images were evaluated with the three algorithms
for comparison. The results of the classification process are summarised in Table 4.2
with Figure 4.16 showing the classification outcome for painting 86P21. A good visual
correlation can be observed between the original painting and the predicted pure pigment
areas using our method and the algorithm in [171]. FCLS on the other hand did not
predict large pure pigment areas; FCLS synthesised most points as a linear combination
of multiple reflectances.

Table 4.2: Pure pigment area prediction of each painting in
the test dataset.

68P11 39.26% 43.60% 1.85%

77P2 50.95% 26.94% 0.76%

77P5 61.31% 32.00% 1.90%

77P8 36.89% 56.41% 6.36%

77P9 51.91% 59.87% 5.81%

77P16 52.52% 48.09% 2.18%

77P20 41.35% 51.29% 3.51%

86P19 49.49% 60.92% 3.04%

86P21 46.53% 58.28% 7.79%

86P23 54.63% 56.65% 9.11%

92P209 43.70% 42.17% 4.44%

Fake 78.34% 75.36% 57.58%

Painting Proposed Model Method in [171] FCLS

The proposed methodology to generate an artificial hyperspectral image was success-
fully used to train the model for pure pigment identification. The results obtained show a
good visual correlation with areas in the paintings that, to the human eye, closely resemble
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(a) (b)

(c) (d)

Figure 4.16: (a) sRGB representation of the hyperspectral image 86P21, predicted pure pigments
using (b) the proposed method, (c) the method in [171] and (d) FCLS.

the pure pigments in the reference database. Similarly, the algorithm proposed in [171]
shows a good correlation of pigment colours. The former method however required less
manual tuning than the latter method which, using the values provided in the source
code supplied, did not generate significantly better results. FCLS on the other hand failed
to produce high levels of single pigment purity using a thresholding function. This is
probably due to the error minimisation algorithm and the discrepancies in amplitudes
between the reflectances of the reference database and those of the hyperspectral images.
The overall image segmentation result using deep learning is satisfactory and paves the
path for further development. In particular, improved connectivity between the multiple
inputs of the network could be explored to increase the weight given to the third numeri-
cal input. Similarly, improvements can be made on the training image where the use of
geometrical features other than squares could lead to better detection of pure areas.
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4.2 Mixed Pigment Identification

Identification of mixed pigments using hyperspectral imaging and machine learning can
be pursued through various options. In classification where a given test reflectance is
assigned to a predetermined set of mixtures, requires a large number of possible mixtures
or classes. However, the possible number of mixtures that an artist can generate by
manually mixing pigments can be infinite which makes this approach not feasible. An
alternative to this approach is the estimation of the abundances or fraction of the required
reference pigments to approximate the reflectance analysed as a mixture of these pigments.
This task could be achieved if a model is designed such that the inputs to this are the
discrete points that form a given reflectance and the outputs or labels, the associated
fraction of the pigments that when combined, approximate the input reflectance.

Prediction of pigment mixture fractions was evaluated where a 5-layer deep network
of fully-connected layers with 33, 35, 33, 25 and 20 neurons respectively was trained. 44880
artificial mixtures were generated using subtractive mixing of up to 3 pigments in steps of
10% with the pigment database used in [171] and including Green Cd. The reflectance of
each point in the hypercube of painting 68P11 was evaluated with the trained network to
predict the fraction of each pigment required to reconstruct the reflectance. The estimated
reflectance was then back-calculated using the subtractive mixing model in Eq. 4.5 and
the equivalent sRGB image estimated assuming the D65 illuminant. The resulting sRGB
image is shown in Figure 4.17 along with the sRGB image estimated from the original
hyperspectral image. Although the visual results were encouraging, they required an
increase in brightness. This might be due to fractions generated including negative values
as the output of the model was unconstrained.

(a) (b)

Figure 4.17: sRGB representation of 68P11 from (a) the original hyperspectral image and (b) from
an unconstrained 5-layer DNN.

76



4.2. MIXED PIGMENT IDENTIFICATION

4.2.1 Mixed Pigment Deep Learning Model

To overcome the hyperspectral unmixing problem, we propose the deep learning model
shown in Figure 4.18 which provides multiple regression outputs from a single input.
This is, for a given input reflectance, different numerical outputs are generated where
each output corresponds to the fraction of a given pigment in the reference database. In
this case, the input size is a vector of 33 points corresponding to the reflectance amplitude
in the range of 400nm to 720nm in steps of 10nm. The number of outputs is set to
16 corresponding to the number of pigments in the reference database as described in
Appendix A.

CONV
4x5

ReLU

CONV
8x7

ReLU Flatten

Input
33x1

CONV
16x13
ReLU

Dense
512

ReLU

Dense 
512

Dense
1

Dense
512

ReLU

Dense 
512

Dense
1

Fraction Pigment 
1

Fraction Pigment 
16

Figure 4.18: Block diagram model used for mix pigment prediction.

The input reflectance vector is passed through a first convolution layer with 4 filters
of size 5, stride 1, padding of 2 and ReLU activation. The output size of this layer is
33 × 4. The second convolution layer contains 8 filters of size 7, stride 1, no padding and
ReLU activation producing an output of size 27 × 8. The final convolution layer contains
16 filters of size 13, stride 1, no padding and ReLU activation generating an output of
size 15 × 16. The increasing filter size analyses the reflectance first at small intervals for
localised changes and finally at large intervals for large inflexion points in the reflectance.
The output of the convolution layers is flattened and then split into 16 branches. Each
branch contains two fully-connected layers of size 512 each with a final fully connected
layer of size 1 which generates the predicted fraction in the range of 0 to 1 of the associated
pigment. This last layer uses a sigmoid activation function to ensure non-negative output
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values are predicted for any given input reflectance.

4.2.2 Model Training

To train the proposed model described in section 4.2.1, artificial reflectances of up to 3
pigments out of 16 in steps of 10% were produced using the subtractive mixing model in
Eq. 4.5. A total of 21256 artificial mixtures were generated as seen in Figure 4.19.

Figure 4.19: Artificially generated mixed pigment reflectances of up to 3 pigments out of 16.

The proposed model was trained with the 21256 reflectances as input data and the 16
fractions per pigment as labels. The model was then tested with the hyperspectral image
of painting 86P21 producing estimated fractions per pigment which were rescaled such
that the sum of all fractions was equal to 100%. Each reflectance was then reconstructed
using the predicted fractions using the subtractive colour mixing model of Eq. 4.5 and the
reference pigment reflectances. Finally, the sRGB representation of the predicted results
was calculated using the D65 illuminant. The resulting image is shown in Figure 4.20
where a significant visual correlation error is observable. The error is likely related to the
lack of training data with sufficient samples representative of true data which exhibits
noise inherent to the acquisition process.

To increase the number of training samples and improve the performance of the model,
these artificial reflectances were augmented using additive white Gaussian noise (Eq. 4.3)
with a SNR of 30dB. A total of 10 noisy samples per artificial mixture were generated
yielding 212560 artificial reflectances (Figure 4.21) for training and validation.

Training the model with the 212560 augmented reflectances significantly increased
the visual correlation of the reconstructed sRGB image built using the predicted pigment
fractions as seen in Figure 4.22. This confirms the importance of the quality and quantity
of the training data in the performance of a deep learning model; the larger the training
dataset with representative samples of the data the more accurate the prediction.
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(a) (b)

Figure 4.20: sRGB representation of 68P11 from (a) the original hyperspectral image and (b) from
the proposed mixed pigment deep learning model trained using 21256 reflectances.

Figure 4.21: Artificially generated mixed pigment reflectances of up to 3 pigments out of 16
augmented with random noise.

4.2.3 Predicted Mix Pigments

The proposed deep learning model was trained with the 212560 augmented reflectances
using 3 epochs and with a 70/30 split for training and validation with all reflectances
shuffled at the start of each epoch. All 11 hyperspectral images were then analysed using
the trained model and their corresponding sRGB images where all 16 pigment fractions are
used were computed. The resulting images for the exemplary painting 68P21 are shown
in Figure 4.23. Finally, the reconstructed sRGB image using the abundances calculated
with FCLS where all 16 pigments are used is also shown.

The sRGB images resulting from taking the mixtures of the 2 and 3 highest fractions
using the proposed model were also calculated by zeroing all other fractions and making
the sum of the top 2 and 3 fractions respectively equal to 100%. The resulting images are
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(a) (b)

Figure 4.22: sRGB representation of 68P11 from (a) the original hyperspectral image and (b) from
the proposed mixed pigment deep learning model trained using 212560 augmented reflectances.

(a) Original (b) Predicted (c) FCLS

Figure 4.23: sRGB representation of the hyperspectral image 86P21 and predicted results.

shown in Figure 4.24 where it can be observed that the higher the number of pigments
used, the better the approximated reconstruction is. This is confirmed in Table 4.3 where
the RMSE and Mean Relative Absolute Error (MRAE) (Eq. 4.8) calculated values between
the original reflectances 𝑧𝑖 𝑗 and reconstructed reflectances 𝑧̂𝑖 𝑗 are listed.

𝑀𝑅𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

| 𝑧̂𝑖 𝑗 − 𝑧𝑖 𝑗 |
𝑧𝑖 𝑗

(4.8)

80



4.2. MIXED PIGMENT IDENTIFICATION

(a) All 16 fractions (b) Top 2 fractions (c) Top 3 fractions

Figure 4.24: sRGB image of painting 86P21 estimated using all 16 pigment fractions predicted,
using the top 2 fractions and the top 3 fractions.

Table 4.3: Error measured between original and predicted/reconstructed hyperspectral
image.

68P11 0.0618 0.1964 0.1115 0.4517 0.0705 0.2751 0.0971 0.4060

77P2 0.0995 0.3495 0.1164 0.4565 0.0948 0.3638 0.1079 0.4045

77P5 0.0824 0.2308 0.1145 0.4039 0.0798 0.2656 0.0994 0.3570

77P8 0.0716 0.2586 0.0998 0.4026 0.0761 0.3000 0.0882 0.3602

77P9 0.0766 0.2491 0.0964 0.3716 0.0768 0.2824 0.0940 0.3448

77P16 0.0507 0.1742 0.1224 0.4438 0.0666 0.2550 0.1045 0.3766

77P20 0.0664 0.2190 0.1104 0.4308 0.0753 0.2875 0.0978 0.4034

86P19 0.0631 0.2401 0.0933 0.4045 0.0628 0.2853 0.1043 0.3884

86P21 0.0828 0.3051 0.0934 0.3940 0.0767 0.3180 0.1021 0.3472

86P23 0.0536 0.4221 0.0701 0.5042 0.0545 0.4439 0.0678 0.3518

92P209 0.0984 0.2653 0.0968 0.2976 0.0891 0.2601 0.1028 0.3366

Fake 0.1923 0.3015 0.1852 0.3217 0.1894 0.3088 0.1509 0.2720

Painting
16 Fractions Top 2 Fractions Top 3 Fractions FCLS

RMSE MRAE RMSE MRAE RMSE MRAE RMSE MRAE

Figure 4.25 shows the location of points selected in painting 68P21 where the reflectance
of the original hyperspectral image as well as the reconstructed reflectances with the CNN
prediction using all 16 pigments, the top 3 pigments, the top 2 pigments and the FCLS
abundances are plotted in Figure 4.26.
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Figure 4.25: Selected points in painting 86P21 for comparison of reconstructed reflectances:
P1=[20,20], P2=[27,212], P3=[255,80], P4=[184,165].
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(b) P2
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(c) P3
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(d) P4

Figure 4.26: Reconstructed reflectances at the points selected of painting 68P21 in Figure 4.25.
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As noted in the results obtained, the deep learning model proposed and the post-
processing algorithm to normalise the output to 100% generated better mixed pigment
fraction estimates than the standard FCLS method when all pigments were used. Reducing
the number of pigments and rescaling the percentages also generated better estimates
than FCLS when 3 pigments were used in the mixture. The use of 2 pigments however
increased the discrepancy between the estimated mixture and the actual test reflectance.
Yet, the errors were marginally higher than FCLS. This indicates that the proposed method
using all predicted percentages is a suitable solution to the pigment unmixing problem at
hand as it produces smaller approximation errors than FCLS.

4.3 Authentication Through Pigment Analysis

As proposed in [171], a method for the authentication of artwork through pigment analysis
includes the quantification, qualification and cross-referencing of areas of a painting with
reference to a ground truth database of pigments. This is, areas of a painting with similar
colour and spectral characteristics can be assumed to be True if their physical and chemical
characteristics match an entry of the pigment reference database. Chemical analysis is
however a time-consuming and expensive process which makes analysing all areas of
the painting a prohibitive process. Image segmentation to group similar coloured areas
is advantageous if the assumption is that all points within that area are identical, thus
requiring a single point to be analysed for cross-referencing.

The process proposed to achieve authentication via pigment analysis is based on the
one proposed in [171] and follows the steps below.

• For a given point in the hyperspectral image, determine if the point matches the
reflectance of the white or black paint in the reference database. If it does, mark the
point as Black or White and analyse the next point, otherwise, continue.

• Determine if the point closely matches the colour of at least one of the samples in
the XRF database. If the point does not match any XRF sample then the point is
marked as Not Analysed and analyse the next point, otherwise, continue.

• Determine if the matching XRF samples are possible single pigment or mixtures of
2 or 3 pigments of the reference database. If no possible mixture is found, mark the
point as Negative and analyse the next point, otherwise, continue.

• Determine if the point is a potential pure pigment by analysing the point reflectance.
If a colour matching XRF sample exists and contains the same chemical elements as
the potential pure pigment then mark the point as Pure and analyse the next point,
otherwise, continue.

• Determine the mixture of 2 pigments whose reflectance is the closest to the point
analysed. If a colour matching XRF sample exists and contains the same chemical
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elements as the potential mixture then mark the point as Mixed and analyse the next
point, otherwise, continue.

• Determine the mixture of 3 pigments whose reflectance is the closest to the point
analysed. If a colour matching XRF sample exists and contains the same chemical
elements as the potential mixture then mark the point as Mixed and analyse the next
point, otherwise, mark the point as Negative.

• Quantify the number of Negative, Not Analysed, White, Black, Pure and Mixed points
and calculate the indicator of authenticity as the proportion of the area analysed
and confirmed by XRF analysis.

4.3.1 XRF Data

The validity and accuracy of the results obtained are linked to the accuracy of the data
used for processing the hyperspectral images. In particular, the accuracy of the chemical
elements associated with each pigment and to each XRF entry in the painting sample
database point is of high importance, as this directly affects the chemical matching
process as described below. The assignment of the most representative chemical elements
responsible for the colour of a pigment is a manual process that requires an accurate and
expert interpretation of the XRF data measured. An incomplete or inaccurate selection of
elements will indubitably result in chemical element mismatch when comparing pigments.
In the XRF data supplied by [171] the only chemical element associated with the white
pigment is Pb. The entries of the XRF database files supplied do not include Pb in most
samples despite this appearing to be present in the 𝜇EDXRF spectrum of samples, for
example, those shown in Figure 4.27 for samples Bl1a and Y8a. The chemical elements
included in the respective XRF sample file include Fe, S for sample Bl1a and Cd for sample
Y8a.

(a) Original (b) Preliminary Result

Figure 4.27: 𝜇EDXRF spectra of samples Bl1a and Y8a of painting 77P9 (p.205-206 [171]).
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An artificial mixture of Lead White and Cadmium Orange would contain, by superpo-
sition, the chemical elements Pb and Cd. If this mixture produces the closest reflectance
match to a given point, then that mixture is temporarily assigned to the point. At the same
time, if the colour of the point analysed is similar to XRF sample Y8a, then the point is
assumed to be identical to that sample. However, the chemical elements of the assigned
mixture will not match the chemical elements of the XRF sample, resulting in this point
being marked as either Negative or incorrectly being assigned an artificial mixture that
does not closely match the point.

In summary, the exclusion of Pb in the XRF database samples limits the use of the
white pigment in the artificial mixtures resulting in untested mixtures and ultimately,
degraded performance. This does not apply to the Ivory Black pigment which has not
been assigned any representative chemical element allowing correct generation mixtures
and matching of these to XRF samples. The possible solutions include the review and
inclusion of Pb in the XRF sample database for all paintings or the temporary removal of
Pb from the white pigment. While the former could be the recommended approach its
implementation is outside the scope of this research and therefore the latter is the practical
approach to be used in this work and the results obtained.

4.3.2 XRF Colour Matching

To determine the colour difference between two points, namely an XRF sample and a
point in the painting, CIE 1976 L*a*b Colour Space (CIELab) colour components are used.
The colour difference Δ𝐸∗

𝑎𝑏
in this space between two points (𝐿∗1 , 𝑎

∗
1 , 𝑏

∗
1) and (𝐿∗2 , 𝑎∗2 , 𝑏∗2) is

calculated using the CIE76 colour difference formula as defined in Eq. 4.9 [221].

Δ𝐸∗
𝑎𝑏 =

√
(𝐿∗2 − 𝐿∗1)2 + (𝑎∗2 − 𝑎∗1)2 + (𝑏∗2 − 𝑏∗1)2 (4.9)

The selection of the Δ𝐸∗
𝑎𝑏

threshold for matching XRF samples and points in the
painting is of high importance as this will have a significant impact on various stages of
the method proposed. A low threshold imposes a constraint where a pixel analysed can
only be assumed to be identical to an XRF sample if the colour is very similar. This will
result in a large number of pixels not meeting this condition thus immediately increasing
the number of pixels marked as Not Analysed or Negative. Similarly, a very relaxed threshold
will result in a large number of points marked as Pure or Mixed. Thus, it is important
to find the correct balance of the threshold. To determine the best suitable value of the
threshold Δ𝐸∗

𝑎𝑏
, it is necessary to evaluate the detection of ground truth areas. This is,

areas that can be attributed to a certain pigment with absolute certainty. One way this
can be achieved is by using the CIELab values of the Cerulean Blue pigment from the
reference database which are 𝐿 = 37.47 𝑎 = −9.62 𝑏 = −33.73 and comparing these against
the painting pixels and using multiple values for the threshold Δ𝐸∗

𝑎𝑏
as shown in Figure

4.28, where thresholds of 12 to 24 in steps of 3 are used. Based on this analysis for multiple
pigments, the proposed value for the threshold Δ𝐸∗

𝑎𝑏
to be used for colour matching is 18.
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(a) Δ𝐸∗
𝑎𝑏

= 12 (b) Δ𝐸∗
𝑎𝑏

= 15 (c) Δ𝐸∗
𝑎𝑏

= 18 (d) Δ𝐸∗
𝑎𝑏

= 21 (e) Δ𝐸∗
𝑎𝑏

= 24

Figure 4.28: Evaluation of Δ𝐸∗
𝑎𝑏

values using Cerulean Blue in painting 86P21.

4.3.3 Preliminary Results

The process described was implemented using the deep learning model proposed in
section 4.1.1 for pure pigment prediction with confirmation of pure pigments using the
XRF database files supplied in [171]. Similarly, mixed pigments were predicted using the
model proposed in section 4.2.1. The top 2 and top 3 fractions were used to estimate the
pigment mixture and reconstructed reflectance. To determine the closest mixture between
the top 2 and top 3 reconstructed reflectances, the error was measured using RMSE. The
mixture with the lowest error was assigned and used for the chemical element check. The
visual results of the classification process for painting 86P21 are shown in Figure 4.29,
where bright pink colour has been used to highlight Not Analysed areas and bright purple
to highlight Negative areas. All other colours including white and black are representative
of estimated pure pigments predicted using the pure pigment model of section 4.1.1.

(a) Original (b) Preliminary Result

Figure 4.29: sRGB representation of 86P21 from the original hyperspectral image and from
the preliminary classification results using deep learning models for pure and mixed pigment
prediction. Pixels classified as Negative shown in bright purple and pixels classified as Not Analysed
in bright pink.

The preliminary classification results for all 12 hyperspectral images are summarised
in Table 4.4. As observed, the use of the deep learning model for mixed pigment prediction
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resulted in large areas being classified as Negative. This is the result of the 2 and 3 mixed
pigment prediction not producing the correct mixture as identified by the XRF samples.
This is, the deep learning model produces mixtures with a reflectance that, although close
to the real-world value as previously shown in section 4.2.3, do not necessarily match
the actual pigment mixture. This can be attributed to a combination of the inherent
reflectance noise from the hyperspectral image acquisition process and the prediction
from the deep learning model; the deep learning model produces predictions where the
error of the approximation was minimised during training and thus produces mixtures
that approximate a reflectance as a combination of the reflectances in the base pigment
database.

Table 4.4: Preliminary results of area classification using the proposed method
with 2 deep learning models for pure and mixed pigment prediction.

68P11 0.38% 1.38% 7.72% 2.72% 19.57% 8.60% 59.63%

77P2 2.25% 0.00% 4.94% 3.34% 17.14% 20.50% 20.66%

77P5 0.11% 0.00% 11.92% 18.40% 27.79% 9.36% 98.11%

77P8 9.51% 5.77% 4.11% 4.60% 3.97% 2.24% 44.79%

77P9 0.18% 3.02% 12.18% 10.27% 10.76% 3.97% 59.30%

77P16 1.05% 2.14% 10.27% 5.64% 2.72% 2.08% 33.21%

77P20 5.41% 0.43% 10.87% 11.11% 15.56% 4.78% 51.90%

86P19 24.46% 2.11% 15.85% 4.23% 2.55% 0.61% 48.10%

86P21 1.65% 5.73% 14.30% 3.10% 4.47% 0.48% 53.84%

86P23 10.28% 4.83% 1.21% 0.01% 1.62% 0.93% 48.57%

92P209 4.13% 0.00% 9.59% 22.51% 3.74% 2.67% 56.32%

Fake 2.26% 0.00% 40.46% 3.13% 0.97% 0.01% 25.88%

Painting Not An. Black White Pure 2-Mix 3-Mix Negative

As a result of the low performance in accurately determining the correct mixture, the
deep learning model for mixed pigment prediction cannot be used in the authentication
method proposed. However, this deep learning model remains useful to determine the
required pigment fractions to match a colour for restoration purposes.

4.3.4 Authentication Results

As discussed in the previous section, the deep learning model formixedpigmentprediction
although it produces good results approximating the hyperspectral image Z ∈ R𝑊×𝐻×𝐵

from the dictionary of pigments in the reference database, it does not generate the expected
results that can be confirmed via XRF matching. Thus, its use in the proposed method
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should be replaced by a hyperspectral metric function for matching any reflectance against
the set of artificial mixtures generated using subtractive mixing. This, along with the
removal of Pb from the white pigment as described in section 4.3.1 results in the updated
method described below.

First, the artificial pigment mixtures using 2, 3 and 4 pigments out of the 16 pigments
in the reference database in steps of 10% using the subtractive mixing model from Eq.
4.5 and the combination of pigments without repetition as defined in Eq. 4.6 must be
calculated. Only entries where non-zero percentages exist are used. Then, evaluate each
point in the hyperspectral image using the following algorithm steps:

1. Reduce the noise caused by the acquisition process by smoothing the reflectance
point using a Savitzky–Golay filter with 5 samples and order 3.

2. Predict the pure pigment assignment using the deep learning model forpure pigment
identification.

3. Confirm if the point matches white or black by calculating the error between the
associated reflectances in the reference database entry and the point reflectance
using RMSE. If it does, mark the point as Black or White and move to the next point,
otherwise, continue.

4. Using a threshold Δ𝐸∗
𝑎𝑏

= 18 identify if the CIELab colour components match any of
the samples in the XRF database. If the point does not match any XRF sample then
marked the point as Not Analysed and move to the next point, otherwise, continue.

5. If the point analysed matches the colour of at least one XRF sample, but no XRF
sample exists that can be generated as a mixture of 1, 2, 3 or 4 pigments in the
reference database, i.e., the combination of chemical elements of the mixture do not
match the XRF chemical elements, then mark the pigment as Negative and move to
the next point, otherwise, continue.

6. Check if the point is pure by checking if the pure pigment prediction matches an XRF
sample that has similar colour and that matches the colour and chemical elements
of the pigment in the reference database. If it does, mark the point as Pure and move
to the next point, otherwise, continue.

7. Determine if the point is a potential mixture of 2 pigments by checking if at least an
XRF sample exists that contains a valid 2-pigment chemical element combination
and that matches the colour of the point analysed. If two or more samples exist,
select the one with the smallest RMSE value.

8. Determine if the point is a potential mixture of 3 pigments by checking if at least an
XRF sample exists that contains a valid 3-pigment chemical element combination
and that matches the colour of the point analysed. If two or more samples exist,
select the one with the smallest RMSE value.
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9. Determine if the point is a potential mixture of 4 pigments by checking if at least an
XRF sample exists that contains a valid 4-pigment chemical element combination
and that matches the colour of the point analysed. If two or more samples exist,
select the one with the smallest RMSE value.

10. If the point is a potential mixture of either 2, 3 or 4 pigments exclusively, i.e., it
matches one but not the other, then mark the point as Mixed and analyse the next
point, otherwise continue.

11. If the point is a potential mixture of more than one combination of pigments, e.g.,
a potential mixture of 2 pigments but also a potential mixture of 3 pigments, then
mark the point as Mixed but assign to the point the combination with the smallest
RMSE value and move to the next point, otherwise continue.

12. Any point that did not meet any of the previous conditions must be marked as
Negative.

Finally, the number of Negative, Not Analysed, White, Black, Pure and Mixed points must
be quantified and the corresponding areas calculated. The numerical result of analysing
the 12 off hyperspectral test images with the proposed pigment authentication method is
shown in Table 4.5.

Table 4.5: Final results of area classification using the proposed method.

68P11 0.38% 1.39% 7.73% 2.80% 4.89% 32.72% 50.01% 0.09%

77P2 2.25% 0.00% 4.94% 3.19% 1.20% 17.78% 38.22% 1.25%

77P5 0.11% 0.00% 11.92% 17.84% 4.44% 46.38% 85.00% 0.00%

77P8 9.33% 5.96% 4.11% 4.57% 2.81% 26.80% 21.40% 0.00%

77P9 0.18% 3.10% 12.19% 10.07% 5.60% 33.69% 34.86% 0.00%

77P16 1.05% 2.21% 10.27% 5.56% 0.18% 10.09% 27.75% 0.00%

77P20 5.41% 0.44% 10.87% 11.04% 5.30% 28.07% 38.93% 0.00%

86P19 24.46% 2.21% 15.85% 4.25% 10.39% 25.20% 15.55% 0.00%

86P21 1.65% 5.82% 14.31% 2.67% 6.24% 30.25% 22.44% 0.18%

86P23 10.28% 5.05% 1.21% 0.05% 1.50% 20.99% 28.38% 0.00%

92P209 4.13% 0.00% 9.60% 22.04% 13.30% 46.36% 3.53% 0.00%

Fake 2.25% 0.00% 40.48% 3.29% 16.72% 0.30% 0.04% 9.63%

Painting Not An. Black White Pure 2-Mix 3-Mix 4-Mix Neg.

Using the quantified areas, the indicator of authenticity 𝐼𝑎(𝑀/𝐴𝑚) can be calculated
as the proportion of the area analysed and confirmed as Amadeo, 𝐴𝑚, via the algorithm
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proposed relative to the area not analysed, 𝑁𝑜𝑡𝐴𝑛, using Eq. 4.10 [171].

𝐼𝑎(𝑀/𝐴𝑚) = 𝐴𝑚 × (1 − 𝑁𝑜𝑡𝐴𝑛) (4.10)

The tabulated results are shown in Table 4.6. As expected, the results show a high
probability of authenticity for most paintings analysed. Paintings 77P8, 86P19 and 86P23
show a lower probability of authenticity dictated primarily by the large number of pixels
marked as Not Analysed. This is, large areas of the painting where no XRF samples are
available. It must be noted however that, as previously discussed, the accuracy of the
results is dictated by the accuracy of the data used and as provided by [171].

Table 4.6: Probability authenticity using
pigment analysis.

68P11 90.06%

77P2 84.83%

77P5 92.68%

77P8 64.91%

77P9 84.33%

77P16 74.89%

77P20 78.78%

86P19 42.43%

86P21 72.27%

86P23 63.99%

92P209 82.54%

Fake 21.11%

Painting Probability of Authenticity

The method proposed facilitates the generation and matching of mixtures that can
contain up to 4 different pigments. This feature enables better matching and identification
of the mixtures per area. Table 4.7 shows the area breakdown per pigment mixture
identified in painting 86P21. As expected, most of the areas analysed have been confirmed
to be mixtures of pigments.
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Table 4.7: Area identified per pigment mixture for painting 86P21.

Chrome Yellow 0.790%

Cerulean Blue 2.403%

Prussian Blue 0.005%

Lead White 17.119%

Ivory Black 6.970%

Chinese Vermilion Chrome Yellow 1.633%

Chinese Vermilion Viridian 1.431%

Yellow Ochre Cerulean Blue 0.146%

Yellow Ochre Viridian 1.192%

Yellow Ochre Lead White 0.511%

Chrome Yellow Prussian Blue 0.539%

Chrome Yellow Lead White 0.002%

Cerulean Blue Lead White 0.055%

Cerulean Blue Ivory Black 0.095%

Prussian Blue Viridian 1.211%

Prussian Blue Lead White 0.655%

Viridian Lead White 0.002%

Chinese Vermilion Yellow Ochre Chrome Yellow 0.063%

Chinese Vermilion Yellow Ochre Viridian 0.034%

Chinese Vermilion Chrome Yellow Viridian 2.325%

Chinese Vermilion Chrome Yellow Lead White 6.173%

Chinese Vermilion Chrome Yellow Ivory Black 2.743%

Chinese Vermilion Viridian Lead White 0.589%

Chinese Vermilion Viridian Ivory Black 0.430%

Yellow Ochre Chrome Yellow Prussian Blue 0.034%

Yellow Ochre Chrome Yellow Viridian 0.102%

Yellow Ochre Chrome Yellow Lead White 0.037%

Yellow Ochre Chrome Yellow Ivory Black 0.180%

Yellow Ochre Cobalt Blue Cerulean Blue 0.038%

Pigment 1 Pigment 2 Pigment 3 Pigment 4 Area

Continued on next page
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Table 4.7: Area identified per pigment mixture for painting 86P21. (Continued)

Yellow Ochre Cerulean Blue Lead White 0.876%

Yellow Ochre Cerulean Blue Ivory Black 0.046%

Yellow Ochre Prussian Blue Viridian 0.400%

Yellow Ochre Prussian Blue Lead White 0.061%

Yellow Ochre Viridian Lead White 4.780%

Yellow Ochre Viridian Ivory Black 5.343%

Yellow Ochre Lead White Ivory Black 4.153%

Chrome Yellow Prussian Blue Viridian 0.014%

Chrome Yellow Prussian Blue Lead White 0.006%

Chrome Yellow Prussian Blue Ivory Black 0.040%

Chrome Yellow Viridian Lead White 1.489%

Cobalt Blue Cerulean Blue Lead White 0.002%

Cobalt Blue Cerulean Blue Ivory Black 0.706%

Cerulean Blue Lead White Ivory Black 1.791%

Prussian Blue Viridian Lead White 2.284%

Prussian Blue Viridian Ivory Black 0.327%

Prussian Blue Lead White Ivory Black 1.131%

Chinese Vermilion Yellow Ochre Chrome Yellow Cobalt Blue 0.519%

Chinese Vermilion Yellow Ochre Chrome Yellow Viridian 0.504%

Chinese Vermilion Yellow Ochre Chrome Yellow Lead White 2.534%

Chinese Vermilion Yellow Ochre Chrome Yellow Ivory Black 0.023%

Chinese Vermilion Yellow Ochre Cobalt Blue Viridian 4.455%

Chinese Vermilion Yellow Ochre Viridian Lead White 3.804%

Chinese Vermilion Yellow Ochre Viridian Ivory Black 0.014%

Chinese Vermilion Chrome Yellow Viridian Lead White 3.789%

Chinese Vermilion Chrome Yellow Viridian Ivory Black 0.630%

Chinese Vermilion Chrome Yellow Lead White Ivory Black 1.706%

Chinese Vermilion Viridian Lead White Ivory Black 0.183%

Yellow Ochre Chrome Yellow Prussian Blue Viridian 0.040%

Pigment 1 Pigment 2 Pigment 3 Pigment 4 Area

Continued on next page
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Table 4.7: Area identified per pigment mixture for painting 86P21. (Continued)

Yellow Ochre Chrome Yellow Prussian Blue Lead White 0.023%

Yellow Ochre Chrome Yellow Prussian Blue Ivory Black 0.014%

Yellow Ochre Chrome Yellow Viridian Lead White 1.475%

Yellow Ochre Chrome Yellow Viridian Ivory Black 0.299%

Yellow Ochre Chrome Yellow Lead White Ivory Black 0.052%

Yellow Ochre Cobalt Blue Cerulean Blue Lead White 0.839%

Yellow Ochre Cobalt Blue Cerulean Blue Ivory Black 0.002%

Yellow Ochre Cerulean Blue Lead White Ivory Black 1.791%

Yellow Ochre Prussian Blue Viridian Lead White 0.357%

Yellow Ochre Prussian Blue Viridian Ivory Black 0.130%

Yellow Ochre Prussian Blue Lead White Ivory Black 0.125%

Yellow Ochre Viridian Lead White Ivory Black 1.959%

Chrome Yellow Prussian Blue Viridian Lead White 0.011%

Chrome Yellow Prussian Blue Lead White Ivory Black 0.017%

Cobalt Blue Cerulean Blue Lead White Ivory Black 1.202%

Prussian Blue Viridian Lead White Ivory Black 0.365%

Pigment 1 Pigment 2 Pigment 3 Pigment 4 Area

For visualisation purposes, each point of the paintings analysed was assigned the
reflectance of the matched pure pigment or pigment mixture. In the case of points marked
as Not Analysed a reflectance corresponding to bright pink is used and for points marked
as Negative a reflectance of bright purple is used. The resulting, estimated sRGB images
are then estimated using the D65 illuminant. Figure 4.30 shows the resulting sRGB images
from the assigned reflectances for painting 86P21 and the DCR Fake painting. Images
from [171] are included for comparison as these could not be replicated using the supplied
data. Unlike the resulting images obtained in [171] where only approximated sRGB values
were used, our approach allows visualising truly reconstructed images from the predicted
pigment assignments which allows visual correlation with the ground truth images.

For benchmarking and comparison, the use of SAM applied to the derivative of the
smoothed reflectance for mixed pigment identification only as employed in the method
from [171] instead of the RMSE function was evaluated. Similarly, the use of 3 and
4 pigments in the artificial mixtures as well as the exclusion of black and white, i.e.
14 pigments instead of 16 pigments in the artificial mixtures, was evaluated. To aid
comparison, the reflectance reconstruction error was measured using RMSE and MRAE.
The reconstruction error results are summarised in Table 4.8 and plotted in Figure 4.31
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(a) 86P21 in [171]
(b) 86P21 by the proposed
method

(c) Fake in [171]
(d) Fake by the proposed
method

Figure 4.30: Comparison of results obtained in [171] and using the proposed method for painting
68P21 (top) and Fake (bottom).

where it can be seen that the proposed method using RMSE surpasses the performance
using SAM as it produces the most accurate reconstruction while producing a good
indicator of authenticity as shown in Table 4.9. Similarly, the use of 4-pigment mixtures
including black and white generates a more accurate reconstruction of reflectances which
are validated via XRF matching.

Table 4.8: Hyperspectral reconstruction error for the metric function and pigment com-
bination used.

68P11 0.0861 0.1706 0.0853 0.1563 0.1160 0.3436 0.1504 0.5815

Painting
RMSE 3/16 RMSE 4/16 RMSE 3/14 SAM 3/14

RMSE MRAE RMSE MRAE RMSE MRAE RMSE MRAE

Continued on next page
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Table 4.8: Hyperspectral reconstruction error for the metric function and pigment com-
bination used. (Continued)

77P2 0.0895 0.2179 0.0882 0.2037 0.1243 0.3827 0.1674 0.6098

77P5 0.0878 0.2074 0.0868 0.1860 0.1191 0.3714 0.1638 0.5316

77P8 0.0711 0.2347 0.0700 0.2156 0.0978 0.4197 0.1379 0.5798

77P9 0.0931 0.2342 0.0927 0.2237 0.1082 0.3430 0.1308 0.5132

77P16 0.1198 0.2662 0.1191 0.2452 0.1452 0.3947 0.1624 0.5321

77P20 0.0931 0.2272 0.0926 0.2103 0.1110 0.3891 0.1395 0.6146

86P19 0.1235 0.3182 0.1231 0.3077 0.1353 0.4314 0.1483 0.6528

86P21 0.1168 0.3363 0.1146 0.3313 0.1335 0.3947 0.1576 0.5265

86P23 0.0475 0.3869 0.0464 0.3199 0.0607 0.5164 0.0938 0.7491

92P209 0.1107 0.2913 0.1107 0.2905 0.1475 0.3902 0.1618 0.4583

Fake 0.1697 0.3612 0.1697 0.3611 0.2182 0.3104 0.2191 0.3298

Painting
RMSE 3/16 RMSE 4/16 RMSE 3/14 SAM 3/14

RMSE MRAE RMSE MRAE RMSE MRAE RMSE MRAE

Table 4.9: Indicator of authenticity for the metric function and
pigment combination used.

68P11 90.06% 90.06% 90.02% 90.02%

77P2 84.86% 84.86% 82.99% 82.99%

77P5 92.68% 92.68% 90.70% 90.70%

77P8 64.91% 64.91% 63.68% 63.68%

77P9 84.33% 84.33% 80.32% 80.32%

77P16 74.89% 74.89% 72.50% 72.50%

77P20 78.78% 78.78% 76.58% 76.58%

86P19 42.43% 42.43% 38.83% 38.83%

86P21 69.85% 72.27% 66.54% 66.73%

86P23 63.99% 63.99% 59.71% 59.71%

92P209 82.54% 82.54% 52.72% 52.72%

Painting RMSE 3/16 RMSE 4/16 RMSE 3/14 SAM 3/14

Continued on next page
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Table 4.9: Indicator of authenticity for the metric function and
pigment combination used. (Continued)

Fake 27.11% 27.11% 27.11% 27.11%

Painting RMSE 3/16 RMSE 4/16 RMSE 3/14 SAM 3/14
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(c) Indicator of authenticity

Figure 4.31: Visualisation of measured results for the metric function and pigment combination
used.

For visualisation only, the sRGB representation of the reconstructed hyperspectral
image of painting 86P21 for the metric function and pigment combinations evaluated are
shown in Figure 4.32.

4.4 Combined Authentication

As proposed in [171], the probability of a piece of artwork analysed being authentic can
be estimated as the total indicator of authenticity 𝐼𝐴 defined in Eq. 4.11, where 𝐼𝑎𝑖 is the 𝑖𝑡ℎ

indicator of authenticity calculated via a given analysis method, and 𝛼𝑖 a weight assigned
to the method.

𝐼𝐴 =

𝑁∑
𝑖=1

𝛼𝑖 𝐼𝑎𝑖 {𝛼 ∈ [0, 1] |
𝑁∑
𝑖=1

𝛼𝑖 = 1} (4.11)
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(a) RMSE 3/16 (b) RMSE 4/16

(c) RMSE 3/14 (d) SAM 3/14

Figure 4.32: sRGB representation of the reconstructed hyperspectral images for the metric function
and pigment combination used for painting 68P21.

In this work, the indicator of authenticity for the brushstroke and pigment analysis
are denoted as 𝐼𝑎(𝐵/𝐴𝑚) and 𝐼𝑎(𝑀/𝐴𝑚) respectively. The corresponding weights applied
to each analysis method have been set to 0.5 to allow direct comparison with the values
obtained in [171]. The values obtained via brushstroke analysis with the deep learning
model proposed, the mixed-method proposed for pigment analysis and the values claimed
in [171] are shown in Table 4.10 for each of the test images analysed.

Table 4.10: Comparison of indicator of authenticity in [171] and our method for
all 12 test images analysed.

68P11 89.00% 91.00% 90.00% 89.20% 90.06% 89.63%

Painting
Method in [171] Proposed method

𝐼𝑎(𝐵/𝐴𝑚) 𝐼𝑎(𝑀/𝐴𝑚) 𝐼𝐴 𝐼𝑎(𝐵/𝐴𝑚) 𝐼𝑎(𝑀/𝐴𝑚) 𝐼𝐴

Continued on next page
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Table 4.10: Comparison of indicator of authenticity in [171] and our method for
all 12 test images analysed. (Continued)

77P2 80.00% 99.00% 89.50% 100.00% 84.86% 92.43%

77P5 95.00% 100.00% 97.50% 100.00% 92.68% 96.34%

77P8 82.00% 99.00% 90.50% 95.10% 64.91% 80.01%

77P9 35.00% 100.00% 67.50% 86.90% 84.33% 85.61%

77P16 99.00% 100.00% 99.50% 97.00% 74.89% 85.95%

77P20 71.00% 100.00% 85.50% 91.00% 78.78% 84.89%

86P19 73.00% 74.00% 73.50% 93.50% 42.43% 67.97%

86P21 70.00% 91.00% 80.50% 99.40% 72.27% 85.84%

86P23 98.00% 84.00% 91.00% 95.60% 63.99% 79.79%

92P209 98.00% 97.00% 97.50% 99.90% 82.54% 91.22%

Fake 42.00% 49.00% 45.50% 53.60% 27.11% 40.35%

Painting
Method in [171] Proposed method

𝐼𝑎(𝐵/𝐴𝑚) 𝐼𝑎(𝑀/𝐴𝑚) 𝐼𝐴 𝐼𝑎(𝐵/𝐴𝑚) 𝐼𝑎(𝑀/𝐴𝑚) 𝐼𝐴

The results obtained with the proposed methodology for authentication are encourag-
ing and in agreement with those obtained by [171]. However, as discussed in section 2.6,
the brushstroke results from [171] quoted are biased due to the handling of the test data
in the KM clustering process. Furthermore, the values for pigment analysis reported by
[171] were not repeatable with the data and code supplied.

In conclusion, the methodology proposed paves the path for further enhancements
that can include results from other authentication methods or the same methods if further
improvements in the deep learning models are implemented or if more data are made
available for training.

4.5 Discussion

The use of deep learning for pure pigment prediction, i.e., image segmentation based on
hyperspectral analysis was successfully implemented using three-dimensional convolu-
tional neural networks. To train the model, a training methodology was devised where
an artificial hyperspectral image containing pure pigments as well as artificial colour
mixtures was generated. The spatial arrangement of the data within the training image
was found to be of high importance for the performance of the model. The training image
generated consisted of squares of areas of pure and mixed pigments randomly distributed
within the image. Although this image produced better results than vertical or horizontal
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bars, the content of the image could be perhaps improved by the use of other geometri-
cal features like circles. Such an image containing non-linear features could potentially
improve the performance of the model if the features are closer to real-life features found
in paintings and drawings. Alternatively, a truly generated group of paintings where the
pigment content is known could be manually created and hyperspectral images obtained
to generate a set of ground truth images to be used for training and validation. However,
this process can be time-consuming and may not be able to reproduce the features of
Souza-Cardoso or use the same pigments as used in his artwork.

Regarding the hyperspectral unmixing problem, a deep learning model was imple-
mented to estimate the proportions of the pigments in the reference database required
to reconstruct a reflectance. The model successfully approximated the reflectances of
a painting. However, the reflectances generated did not necessarily contain the same
pigment proportions used in real-life verified via 𝜇EDXRF analysis. This is because the
model is unconstrained and will always aim to approximate any given reflectance using
a combination of all pigments in the reference database. This resulted in a large number
of points classified as Negative in the authentication process thereby limiting the use of
the proposed model to the estimation of reflectances and colours for restoration purposes
only. Further improvements could however be made to the model architecture or perhaps
to the training data which also play an important role in the performance of the model.
Additional training and validation could be achieved should further imagery be made
available where the actual content of the pigment proportions is known.

The final approach used for the authentication of artwork is therefore a combination of
deep learning for pure pigment prediction and hyperspectral metric functions for mixed
pigment identification. Using the method proposed with the improvements added to the
colour difference calculation and generation of artificial mixtures achieved a significant
improvement of the previous work based on the use of SAM and manual thresholding.
Future development of this could include the use of the numerical spectral information
obtained with 𝜇EDXRF for processing via machine learning. This could potentially reduce
human intervention required during the identification of associated chemical elements,
thereby increasing the reliability of the authentication process.
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5

Conversion of sRGB to Hyperspectral
Images

5.1 Introduction

This chapter presents implementation and results obtained from the work on the estima-
tion of hyperspectral images from sRGB images. This task is particularly important for
researchers as it provides them with powerful information regarding the colour content
of a painting. Such information can be used to highlight features or reveal details that to
the naked eye are hard to identify or that other techniques might not be able to uncover.
These details can be used for the purpose of conservation, authentication of artwork or
for image retrieval systems in other contexts [128]. Nevertheless, in the art world the
difficulty to perform analysis of cultural heritage artwork intensifies as the number of
artworks for any given artist is limited and access to original items for data acquisition
can be unattainable. Therefore, it is important to devise methods to estimate certain data,
in this particular case, hyperspectral images from existing accessible information in the
form or sRGB images.

The work reported in this chapter is a by-product of our primary interest; artwork
authentication using deep learning methods. This work is motivated by the need for
hyperspectral imagery of drawings and watercolour artwork by Souza-Cardoso for test-
ing the authentication methods developed. The approach proposed differs from other
work by providing a method that uses a reduced set of available data for training. The
method developed includes an architecture based on two DNNs; one reconstructing the
hyperspectral image while the other corrects for biases from the acquisition method.

5.2 Methodology

Hyperspectral imaging is usually obtained with hyperspectral cameras and with direct
access to the original artwork of interest. This can be a particularly challenging and
expensive process which is in many cases, prohibitive. One way to solve this is by
estimating hyperspectral images from bitmap images of the artwork. More specifically,
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estimating the hyperspectral image Z ∈ R𝑊×𝐻×𝐵 where𝑊 , 𝐻 and 𝐵 are the width, height
and number of spectral bands respectively, from the sRGB image of the same painting
I ∈ R𝑊×𝐻×3.

To estimate the hyperspectral image Z, two sets of data are available. The first dataset
is a dictionary of𝑁 reference reflectances P𝑖 ,𝜆 , 𝑖 ∈ {1...𝑁} corresponding to base pigments
known to have been used in at least a painting. The second dataset is an exemplary group
of hyperspectral signatures S ∈ R𝐵 from a painting obtained with a hyperspectral camera
and 𝐵 spectral bands. This is, an array of reflectances from a true hyperspectral image.

The proposed method to address the problem at hand, consists of a two-step process
that implements DNNs to estimate the reflectance of each pixel in a bitmap image of
heritage artwork. A block diagram of the proposed method is shown in Figure 5.1.

Colour 
Translation

Subtractive 
Mixing

1st Stage Network

Colour 
Translation

2nd Stage Network

1st Stage Training

2nd Stage Training

    RGB 
Image

Reconstructed 
Hyperspectral 

Image

Figure 5.1: Block diagram of the proposed method for hyperspectral reconstruction from sRGB
images.

In a first step, the preliminary hyperspectral image estimate is obtained by analysing
the colour components of each pixel of the sRGB image with a DNN. More specifically,
the CIELab colour components of a pixel in the sRGB image calculated using the D65
illuminant and CIE 1931 colour matching functions. The neural network proposed for this
stage (1st Stage Network) is a 7-layer deep feed-forward, fully-connected network with 33,
35, 33, 30, 27, 25 and 20 neurons in each hidden layer respectively and a linear activation
function. The training is performed by computing the mean squared error of the targets.
This first network must be trained with a large dataset of reference reflectances and their
corresponding CIELab colour components (Colour Translation).

The output of the first network can contain errors compared to a true hyperspectral
image obtained with a camera due to the inherent effects of the camera itself or changes
in illumination. Thus, a correction on the preliminary estimate is required and performed
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by the second stage network. This network is trained with the exemplary reflectance
signatures S ∈ R𝐵 of a painting as labels and a first estimate of its corresponding sRGB
image as input. The output of the second network therefore closely resembles the output
of the hyperspectral camera if used on the same painting analysed. The network proposed
for the second stage is a 4-layer deep feed-forward, fully-connected network with 33, 35,
35 and 33 neurons on each hidden layer respectively and with a linear activation function.
The correction applied by this network is less complex than the initial colour to reflectance
estimation which allows for a lower number of hidden layers required. The performance
of the network is computed using the mean square error function.

5.2.1 Training and Test Data

The data used for this task are the set of reflectances previously collected at DCR of NOVA
and used by [171]. These include the reflectances of the 16 pigments of appendix A as
selected by [171] plus Cadmium Green. These reference reflectances are shown in Figure
5.2.

Figure 5.2: Reflectances in the reference database used as selected in [171].

Artificial mixtures using up to 3 pigments out of 17 in steps of 10% of the reference
reflectance database were generated using the subtractive colour mixing model proposed
in Eq. 4.5. The sRGB representation of the mixtures is shown in Figure 5.3. The
corresponding CIELab colour components to be used in the first stage network were also
computed for each artificial mixture generated using the D65 illuminant.

The test dataset includes a subset of the hyperspectral image database in appendix B
as shown in Figure 5.4 corresponding to images of painting by Amadeo de Souza-Cardoso
only.
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Figure 5.3: sRGB representation of the mixtures used for training of the first stage network.

68P11 77P2 77P5 77P8 77P9 77P16

77P20 86P19 86P21 86P23 92P209

Figure 5.4: sRGB representation of the hyperspectral image dataset used.

5.3 Test Results

Each of the 11 hyperspectral images in the test dataset was converted to sRGB and CIELab
colour components which then were fed through the 2-stage process to estimate the
hyperspectral cube. An example of a reconstructed reflectance obtained for a point of
image 86P21 is shown in Figure 5.5 along with the ground truth version for comparison.
As observed, the overall signature of the reconstructed reflectance shows a similar pattern
as that of its ground truth version.

400 450 500 550 600 650 700 750

Wavelength (nm)
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Figure 5.5: Ground truth and reconstructed reflectances for pixel 50,50 in painting 86P21.
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To analyse the performance of the algorithm proposed the reconstruction error was
calculated using MRAE as defined in Eq. 4.8. The second function to estimate the
error is SAM averaged over the entire hyperspectral image as defined in Eq. 5.1 . The
reconstruction error between original and reconstructed hyperspectral images is presented
in Table 5.1.

𝑆𝐴𝑀 =
1
𝑛

𝑛∑
𝑖=1

cos−1
𝑧̂𝑇
𝑖𝑗
𝑧𝑖 𝑗

∥ 𝑧̂𝑖 𝑗 ∥2∥𝑧𝑖 𝑗 ∥2
(5.1)

Table 5.1: Reconstruction error measured us-
ing MRAE and SAM.

68P11 0.0750 0.0815

77P2 0.1384 0.1737

77P5 0.1239 0.0929

77P8 0.1649 0.1473

77P9 0.1755 0.1603

77P16 0.4938 0.1220

77P20 0.9959 0.1155

86P19 0.2524 0.1293

86P21 0.2763 0.1670

86P23 0.7010 0.1685

92P209 0.4610 0.1695

Painting MRAE SAM

For visual comparison of the results obtained, hyperspectral images at selected wave-
lengths are displayed in Figure 5.6 for painting 86P21; hyperspectral images are displayed
in 8-bit greyscale for visualisation. The error map between the ground truth and the re-
construction highlights the regions where the largest discrepancy is found for the selected
wavelengths; the error appears higher towards the upper end of the spectrum.

Finally, a comparison of the sRGB images generated from the original and reconstructed
hyperspectral images is shown in Figure 5.7 with the colour difference measured as the
ED of the CIELab colour components for each pixel.

5.4 Conclusion

The work achieved the development of a practical method where readily available hy-
perspectral signatures of reference oil paint pigments are used in conjunction with two
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Figure 5.6: Reconstructed and ground truth reflectances at selected wavelengths of image 86P21.
Error map on a scale of ±255 RGB.
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Figure 5.7: sRGB version of the ground truth and the reconstructed hyperspectral image of painting
86P21. Error map shown as the Euclidean difference of the CIELab values.
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DNNs to reconstruct hyperspectral images of paintings. This is, for a new unseen sRGB
image of a painting, its corresponding hyperspectral data can be reconstructed through
the method proposed. The first network in the method is trained with the reflectance of ar-
tificial colour mixtures and their corresponding colour representation allowing reflectance
prediction in the new unseen sRGB images. The second network serves as a regulator to
learn and adjust the inherent characteristics such as illumination and camera properties.
The results obtained however do not consider the effects of metamerism or that caused by
layers on the paintings due to ageing, dirt or protective coatings. Despite the limitations
and approximation error, in particular at higher wavelengths, the proposed method has
achieved promising results for use in the analysis of heritage artwork, namely paintings
by Souza-Cardoso.

Although the pigment mixtures in this case were limited to artificial mixtures of 3
pigments, it is recognised that in practice such a mixture rarely is limited in real life. On
many occasions the mixtures might contain more pigments depending on the style of the
artist. This aspect could be also a contributing factor to the errors measured. In other
words, the artificial mixture can be generated by any chosen number of pigments with
any arbitrary percentages. However, increasing the number of pigments in the mixture
and the resolution of their concentrations, results in an increased computational load that
grows exponentially potentially rendering the implementation prohibitive.

In conclusion, our approach successfully provides an alternative point of view in terms
of spectral reconstruction and is interesting in the art field, when neither hyperspectral
cubes of the artworks, nor high-resolution sRGB images are easily attainable, yet pre-
acquired hyperspectral curves of base materials are available. If the reflectance data of
known base pigments are unavailable, the proposed method could be used by building
the dictionary of base reflectances from user-selected points of the hyperspectral image of
a given painting. Artificial mixtures could then be generated from the selected reflectances
thereby allowing to describe other paintings in terms of the chosen data. Thus, to reduce
the reconstruction error, a wide selection of points with different colour would be required.
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Analysis Tools

6.1 Introduction

In this section, the rationale and importance concerning the development of two appli-
cations are explained. First, an AR mobile application aiming for the general public,
i.e., museum visitors, art enthusiasts, art lovers or art experts, to visualise the pigment
of the artworks by Amadeo de Souza-Cardoso. Second, a desktop application aiming
for art specialists, i.e., conservators and restorers, with multiple purposes, such as the
visualisation of pigments and hyperspectral data.

6.1.1 Motivation

As we continue striding in the 21st century with the rapid advancement and innovation in
multitudinous aspects, digitalisation is no longer a new concept referring to technological
development, but more of a lifestyle. Society 5.0 is the very example of such a revolution
in terms of digitalisation, where humans are deemed the centre of our society. This
idea was first introduced in Japan, following a chronological definition of Hunting and
Gathering Society (Society 1.0), Farming Society or Agricultural Society (Society 2.0),
Industrial Society (Society 3.0), Information Society (Society 4.0), and Human-Centred
Society (Society 5.0) [97, 220, 227].

Society 5.0 implements the most state-of-art technologies, such as AI and the Internet
of Things (IoT) to facilitate human day-to-day life. The majority of these applications
in Society 5.0 focus on public services such as healthcare and transportation, and daily
activities like eating, shopping, and learning. Sometimes, it extends to broader services
like disaster prediction and prevention, agriculture optimisation and logistics automation
among others [97, 220, 227]. However, relatively less attention is paid to cultural heritage
sectors in Society 5.0, to be more precise, the implementation of such high technology in
artistic settings like galleries and museums.

The applications of AR and Virtual Reality (VR), that can provide an interactive and
immersive experience for the users have been gradually introduced to visitors in so-called
cultural heritage tourism just in the last few years [37]. Studies concerning AR and VR
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also have been slowly established to evaluate the impact on a user-centred experience. For
instance, the work in [173] investigated the use of AR at a Jewish museum targeting mainly
school children, and reported a more engaging and enhanced learning experience in an
educational and cultural context, as well as a more sustainable museum infrastructure. The
ArkaeVision project [37] introduced a game-like virtual environment to further motivate
the users to have a more "culturally-qualified" immersion in a storytelling context to explore
historical architectures; it was deemed to be very promising to provide a communicative
and explorative approach to an educational and cultural heritage learning experience. The
work in [238] created a large-scale VR experience juxtaposing the virtual and physical
spaces making full use of the human physical, tactile and vestibular sensations via the
stimulation from the visual and audio information of the VR. Such installations proved
to be very convenient and re-applicable in different museums since they are scalable,
tourable and can easily be moved around without conventional fixated installations.
Although in the work of [257], the author intended to conduct a direct comparison of
user experiences between these two types of technologies, the acquired results showed
only positive feedback in areas including enjoyment, presence, cognitive, emotional and
behaviour engagement in both, with slightly higher scores obtained for VR technology
than AR technology in just a few aspects. The work in [75] confirmed the value of AR
in various aspects such as economic, social, cultural and historical from the stakeholders’
perspectives via a case study. The study published in [30] also reviewed different systems
including AR, VR and mixed-reality systems in order to identify appropriate installation
for specific cases in cultural heritage settings. Other examples include the work in [117],
where two AR applications were tested and determined that active interactive participation
improved participants’ understanding of historical events. Or the work in [134], where
experiments were performed on school children by integrating educational learning with
AR games making understanding and learning more entertaining.

Despite the continuous advancement and emergence of AR, VR and mixed media
systems, their use in cultural and historical environments is still sparse [22]. In Portugal,
the use of these technologies in the areas of authentication, conservation and restoration
remains limited. In pursuance of bridging the gap between cultural heritage and technol-
ogy, an AR application and a desktop application are proposed based on research on the
artworks done by late Portuguese artist Amadeo de Souza-Cardoso. The implementation
and use of these is expected to help with the dissemination of information via a more en-
gaging and captivating method for museum and gallery participants. Similarly, their use is
intended to help connecting the collaborative networks concerning governmental entities,
the scientific community and cultural institutions. This chapter elaborates on the de-
tails concerning the applications development by a successfully established collaborative
network, and its application and benefit in the pursuit of a Society 5.0 environment.
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6.1.2 Background

We present a case study that showcases some of the results collated from a long-term project
established in the field of cultural heritage conservation and restoration. In particular, the
work is focused on the artwork by the late Portuguese artist Amadeo de Souza-Cardoso.
The work intends to analyse his artwork while creating tools that facilitate the scientific
and forensic analysis of his creations. Through the project, it is expected that the results
obtained will lead to a more thorough understanding of the artist’s style and techniques
as well as to the implementation of processes for art authentication and prevention of
forgeries. The knowledge and information acquired will also contribute to the production
of techniques and material for the dissemination of information and the inclusion of
society in the preservation of cultural heritage.

The successful progress of the project to date has been achieved by the establishment
of a network of organisations sharing a common objective: the study and dissemination
of information related to cultural heritage. The structure of this collaborative network,
as shown in Figure 6.1, contains a variety of entities including scientific researchers
from multiple academic institutions, government departments, historians, curators and
museums.

Users / Society

Physical Data Flow

Digital Data / Information Flow

Collaborative Network of Research Scientists, Academics, Cultural and Governmental Entities

LINCS

NOVA U. 
of Lisbon

Centro de Arte 
Moderna

Gulbenkian

Other 
Academic 

Institutions

Governmental 
Departments

Judicial Police Other Museums & 
Cultural Institutions

DCR

Figure 6.1: Block diagram of the collaborative network of the case study.

During the earlier stages of the project [10, 172], a dynamic team effort between entities
was required to complete the data acquisition process. This included the invaluable
assistance from museums for direct access to the artwork and the support of internal
and external academic laboratories for access to specialised analytical and hyperspectral
imaging equipment. Beyond the presential use of these temporary, virtual laboratories
for physical data processing, the majority of the team interaction was conducted through
the use of digital channels for sharing digital information, methodologies, results and
organisation of other activities.

In subsequent stages of the project, researchers from different areas of specialisation
turned their attention to the analysis of the data by employing analytical and digital
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processing techniques. This interdisciplinary work effectively resulted in the generation
of algorithms to determine features of interest in the artwork; e.g., chemical composition,
colour identification and degree of authenticity. These algorithms were implemented
in a desktop application to facilitate the analysis of data, in particular, by government
institutions to verify the authenticity of works of art.

With the information and progress attained, the focus of the research team turned to
the next step where the following questions were considered: How can the knowledge and
techniques developed be used for the benefit of society? Is it possible to increase awareness
of the need to preserve cultural heritage while engaging society through the use of modern
technology? To answer these questions, the team proposed the use of desktop and mobile
applications for the analysis and visualisation of artwork that could be used by a wide
variety of skilled and non-skilled individuals. The particular use case scenario targeted
society, where it was envisaged that museum visitors could use an AR-enabled mobile
application to enhance their visiting experience. The expected outcome of this solution
was twofold; first, the mobile application would be used to disseminate results obtained
by the research group and second, it would engage users with art through technology
thereby fulfilling the objective of benefiting society with a step forward towards Society
5.0.

6.2 Amadeo AR

6.2.1 Overview

The applications covered in this study are focused on the artwork from Amadeo de Souza-
Cardoso which is primarily on display at the Calouste Gulbenkian Museum in Lisbon.
The artwork was limited initially to a group of 11 paintings of Souza-Cardoso (Figure 6.2)
along with a selection of 16 pigments known to have been used by the artist. A group of
individuals from different organisations were involved in the temporary acquisition of the
original artwork from the Calouste Gulbenkian Museum for photography and digitisation.
The hyperspectral images obtained were made available to the rest of the team members
for analysis.

Prediction of features of interest was achieved through the analysis of the hyperspectral
and analytical data using deep learning algorithms developed by the scientific team. These
algorithms were implemented in a desktop application and included the following two
main methods among others:

• The combination of numerical metric functions and convolutional neural networks
for the identification of pure pigments [53].

• The estimation of the probability of artwork belonging to Souza-Cardoso based on
brushstroke analysis using convolutional neural networks [54].
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68P11 77P2 77P5 77P8 77P9 77P16

77P20 86P19 86P21 86P23 92P209

Figure 6.2: Overview of the 11 paintings by Amadeo de Souza-Cardoso evaluated.

Post-processing of the results generated images highlighting individual pigments of
the artwork that were subsequently compiled into a database for ease of use. Finally, the
results of the analyses using the desktop application can be then combined to obtain a
statistical evaluation of the authenticity of the artwork evaluated.

The proof of concept of Amadeo AR was developed at the NOVA University of Lisbon
using imagery obtained through painting analysis. To facilitate future access of the
application to the wider society, the mobile application was developed using the Android
operating system given the significant 71% worldwide market share compared to the 28%
of its main competitor, iOS [231].

The functionality of the mobile application has been, in principle, constrained to the
visualisation of previously identified features through the use of AR technology. Figure
6.3 shows the block diagram highlighting the data and functionality of Amadeo AR.

The Amadeo AR visualisation process includes the capture and real-time display
of frames with the integrated device camera. The frames are evaluated using Google’s
ARCore technology to identify paintings from within a predefined reference database.
The image is subsequently augmented by overlaying images containing features of interest,
namely the presence of pigments in the reference database. The overlay images are stored
locally and are the result of the analysis performed by the research team using machine
learning algorithms and analysis of hyperspectral imagery.

Currently, the mobile application is constrained to the use of reference and overlay
images derived from the 11 paintings analysed from the collection of Amadeo de Souza-
Cardoso as seen in Figure 6.4. However, it is expected that future deployment of data
through the use of cloud services will allow the visualisation of newly analysed images.
This will allow the research team to further expand the dictionary of analysed artworks
paving the road for the potential expansion to cover artwork from other artists and genres.
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Figure 6.3: Block diagram of Amadeo AR. Dotted lines indicate proposed future development
features.
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Figure 6.4: Detailed diagram of image data in Amadeo AR.
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6.2.2 Usage

This section provides details of the use of the Amadeo AR application with images of
paintings by Souza-Cardoso including examples and practical instructions for its use on
a mobile phone.

After launching the application, the user is presented with a welcome screen (Figure
6.5(a)). A menu button is available to show the currently available activities: "Home",
"Pure Pigments" and "About" (Figure 6.5(b)). By clicking "Home", the user is directed back
to the "Welcome" page. By clicking "About", the user is directed to a page detailing basic
information about the project and application including software version, sponsors and
the associated museum, that is, Calouste Gulbenkian Museum (Figure 6.5(c)).

(a) Welcome (b) Menu (c) About

Figure 6.5: Amadeo AR main screens.

By clicking "Pure Pigments", the user is directed to the primary activity containing a
live-camera screen where images of Souza-Cardoso’s paintings can be scanned (Figure
6.6(a)). The user is required to point the camera towards a painting and keep the mobile
steady to allow the software to scan and recognise the image successfully (Figure 6.6(b)).
If the image of the painting is recognised, the predicted pure pigment overlay image will
be displayed floating on top of the original image (Figure 6.6(c)). The user will then be
presented with three buttons: a "reload" symbol, "i" and "+". The "+" button will show
the list of all pure pigments available allowing the user to select a single or all pigments
to highlight (Figure 6.6(d) and Figure 6.6(e))). The "i" button will bring up a screen with
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information related to the currently tracked painting (Figure 6.6(f)). Finally, the "reload"
button will refresh the screen and clear the AR image so that the user can start afresh to
scan a new painting image.

6.3 Amadeo Image Analysis Tool

6.3.1 Overview

The Amadeo Image Analysis Tool is a computer-based application that implements some
of the algorithms developed during this research. Thus, the deep learning models and
processing are tailored to suit the artwork from Amadeo de Souza-Cardoso. Yet, the tools
included can be easily used or expanded to include analysis of the artwork of other artists.

Currently, the Amadeo Image Analysis Tool (Figure 6.7) includes the following func-
tionality:

• Conversion from sRGB to hyperspectral image (Chapter 5)

• Hyperspectral data visualisation

• Pure pigment prediction and visualisation (Chapter 4)

• Reference pigment palette visualisation

• Brushstroke analysis (Chapter 3)

Conversion of sRGB images to hyperspectral images uses artificial neural networks to
estimate the reflectance of an image on a pixel-by-pixel basis. Pure pigment identification
from hyperspectral images is implemented through a deep learning model that predicts
areas of the image that closely match those pigments in the reference palette. Alternative
methods based on metric functions including RMSE, SAM and SCM are included for
comparison. Brushstroke analysis calculates the probability of a bitmap image being one
of Souza-Cardoso’s artworks based on a deep learning model that analyses the features
of the image.

6.3.2 Usage

This section provides basic instructions on the use of the Amadeo Image Analysis Tool soft-
ware. Examples of the functionality implemented are provided with images of paintings
of Amadeo de Souza-Cardoso.

The tool contains a menu that allows navigation between the multiple screens available
as shown in Figure 6.8. These include: "Home", "RGB To HS", "HS Viewer", "HS Pure Pigment
Viewer", "Pure Pigment Palette Viewer", "Brushstroke Analysis" and "About".

The "RGB To HS" screen (Figure 6.9) allows the user to load an sRGB image in BMP,
PNG or JPG format by clicking the "LOAD RGB" button and convert it to hyperspectral
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Amadeo AR "Pure Pigments" screens.
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Figure 6.7: Amadeo Image Analysis Tool: Home screen.

Figure 6.8: Amadeo Image Analysis Tool: menu.
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data by clicking the "CONVERT TO HS" button using the supplied deep learning model.
The user can then visualise the estimated hyperspectral image at multiple wavelengths
using a variety of colour maps. The hyperspectral data can finally be exported as an image,
an animated Graphics Interchange Format (GIF) file or Matlab data.

Figure 6.9: Amadeo Image Analysis Tool: RGB to HS screen.

In the "HS Viewer" screen (Figure 6.10), the user can visualise the reflectance of any
point in a hyperspectral image by clicking on the image. This hyperspectral image can be
the image estimated in the previous screen. Alternatively, the user can load a Matlab file
containing the hyperspectral image. Zoom functionality is provided for ease of use.

Figure 6.10: Amadeo Image Analysis Tool: Hyperspectral Data Viewer screen.

The "HS Pure Pigment Viewer" screen (Figure 6.11) allows the user to predict the pure
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pigments in the hyperspectral image currently loaded using a deep learning model (DNN)
or one of the metric functions available (SCM, SAM or RMSE). On the right-hand side,
information concerning the pure pigments detected is shown. At the bottom of the screen,
the user can choose either opacity of the original image or the opacity of the predicted
overlay to analyse in more detail the exact location of the detected pure pigments. When
the user is satisfied with the comparison between the original sRGB image and the image
with predicted pure pigments after having tweaked the opacity of each image, the user can
use the "EXPORT RESULTS" button to export the results in a Comma Separated Values
(CSV) file or the "EXPORT IMAGE" button to export the results to an image file.

Figure 6.11: Amadeo Image Analysis Tool: HS Pure Pigment Viewer screen.

Choosing "Pure Pigment Palette Viewer" (Figure 6.12) allows the user to view the infor-
mation about the pure pigments used in this project. The information available includes
the spectral curve of each pigment, the colour coordinates in sRGB, CIE 1931 XYZ Colour
Space (XYZ), CIELab colour components and the relevant chemical components associated
with each pure pigment. The 16 default pure pigments are the pigments obtained directly
from the paint tubes that Souza-Cardoso used during his lifetime. Theoretically, the user
can also load other pure pigment database files if available.

In the "Brushstroke Analysis" screen (Figure 6.13), the user can analyse an sRGB image
of a painting using a deep learning model to predict if the painting is an authentic artwork
by Souza-Cardoso or not. First, the user must load the sRGB image of the painting to be
analysed in BMP, PNG or JPG format, and then select the number of samples of the image
to be used for analysis; the higher the number of samples, the more accurate the result
will be. The size of the samples used in the algorithm is 227 × 227 pixels corresponding
to randomly cropped images from the painting image; these samples are augmented
as described in section 3.3. Upon clicking "RUN ANALYSIS", the progress and results
will be displayed on the right-hand side of the screen, where individual samples will
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Figure 6.12: Amadeo Image Analysis Tool: Pure Pigment Palette Viewer screen.

be previewed. When the processing is finished, the final probability in terms of the
authenticity of the processed painting belonging to Souza-Cardoso will be displayed at
the bottom.

Figure 6.13: Amadeo Image Analysis Tool: Brushstroke Analysis screen.

Finally, the "About" screen (Figure 6.14)contains information regarding the sponsor of
the work and application developed.
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Figure 6.14: Amadeo Image Analysis Tool: About screen.

6.4 Usability Trial

Trials involving end-users were performed to evaluate both the desktop application and
the Amadeo AR mobile application. The former was designed to be evaluated as a tool
to be used by scientific researchers and government organisations while the latter was
envisaged to be evaluated as a solution to the research questions proposed. Unfortunately,
due to the unexpected circumstance of the pandemic, the trials on the usage of the two
applications as well as questionnaires concerning their user experience could only be
performed within the Department of Conservation and Restoration at NOVA University
Lisbon (Figure 6.15).

To simplify and reduce the time of the trial and ensure that the subjects do not get dis-
interested easily, which would result in the inaccuracy of the feedback, the questionnaires
were intentionally constructed short, and in a very simple and easy-to-answer manner in
Google forms digitally. A copy of the questions and final responses obtained via Google
forms can be found in Appendix C. The summary of the feedback obtained is as follows.

For the desktop application trial, a group of 17 participants from the scientific com-
munity were given access to the application and sample digital images of artwork for
evaluation. The participants were then asked to provide feedback based on the user
experience via a digital feedback questionnaire. The results, as shown in Figure 6.16,
suggest that although the majority of the participants found the desktop application easy
to use, some improvements to make the application more intuitive would be beneficial.
These could be, for example, adding help buttons, descriptive text and tutorials. Overall,
this application was received with positive feedback and encouragement by the academic
society as indicated by one of the test users: "Add another analysis like Raman, but it was
perfect until now and I’m surprised".
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(a) (b)

(c) (d)

Figure 6.15: Photos of the usability trial of Amadeo AR and Amadeo Image Analysis Tool at DCR
of NOVA University Lisbon.

-100% -75% -50% -25% 0% 25% 50% 75% 100%

3.1 Willing to use the app.

3.2 App is unnecessarily complex.

3.3 App is easy to use.

3.4 Assistance is required to use the app.

3.5 App functions are well integrated.

3.6 App is inconsistent.

3.7 Most people would learn to use this app very quickly.

3.8 App is cumbersome/awkward to use.

3.9 Confident using this app.

3.10 Plenty of knowledge required for use of the app.

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 6.16: Survey results for questions 3.1 to 3.10 from the desktop application trial.
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For the Amadeo AR application, trials involved direct use of the mobile application
by a group of 24 volunteers of various backgrounds. The users tested the Amadeo AR
functionality using printed copies of the artwork analysed and provided feedback on the
overall user experience through a short online survey. The findings of the survey revealed
that 79.2% of the participants were not familiar with Amadeo de Souza-Cardoso or his
artwork despite him being a well-renowned modernist artist in Portugal. This strengthens
the need for engagement of the society with local heritage and the requirement for further
efforts to promote cultural activities. Regarding familiarity with AR applications, 91.7% of
the participants indicated no previous user experience giving a good, unbiased indication
of the overall satisfaction using Amadeo AR. In this case, the majority of participants
indicated a good experience as shown in Figure 6.17. Finally, an indication of the success
of the case study was obtained by asking the participants if the use of AR applications
like Amadeo AR is important in a cultural setting like a museum, and whether an AR
application would increase the likelihood to visit museum exhibits. In both cases, the
overall majority of the participants supported the use of AR applications in a museum
with less than 5% of the population sample indicating low importance. The findings of
the trial in the case study, support the proposed solution to the need for bridging the gap
between technology and cultural heritage. In particular, the mobile application Amadeo
AR was found to have a positive impact on the population sample used. This marks a step
forward toward the use of technology for the benefit of society and the art world.

-25% 0% 25% 50% 75% 100%

5. Mobile app ease of use.

6. Mobile app speed/responsiveness.

7. Importance of AR apps in a museum.

8. Likelihood of visiting an exhibit with AR app.

9. Overall experience with Amadeo AR.

Very Low Below Average Average Above Average Very High

Figure 6.17: Survey results for questions 3.1 to 3.10 from the desktop application trial.

6.5 Conclusion and Further Work

The case study presented successfully implemented a solution to the need for information
dissemination of cultural heritage and engagement of society in cultural activities. The
success of the project was driven by the multidisciplinary collaboration network of research
scientists, museums and governmental institutions established. Thanks to the expertise,
knowledge and resources shared by the team it was possible to overcome the challenges
faced in the collection and digitisation of data from its physical form, sharing of digital
information, development of the processing algorithms software and the Amadeo AR
mobile application.
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The results of the trial confirmed the suitability of AR applications as a tool for the
distribution of information and engagement of society in activities involving cultural
heritage. Further work is planned to include the analysis of other artworks by Souza-
Cardoso. In addition, it is envisaged that the existing methodology will be used to
analyse more artists and genres. Therefore, further collaboration with other museums
and research institutions will be established. Finally, future application development
proposed includes the use of cloud services to store and deploy up-to-date information
on the artwork analysed making the application an ideal point of access to information
by the general public.
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7

Conclusion and Future Work

This chapter concludes the PhD project, where the major outcome has been depicted in
the previous sections of this dissertation. It will also discuss the limitations and barriers
that this research has faced and the work that could be done in the future.

7.1 Conclusion

As the living standard of humankind improves in a general sense, more and more in-
dividuals start to practise spiritual fulfilment; one of the practices is artwork collection.
Subsequently, the ever-growing interest in the commercial art market continues to flourish,
and art forgers are also making use of this lucrative market. The demand for authentic
artworks by renowned artists, especially by famous historical figures, also continues to
prosper and not only individual art collectors but also museums and galleries are facing
the likewise rampant art forgery problem. To combat the increasing problem of art forgery,
and to protect the cultural heritage and artists’ legacies, as well as the interest of the
art market and the artists, the art authentication process is necessary and substantially
important before artworks showcase to the public. This research contributed to solving
the art authentication problem based on the paintings by Portuguese artist Amadeo de
Souza-Cardoso. However, the algorithms were also tested wherever possible to ascertain
their generalisation to paintings of other artists and genres. Some of the most advanced
artificial machine learning algorithms, NNs, were actively applied in this research aiming
to bridge the gap between computer science, more specifically artificial intelligence, and
the art field.

Chapter 1 introduced briefly what the research and the dissertation entailed. Chapter
2 provided a detailed description of artwork analysis in relation to conservation and
authentication. A comprehensive explanation concerning the principal research items
in this PhD project, that is, brushstroke analysis and pigment analysis, is presented.
Previous studies by other researchers are reviewed so that it is understandable that the
implementation of NNs with the objective of artwork authentication is indeed still scarce.
A brief presentation of the protagonist, whose paintings are examined in the research,
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that is, Amadeo de Souza-Cardoso is also given.
The original algorithm in [171] for both brushstroke and pigment analysis was carefully

examined with the findings reported in section 2.6. Some flaws in the brushstroke
analysis method were identified and the updated algorithm performance was evaluated
showing a decrease in the classification accuracy. The pigment analysis review helped to
evaluate improvements in pure and mixed pigment identification. Similarly, the review
led to the successful implementation and generation of more accurate artificial mixed
pigment reflectances using subtractive colour mixing. This proved useful later on in the
development of deep learning models for pure and mixed pigment classification.

Chapter 3 and Chapter 4 explained in detail the deep learning models applied for
brushstroke analysis and pigment analysis respectively. Concerning the brushstroke
analysis in Chapter 3, after considerable research on different CNN architectures, the
proposed model, based on the AlexNet architecture, was selected. After having compared
artworks of different genres, that is, paintings by Souza-Cardoso, drawings by Souza-
Cardoso, paintings by van Gogh, and paintings by Chinese painters, it was confirmed that
the proposed model performed well in distinguishing the works by Souza-Cardoso. As
with many deep learning problems, one of the biggest challenges faced in this project was
the limited amount of data for training and testing. To solve this, a data augmentation
process was necessary. This was successfully used to generate augmented data subsets for
processing, including for example random rotation, random scaling, random reflection
and random cropping. The proposed method was successfully applied and provided an
improved set of results over the reviewed algorithm proposed in [171].

In Chapter 4, the proposed algorithms for both pure and mixed pigment identification
were illustrated. To identify pure pigments, a deep learning model with three mix-data
inputs was designed; the first input processes the reflectance hypercube of the analysed
painting, the second input process the derivative of the smoothed reflectance hypercube
of the same painting, and the third input processes the spectral correlation estimate via
the SCM metric function between the individual pixel reflectance in the painting and the
pure pigment reflectances obtained directly from the reference paint tubes. The calculated
features were then examined via a series of other layers and functions, like MLP and
Softmax, to predict the probabilities of the pure pigments in the painting. Similarly
to the brushstroke analysis, the available reference data were not sufficient for a deep
learning application and thus data augmentation was required. The use of subtractive
mixing was used to generate a set of artificial reflectances from the 16 reference pure
pigments acquired from the paint tubes. Since a ground truth hypercube was missing,
an artificial training image was successfully constructed from the 16 pure pigments and
artificial pigment mixtures. The proposed deep learning model and post-processing were
successfully applied to segment the image into predicted pure pigment areas. The areas
are comparable to those in [171] and exceed the performance of methods like FCLS. For
mixed pigment identification, a regression deep learning model with a single input and
multiple outputs was implemented to solve the hyperspectral unmixing problem. The
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model was successfully trained with augmented data from the reference database based
on subtractive mixing. The proposed model and post-processing produced the fractions
required per pigment to reconstruct a given reflectance. However, cross-examination of
the chemical composition of the expected mixtures highlighted a disadvantage of the deep
learning model. Although the model successfully generated reconstructed reflectances,
these were made up of optimised mixtures of all pigments available. This meant that the
predicted mixture did not necessarily match the true mixture but instead, it created the
"best" approximation based on the training process (errorminimisation). As a consequence,
the model was replaced by the use of RMSE as a better function than SAM for mixed
pigment matching. The results obtained were successfully verified with XRF data and
the reconstructed hyperspectral and corresponding sRGB images accurately depicted the
original images.

Next, a total estimation of authenticity was successfully calculated using the indicator
of authenticity from brushstroke and pigment analysis. The tabulated and visual results
are in line with those obtained in [171]. This confirms that the deep learning models used
for the objective of the research are indeed useful for artwork authentication.

A by-product of this research was presented in chapter 5 where hyperspectral image
reconstruction was achieved through a dual neural network architecture combined with
colour analysis. The results show that the proposed algorithm is a suitable base for
estimating hyperspectral data from paintings. In the case at hand, paintings from Souza-
Cardoso as well as reference pigment data used by him were used in the training process.
The algorithm however can be extended to the estimation of other types of artwork if a
known database of base pigments or colours is available.

Chapter 6 described in detail the two applications that were developed as a proof of
concept following the PhD research. First, Amadeo AR, a mobile application that was en-
visaged to serve mainly the general public in leisure and educational settings like museums
and galleries. This AR application allows the user to visualise pure pigments identified in
a set of Souza-Cardoso’s paintings implementing Google’s ARCore technology. Second,
Amadeo Image Analysis Tool, a desktop application that was intended to serve principally
experienced art experts in the settings of not only museums and galleries but also pro-
fessional conservation and restoration departments, as well as potentially governmental
institutions like the police, and forensic and judicial agencies. This desktop application
includes multiple functions based on methods tested and developed during this research.
For example, it allows art scientists to visualise various data like hyperspectral images
and predicted pure pigment spectral data that could be used to estimate the authenticity
of a painting. This chapter first explains the rationale behind the development of the two
applications, followed by an illustration of the architecture and operation overview of
both applications. Then, it continues with an explanation and feedback in terms of the
trials on the user experience of the applications and ends with a short conclusion and
future work.
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7.2 Limitations and Constraints

The PhD project was proposed initially by the author with the support of the supervisors
to cover multiple disciplines and to extend the project to various fields. For example,
to maximise and comprehend fully the effect of real human brain responses towards
artworks by individual artists in real-time, an experiment on human subjects applying
Electroencephalogram (EEG) while visualising the artworks in real-time was proposed.
In this way, distinguishing brain activities could be recorded during the visualisation of
artworks by different artists. The rationale was that the collective human responses to
artworks by a particular artist would be unique and exclusive to that individual artist,
and it might be a gateway to understanding further how the human brain works. It
was also hypothesised that it could also be a reliable channel to identify and determine
if an artwork was authentic or not by that particular artist, and thus it could be used
as an additional input variable for the indication of authenticity originally proposed in
[171]. Thus, combining this channel of artwork authentication with other authentication
techniques could further increase the accuracy of the artwork being authenticated correctly.
The data obtained via the analysis of EEG were likewise presumed to be processed via
deep learning algorithms; it would be interesting to discover what the results would look
like and how they would affect the accuracy of art authentication. EEG experiments as
well as other psychophysical experiments were proposed to be conducted not only with
amateur art enthusiasts but also with art experts and scientists. The differences in the
responses between amateurs and experts were pretended to be analysed and compared.
However, as a result of the unexpected worldwide circumstances and restrictions in place
at the time of this research, proposals involving any human interaction were not feasible
and this part of the project could not be explored.

Additionally, further chemical data to be obtained by DCR on the drawings of Souza-
Cardoso was also envisaged to be utilised and processed via deep learning models to
test the algorithms devised originally for paintings. This would allow evaluating of
the applicability and generalisation of the algorithms proposed in this thesis to other
media. Information derived from chemical data from drawings could be added to the
authentication estimate to maximise accuracy as well. Likewise, paintings of other
Portuguese artists orotherartists were considered to be acquiredandanalysed to determine
the applicability and generality of the algorithms mentioned in the thesis. However, further
data acquisition was not possible within the scope of the project.

Regarding the analysis methods developed, like in any other deep learning application,
the performance of the models proposed heavily relies on the training data available.
While significant efforts were made to generate artificial data for training and testing,
increasing the performance of the models without further data is a very challenging task.
Similarly, the quality of the data used is of particular importance for the performance of
any method used. Should further hyperspectral data acquisition be possible, this should
be performed ideally with the same equipment and following the same calibration and
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data normalisation as used during the acquisition of the data provided for this research.
The proposed models have been trained with a specific set of data based on reference

pigments and reference images. Prediction of reflectances, pigment fractions or classifica-
tion of authorship is thus limited to data akin to the training data. This is, for example, for
authorship classification, images of similar size and resolution must be used. Similarly, as
shown in Chapter 3, a model trained with paintings only, for example, cannot be expected
to outperform other methods classifying drawings or other genres unless sample data of
that particular type is included in the training process.

7.3 Future Work

As indicated in section 7.2, a series of proposals were made at the initial stage of the
PhD project. It would be optimistic and ideal that all of the suggested ideas regarding
psychophysical testing and EEG data collection could be put into practice. Several pre-
processing techniques would be required to analyse the EEG numerical data collected for
use with a deep learning model. This would likely include the use of statistical techniques
like Principal Component Analysis to reduce dimensionality as well as frequency analysis
with Fourier Transform or Wavelet Transform for example. These types of experiments
are expected to be performed over a large population sample to ensure sufficient data
are collected. This is required because deep learning requires a large training data set
and data augmentation to generate human responses is not a suitable process. Therefore,
careful planning for this task is required.

For brushstroke analysis, it would be ideal to evaluate the use of deeper architectures
forbetter and more accurate classification of images and ultimately paintings. This requires
exploring the use of pure residual networks or the addition of residual layers onto the
currently proposed model to ensure the performance is not degraded as the network
grows deeper.

One of the methods to identify art forgeries by curators and art experts is the analysis
of the signature of an artist. This process is still highly subjective and requires thorough
human expertise which, as history has proven, can lead to errors. Thus, the analysis of
the signature of an artist on a painting using deep learning could be a new and better
solution to the authentication problem. This would likely require the development and
implementation of Generative Adversarial Network (GAN) for processing. This is, a pair
of networks that compete against each other becoming more accurate in their predictions
with each iteration. One of the networks, the generator, would be trained using a database
of ground truth signature samples plus a function to generate artificial signatures. The
second network, the discriminator, would be trained with the true signatures and the
artificially generated signatures. With each iteration, the discriminator would make a
prediction and the error would be minimised thus becoming better at identifying forgeries.
On the other hand, with each iteration, the generator would be supplied with the result
and thus it would improve itself generating signatures that are more real-life-like and
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harder to distinguish. The output of the GAN could thus be used as another input for the
final indication of the authenticity of a painting.

Although the artificial mixtures generated served their purpose successfully, further
enhancements could be made by using more complex colour mixing techniques other than
subtractive mixing. For example, the Kubelka-Munk model could be used to generate
more accurate artificial reflectances. This however requires access to the reference tube
paint samples for further analysis to identify the absorption and backscattering of the
pigments.

Other enhancements to the pure pigment identification model to be explored include
the generation of different hyperspectral training images. Although the use of squares
proved useful, it is believed that the use of different geometrical features including curves
like circles could improve the image segmentation performance. This is because the
model includes not only spectral analysis but also spatial analysis in the X-Y plane. Thus,
identifying colour transitions in all directions could improve the accuracy of this model.

Finally, the software applications developed could be further improved. For example,
the AR mobile application could benefit from accessing the database of paintings from a
remote server in real time. This would allow easy and fast deployment of more augmented
paintings without having to recompile and redeploy the mobile application. Furthermore,
internet connectivity could be used to upload images to a remote server for processing
with deep learning models if required. This would significantly improve processing times
given the limited computing capabilities of mobile phones compared to powerful remote
servers. For the desktop application, remote updates, new models and new data could
also be deployed using could services effectively improving its capability and value for
artwork analysis and authentication.
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A

Appendix 1 Pure Pigment Database

The reference pigment database comprises the reflectances and representative sRGB and
CIELab colour components obtained from oil paint samples known to have been used by
Amadeo de Souza-Cardoso in his artwork. These samples were stored in paint tubes at
the Casa de Manhufe and provided for digitisation with a hyperspectral camera [171];
the hyperspectral data contain spectral information in the 400nm to 720nm range in steps
of 10nm. No data were acquired in the work presented here and therefore validation and
verification of the data supplied have not been possible. An sRGB representation of the
hyperspectral image of the samples is presented in Figure A.1.

The 16 pigments selected for analysis include the following which correspond exactly
to those used in [171] for direct comparison:

• Cobalt Violet

• Chinese Vermilion

• Carmine Lake

• Terra Rosa

• Raw Sienna

• Yellow Ochre

• Chrome Yellow

• Cadmium Orange

• Cobalt Blue

• Cerulean Blue

• Prussian Blue

• Ultramarine
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• Viridian

• Emerald Green

• Lead White

• Ivory Black

Figure A.1: sRGB representation of the hyperspectral image of the paint tube samples obtained in
[171].

The reflectances in the pure pigments database of [171] were acquired by averaging
manually-selected areas of the spectral data. The areas selected are reported to be of size
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5 pixels by 5 pixels for all pigments used but the location of these on the hyperspectral
image is not documented. Therefore, new, carefully selected areas of varying sizes have
been manually chosen to maximise the quality of the hyperspectral data from the paint
samples while providing a reproducible data set. The areas selected for each pigment are
summarised by the coordinates in Table A.1.

Table A.1: Coordinates of areas selected in file ref_amostras_a.mat
for the reference pigment database.

ASC13 Cobalt Violet
647
623

350
345

3
3

MG6 Chinese Vermilion 231 84 10

ASC5 Carmine Lake

644
664
660
656
622

55
70
91
79
96

3
2
1
1
1

MG18 Terra Rosa 654 717 8

MG7 Raw Sienna

899
899
905
900

661
661
630
658

3
1
3
3

MG11 Yellow Ochre
895
916
914

999
1041
1020

4
3
5

ASC17 Chrome Yellow
254
255

994
985

3
5

MG2 Cadmium Orange
646
644
637

845
854
866

7
6
4

MG4 Cobalt Blue
627
626
644

1114
1119
1104

4
5
3

Pigment X Coord. Y Coord. Size Sq. Px.

Continued on next page
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Table A.1: Coordinates of areas selected in file ref_amostras_a.mat
for the reference pigment database. (Continued)

ASC7 Cerulean Blue

619
644
641
639
655
643

211
193
209
236
214
207

4
5
3
2
1
2

ASC19 Prussian Blue

647
659
644
624
625

495
469
449
493
500

3
3
1
1
1

35_3128 Ultramarine

255
250
243
273

1134
1138
1128
1120

5
3
3
4

ASC20 Viridian

654
658
646
670
653

572
611
587
607
571

3
3
3
2
5

18_3130 Emerald Green

260
288
268
268

737
731
727
736

8
4
5
4

13_3130 Lead White

645
637
655
636
645

1297
1245
1228
1244
1260

3
1
1
3
1

MG17 Ivory Black 286 587 5

Pigment X Coord. Y Coord. Size Sq. Px.

For each selected pigment, the representative reflectance is finally obtained as the
average reflectance of all pixels within the specified areas. The resulting reflectances are
shown in Figure A.2 along with the reflectances used in [171] and the reflectances obtained
using Fibre Optic Reflectance Spectroscopy (FORS) scaled to the same range as those from
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the hyperspectral camera for comparison purposes. As observed, the new reflectances
obtained show smoother curves that closely follow those obtained via FORS suggesting
our reference data are appropriate for the analyses presented in our work. In particular,
the new reflectance for Prussian Blue is significantly closer to that obtained using FORS
while the one obtained in [171] is more representative of green colour. Finally, Table A.2
shows the CIELab colour components and associated chemical elements as indicated in
[171].

Table A.2: Colour and chemical information per pigment.

Cobalt Violet 38.8817 324674 -29.5958 Co, As

Chinese Vermilion 46.4914 57.8106 39.9008 Hg

Carmine Lake 16.3068 19.6592 8.6145 Sr

Terra Rosa 40.2390 26.3825 24.7961 Fe, As

Raw Sienna 19.2523 8.6073 9.9969 Fe, Mn

Yellow Ochre 43.2626 19.0897 43.7410 Fe

Chrome Yellow 57.8149 14.1569 58.4063 Cr

Cadmium Orange 66.8529 36.6389 85.4719 Cd

Cobalt Blue 21.6078 11.5458 -34.8939 Co

Cerulean Blue 37.4715 -9.6289 -33.7333 Co, Sn, Ni

Prussian Blue 13.1717 1.6187 -11.5084 Fe, S

Ultramarine 24.2362 8.8241 -23.3787 Al, Si

Viridian 29.0161 -11.1832 1.3616 Cr

Emerald Green 48.5845 -45.8146 16.6973 Cu, As

Lead White 96.8866 -2.4818 8.3296 Pb

Ivory Black 20.2192 0.1607 1.0307

Pigment
CIELab

L a b Elements
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Figure A.2: Pure pigment reflectance database used in [171] (CM), ours (AC) and FORS.
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Figure A.2: Pure pigment reflectance database used in [171] (CM), ours (AC) and FORS.
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Figure A.2: Pure pigment reflectance database used in [171] (CM), ours (AC) and FORS.
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Appendix 2 Image Database

B.1 sRGB Image Database

This section contains the list of sRGB images used for training and testing. The images
and training/testing list were provided by [171]. No further images were acquired during
this research.

Table B.1: List of training dataset files: positive class.

Amadeo_P100.jpg Amadeo_P150.jpg Amadeo_P192.jpg Amadeo_P61.jpg

Amadeo_P101.jpg Amadeo_P151.jpg Amadeo_P193.jpg Amadeo_P63.jpg

Amadeo_P104.jpg Amadeo_P152.jpg Amadeo_P195.jpg Amadeo_P66.jpg

Amadeo_P106.jpg Amadeo_P153.jpg Amadeo_P196.jpg Amadeo_P67.jpg

Amadeo_P107.jpg Amadeo_P155.jpg Amadeo_P198.jpg Amadeo_P69.jpg

Amadeo_P114.jpg Amadeo_P156.jpg Amadeo_P199.jpg Amadeo_P70.jpg

Amadeo_P116.jpg Amadeo_P159.jpg Amadeo_P1b.jpg Amadeo_P71.jpg

Amadeo_P117.jpg Amadeo_P16.jpg Amadeo_P20.jpg Amadeo_P72.jpg

Amadeo_P121.jpg Amadeo_P167.jpg Amadeo_P26.jpg Amadeo_P73.jpg

Amadeo_P124.jpg Amadeo_P168.jpg Amadeo_P28.jpg Amadeo_P74.jpg

Amadeo_P125.jpg Amadeo_P169.jpg Amadeo_P30.jpg Amadeo_P75.jpg

Amadeo_P128.jpg Amadeo_P17.jpg Amadeo_P32.jpg Amadeo_P76.jpg

Amadeo_P13.jpg Amadeo_P171.jpg Amadeo_P34.jpg Amadeo_P77.jpg

Amadeo_P131.jpg Amadeo_P172.jpg Amadeo_P35.jpg Amadeo_P78.jpg

Amadeo_P132.jpg Amadeo_P173.jpg Amadeo_P36.jpg Amadeo_P82.jpg

Amadeo_P133.jpg Amadeo_P175.jpg Amadeo_P37.jpg Amadeo_P83.jpg

File Name File Name File Name File Name

Continued on next page
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Table B.1: List of training dataset files: positive class. (Continued)

Amadeo_P135.jpg Amadeo_P177.jpg Amadeo_P42.jpg Amadeo_P87.jpg

Amadeo_P137.jpg Amadeo_P178.jpg Amadeo_P47.jpg Amadeo_P88.jpg

Amadeo_P138.jpg Amadeo_P179.jpg Amadeo_P48.jpg Amadeo_P9.jpg

Amadeo_P139.jpg Amadeo_P18.jpg Amadeo_P49.jpg Amadeo_P90.jpg

Amadeo_P140.jpg Amadeo_P182.jpg Amadeo_P50.jpg Amadeo_P91.jpg

Amadeo_P141.jpg Amadeo_P187.jpg Amadeo_P51.jpg Amadeo_P92.jpg

Amadeo_P143.jpg Amadeo_P188.jpg Amadeo_P52.jpg Amadeo_P98.jpg

Amadeo_P146.jpg Amadeo_P189.jpg Amadeo_P55.jpg Amadeo_P99.jpg

Amadeo_P147.jpg Amadeo_P19.jpg Amadeo_P57.jpg

Amadeo_P149.jpg Amadeo_P190.jpg Amadeo_P58.jpg

Amadeo_P15.jpg Amadeo_P191.jpg Amadeo_P60.jpg

File Name File Name File Name File Name

Table B.2: List of training dataset files: negative class.

AvonJawlenski_cabeca.jpg MDuchamp_Landscape.jpg

Derain_Paisagem.jpg Macke_Farbige.jpg

Eloy_04P1268.jpg Macke_Rotes Haus.jpg

Eloy_83P200.jpg Modigliani_sem titulo.jpg

Eloy_83P202.jpg Nalmada_62P260.jpg

Eloy_83P204.jpg Nalmada_83P1424.jpg

Eloy_83P315.jpg Nalmada_83P55.jpg

Eloy_83P316.jpg Nalmada_83P57.jpg

Eloy_83P317.jpg Nalmada_83P60.jpg

Eloy_83P318.jpg OFreundlich_Sem titulo.jpg

Eloy_83P81.jpg ORozanova_boutique.jpg

Eloy_84P80.jpg ORozanova_homen.jpg

Exter_dinamica.jpg PPicasso_cabeca.jpg

FLeger_horloge.jpg RDelaunay_Janela.jpg

File Name File Name

Continued on next page
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Table B.2: List of training dataset files: negative class. (Contin-
ued)

FMarc_ImagemcomGadoI.jpg RDelaunay_SCloud.jpg

FMarc_zinnobergruss.jpg SDelaunay_marche.jpg

GSeverini_ritmo.jpg Severini_ballerina.jpg

Gleizes_Homen.jpg Viana_61P781.jpg

Gleizes_Paisagem.jpg Viana_69P38.jpg

HCamarasa_interior.jpg Viana_83P37.jpg

IPuni_Nowoie.jpg Viana_83P40.jpg

IPuni_lavagem.jpg Viana_83P41.jpg

JGris_violino.jpg Viana_83P423.jpg

JMetzinger_barcos.jpg Viana_83P669.jpg

KMalevich_O Amolador.jpg Viana_83P782.jpg

KMalevitch_Cow.jpg Viana_83P787.jpg

KMalevitch_Portait.jpg Viana_83P788.jpg

LFeininger_corrida.jpg Viana_99P832.jpg

LPopova_Composicao3.jpg robert delaunay PE113.jpg

LPopova_Nu Feminino.jpg sonia delaunay_PE114.jpg

File Name File Name

Table B.3: List of testing dataset files: positive class.

Amadeo_P120.jpg Amadeo_P110.jpg Amadeo_P53.jpg Amadeo_P127.jpg

Amadeo_P123.jpg Amadeo_P174.jpg Amadeo_P109.jpg Amadeo_P144.jpg

Amadeo_P62.jpg Amadeo_P103.jpg Amadeo_P118.jpg Amadeo_P14.jpg

Amadeo_P79.jpg Amadeo_P108.jpg Amadeo_P130.jpg Amadeo_P122.jpg

Amadeo_P105.jpg Amadeo_P111.jpg Amadeo_P97.jpg Amadeo_P95.jpg

Amadeo_P160.jpg Amadeo_P112.jpg Amadeo_P10.jpg Amadeo_P65.jpg

Amadeo_P134.jpg Amadeo_P157.jpg Amadeo_P45.jpg Amadeo_P89.jpg

Amadeo_P145.jpg Amadeo_P158.jpg Amadeo_P86.jpg Amadeo_P102.jpg

File Name File Name File Name File Name

Continued on next page

162



B.1. SRGB IMAGE DATABASE

Table B.3: List of testing dataset files: positive class. (Continued)

Amadeo_P165.jpg Amadeo_P161.jpg Amadeo_P94.jpg Amadeo_P136.jpg

Amadeo_P23.jpg Amadeo_P176.jpg Amadeo_P44.jpg Amadeo_P6.jpg

Amadeo_P29.jpg Amadeo_P185.jpg Amadeo_P25.jpg Amadeo_P113.jpg

Amadeo_P4.jpg Amadeo_P194.jpg Amadeo_P2.jpg Amadeo_P27.jpg

Amadeo_P1a.jpg Amadeo_P31.jpg Amadeo_P180.jpg Amadeo_P96.jpg

Amadeo_P164.jpg Amadeo_P54.jpg Amadeo_P56.jpg Amadeo_P129.jpg

Amadeo_P201.jpg Amadeo_P80.jpg Amadeo_P85.jpg Amadeo_P148.jpg

Amadeo_P33.jpg Amadeo_P64.jpg Amadeo_P81.jpg Amadeo_P166.jpg

Amadeo_P59.jpg Amadeo_P21.jpg Amadeo_P38.jpg Amadeo_P162.jpg

Amadeo_P170.jpg Amadeo_P43.jpg Amadeo_P197.jpg Amadeo_P154.jpg

Amadeo_P5.jpg Amadeo_P12.jpg Amadeo_P24.jpg Amadeo_P183.jpg

Amadeo_P11.jpg Amadeo_P142.jpg Amadeo_P46.jpg Amadeo_P200.jpg

Amadeo_P3.jpg Amadeo_P8.jpg Amadeo_P22.jpg Amadeo_P68.jpg

Amadeo_P39.jpg Amadeo_P186.jpg Amadeo_P119.jpg Amadeo_P93.jpg

Amadeo_P40.jpg Amadeo_P41.jpg Amadeo_P184.jpg Amadeo_P7.jpg

Amadeo_P84.jpg Amadeo_P163.jpg Amadeo_P126.jpg

File Name File Name File Name File Name

Table B.4: List of testing dataset files: negative class.

AvonJawlenski_cabeca mistica.jpg Modigliani_Gris.jpg

CP0146.jpg Modigliani_cariatide2.jpg

CP0158.JPG NUdaltsova_guitare.jpg

Derain_Pears.jpg Nalmada_83P56.jpg

Eloy_83P198.jpg Nalmada_83P58.jpg

Eloy_83P199.jpg Nalmada_83P59.jpg

Eloy_83P203.jpg NÂ°19.jpg

Eloy_83P314.jpg NÂ°20.jpg

Eloy_83P79.jpg NÂ°21.jpg

File Name File Name

Continued on next page
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Table B.4: List of testing dataset files: negative class. (Continued)

FLeger_Factories.jpg ORozanova_metronome.jpg

FMarc_cow.jpg RDelaunay PE126 V.jpg

FMarc_foxes.jpg RDelaunay_Champ de Mars.jpg

FMarc_horses.jpg RDelaunay_cardiff team.jpg

GMunter_Herbstlich.jpg SDelaunay_Sem titulo.jpg

GSeverini_centrifuga.jpg SDelaunay_marchÃ minho.jpg

IPopova_Architectonic.jpg SDelaunay_prospectus.jpg

JGris_Bottle.jpg VPestel_Nature.jpg

JMetzinger_Life.jpg Viana_83P382.jpg

KMalevitch_Headgirl.jpg Viana_83P39.jpg

KMalevitch_ingles.jpg Viana_83P783.jpg

LPopova_Composicao1.jpg Viana_83P784.jpg

LPopova_Composicao2.jpg Viana_83P785.jpg

MFranz_Animal.jpg Viana_83P786.jpg

MOrtiz_portrait.jpg Viana_83P789.jpg

MWerefkin_corpus.jpg

File Name File Name

B.2 Hyperspectral Image Database

The following are the sRGB representations of the hyperspectral images used for testing.
The images were acquired and provided by [171]. No further images were acquired during
this research.
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68P11 77P2 77P5 77P8

77P9 77P16 77P20 86P19

86P21 86P23 92P209 Fake

Figure B.1: Hyperspectral test images.
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Appendix 3 Application Supplementary
Data

C.1 Amadeo AR

C.1.1 Questionnaire

This quick questionnaire intends to collect feedback regarding the usability and perfor-
mance of the Amadeo AR (Augmented Reality) App.

1. Gender

• Male

• Female

• Other

• Prefer not to say

2. Age

• Below 15 years old

• 16-25 years old

• 26-35 years old

• 36-45 years old

• 46-55 years old

• Over 55 years old

3. Do you know the Portuguese artist Amadeo de Souza-Cardoso or his paintings?

• Yes

• No
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C.1. AMADEO AR

4. Have you used AR (Augmented Reality) App before? If yes, what App was it? Please
specify it.

• Yes

• No

After having tried the Amadeo AR App, please answer the following questions:

5. On a scale of 1 (very difficult) to 5 (very easy), how difficult or easy do you find this
App?

6. On a scale of 1 (very slow) to 5 (very fast), how fast or slow do you find this App?

7. On a scale of 1 (very unimportant) to 5 (very important), how important is the use
of AR (Augmented Reality) Apps like this in a museum?

8. On a scale of 1 (less likely) to 5 (more likely), if an exhibit has an AR (Augmented
Reality) App like this, would you be more willing to visit it?

9. On a scale of 1 (very bad) to 5 (very good), what is the overall experience of this AR
(Augmented Reality) App?

10. What more would you want to see or add to this App? Do you have any other
suggestions?

C.1.2 Questionnaire Results

87.50%

12.50%

Female Male

(a) Q1

29.17%

45.83%

16.67%

4.17%
4.17%

16 - 25 years old 26 - 35 years old 36 - 45 years old

46 - 55 years old Over 55 years old

(b) Q2

Figure C.1: Amadeo AR results of questions 1 to 2.
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79.17%

20.83%

Yes No

(a) Q3

8.33%

91.67%

Yes No

(b) Q4

Figure C.2: Amadeo AR results of questions 3 to 4.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

5. Mobile app ease of use.

6. Mobile app speed/responsiveness.

7. Important of AR apps in a museum.

8. Likelihood of visiting an exhibit with AR app.

9. Overall experience with Amadeo AR.

Very Low Below Average Average Above Average Very High

Figure C.3: Amadeo AR results of questions 5 to 9.
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C.2. AMADEO IMAGE ANALYSIS TOOL

Question 10:

• Maybe some general information on the pigments identified

• From the very brief use I’ve done in the trial I have no specific suggestions to make

• Also the binders (if they are different)

• I suggest you add the possibility to scroll the list of pure pigments because in some phones
the list does not appear complete due to resolution.

• I think that it would be interesting to include information about the pigments when choosing
a specific color.

• Perhaps it would be interesting a short explanation on how you produced this information
or the basic knowledge of your PhD, so the public becomes aware of the research behind this
app (separate tab perhaps?).

• I would do click on a colour and have the pigment dentification

• Maybe showing the material

• The black pigment is difficult to see. The option of being able to see more than one pigment
at a time to understand layers would be very interesting.

• The app worked well when I first used it, but when I tried to see other paintings it would
only show the pigments from Cerulean Blue downwards (it would not let me see the green
pigments, or any other above Cerulean Blue on the list). My phone is a Motorola Moto g(7)
play. Otherwise, very easy to use.

• development for iOS

C.2 Amadeo Image Analysis Tool

C.2.1 Questionnaire

This quick questionnaire intends to collect feedback regarding the usability and perfor-
mance of the Amadeo Desktop Application.

1 Gender

• Male

• Female

• Other

• Prefer not to say

2 Age
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• Below 15 years old

• 16-25 years old

• 26-35 years old

• 36-45 years old

• 46-55 years old

• Over 55 years old

3 After having tried the application, for each of the following statements, mark what
best describes your reactions to the application.

3.1 I think that I would like to use this application frequently. 1=Strongly disagree,
5=Strongly agree

3.2 I found this application unnecessarily complex. 1=Strongly disagree, 5=Strongly
agree

3.3 I thought this application was easy to use. 1=Strongly disagree, 5=Strongly agree

3.4 I think that I would need assistance to be able to use this application. 1=Strongly
disagree, 5=Strongly agree

3.5 I found the various functions in this application were well integrated. 1=Strongly
disagree, 5=Strongly agree

3.6 I thought there was too much inconsistency in this application. 1=Strongly disagree,
5=Strongly agree

3.7 I would imagine that most people would learn to use this application very quickly.
1=Strongly disagree, 5=Strongly agree

3.8 I found this application very cumbersome/awkward to use. 1=Strongly disagree,
5=Strongly agree

3.9 I felt very confident using this application. 1=Strongly disagree, 5=Strongly agree

3.10 I needed to learn a lot of things before I could get going with this application.
1=Strongly disagree, 5=Strongly agree

4 What more would you want to see or add to this software? Do you have any other
suggestions?

C.2.2 Questionnaire Results
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82.35%

11.76%

5.88%

Female Male Other

(a) Q1

35.29%

41.18%

17.65%

5.88%

16 - 25 years old 26 - 35 years old

36 - 45 years old 46 - 55 years old

(b) Q2

Figure C.4: Amadeo Image Analysis Tool results of questions 1 to 2.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

3.1 - I think that I would like to use this application frequently.

3.2 - I found this application unnecessarily complex.

3.3 - I thought this application was easy to use.

3.4 - I think that I would need assistance to be able to use this application.

3.5 - I found the various functions in this application were well integrated.

3.6 - I thought there was too much inconsistency in this application.

3.7 - I would imagine that most people would learn to use this application very quickly.

3.8 - I found this application very cumbersome/awkward to use.

3.9 - I felt very confident using this application.

3.10 - I needed to learn a lot of things before I could get going with this application.

Strongly disagree Disagree Neutral Agree Strongly agree

Figure C.5: Amadeo AR results of questions 3.1 to 3.10.
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Question 4:

• I think it could become more intuitive for a first-time user, maybe by adding a tutorial as
video or on the side bar or as balloons.

• A tutorial for starters would be useful. Information on the creation of this app could also be
added as a plus in a separated tab or in the menu (by click, only for users that want to go
there read it).

• I think it would be interesting to add buttons to stop an action. Regarding the spectrum
identification part from the spectral image, it would be interesting to include the color image
or the information of the identical color.

• Add another analysis like Raman, but it was perfect until now and I’m surprised
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Appendix 4 Additional Test Results

D.1 Brushstroke Analysis

The results presented here have been produced using the original brushstroke analysis
method in [171] modified to include parallel processing wherever possible. In the interest
of making a better comparison with previous results and those listed in [171], the number
of images in the training and testing sets has been kept the same for all tests. This is, the
training set is composed of 165 images (60 negative, 105 positive) and the testing set is
composed of 144 images (49 negative, 95 positive). Similarly, the number of centroids used
in the clustering process has been set to match the number of visual words used in [171];
the number of words is 100, 200, 400, 1000, 1200, 1400, 1600 and 2000 where the number of
words is effectively composed of the sum of negative and positive centroids. For example,
for 100 visual words, 50 negative centroids and 50 positive centroids are used.

For the tests performed, the threshold value used to generate the bag of features has
been kept constant. While this is not ideal, this has been done to facilitate a comparison
with the published results in [171]. However, for a better understanding of the importance
of carefully choosing this parameter some tests have been performed where the value of
the threshold is evaluated. Gabor Regular and SIFT+Gabor methods are used to generate
results; Gabor Regular as the initial testing point whilst SIFT+Gabor, the method reported
to have the best results in [171], as the comparison medium here.

D.1.1 K-Means with Pre-Selected Set of Seeds

This test corresponds to the original method in [171] and the results are shown in Figure
D.1. Including the testing images in the clustering process affects the output significantly
as it pulls the centroids to a position closer to the features of the testing data hence biasing
the results of the classifier. Using this approach is therefore not recommended.

D.1.2 K-Means with Random Seeds

This test aims at showing the importance of selecting the correct initial centroids (seeds)
when using KM. This is because incorrect resulting centroids can have a significant effecton
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Figure D.1: KM with pre-selected set of seeds [171].

the overall results. The results in Figure D.2, Figure D.3, Figure D.4 and Figure D.5 indeed
show a general trend confirming that this algorithm tends to generate better accuracy
with a higher number of words when the testing data are included. However, when the
testing data are excluded from the clustering process the improvement is minimal.
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Figure D.2: KM with random seeds with testing data included in clustering – Gabor Regular.
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Figure D.3: KM with random seeds with testing data excluded from clustering – Gabor Regular.

D.1.3 K-Means++

As shown with KM and random seeds, it is important to choose carefully the initial
centroids. Therefore KM++ has been evaluated as a better alternative to KM as this
algorithm uses a better initial selection of centroids. In addition to that, KM++ was found
to be around 150% faster than standard KM. The results with KM++ shown in Figure
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Figure D.4: KM with random seeds with testing data included in clustering - SIFT+Gabor.
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Figure D.5: KM with random seeds with testing data excluded from clustering - SIFT+Gabor.

D.6, Figure D.7, Figure D.8 and Figure D.9 exhibit the same trend as those obtained with
standard KM.
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Figure D.6: KM++ with testing data included in clustering – Gabor Regular.

D.1.4 K-Means vs K-Means++

When comparing the results of KM vs KM++, as shown in Figure D.10 and Figure D.11,
the standard deviation of KM++ seemed lower than that of KM suggesting an increased
confidence factor on the results produced by KM++.
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Figure D.7: KM++ with testing data excluded from clustering – Gabor Regular.

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000

A
cc

u
ra

cy
 (

%
)

Number of Words

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

Test 9

Test 10

Figure D.8: KM++ with testing data included in clustering – SIFT+Gabor.
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Figure D.9: KM++ with testing data excluded from clustering – SIFT+Gabor.
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Figure D.10: Standard Deviation KM vs KM++ – Gabor Regular.
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Figure D.11: Standard Deviation KM vs KM++ – SIFT+Gabor.

D.1.5 Random Training and Test Data

This test was performed to evaluate the effect of selecting the right data for the training
and testing datasets. To help compare the results of this test with previous results, the
number of elements in the training and testing datasets was kept constant, i.e., training
set of 165 images (60 negative, 105 positive) and testing set of 144 images (49 negative, 95
positive). The images of each set were selected using a random permutation function to
avoid duplicates. Both algorithms KM and KM++ were evaluated with results shown in
Figure D.12, Figure D.13 and Figure D.14. For both algorithms, the results show a wide
accuracy spread in excess of 13% depending on the datasets. This strongly indicates the
importance of ensuring the right training set is selected. The criteria to select the best
images is yet to be specified but it could be based on results from the algorithm or the use
of the "most representative" samples based on human observations. From the results to
date, it is understood that the former method can guarantee better results for the existing
testing data but the performance of both methods on new samples is yet to be investigated.
Additionally, the results tend not to differ significantly applying pre-selected seeds and
random seeds with KM.
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Figure D.12: KM with pre-selected seeds, random training/testing data, and testing data excluded
from clustering – SIFT+Gabor.
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Figure D.13: KM with random seeds, random training/testing data, and testing data excluded
from clustering – SIFT+Gabor.

60

65

70

75

80

85

90

95

100

0 500 1000 1500 2000

A
cc

u
ra

cy
 (

%
)

Number of Words

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

Test 7

Test 8

Test 9

Test 10

Figure D.14: KM++ with random training/testing data, and testing data excluded from clustering
– SIFT+Gabor.

D.1.6 Best Centroids

An attempt was made to select the best centroids obtained by each method KM and
KM++. This was based on executing each one up to ten times and removing outliers, i.e.,
centroids whose distance to others was greater than 2 times the scaled median absolute
deviation away from the median. The coordinates of the remaining centroids were then
averaged to generate an "average" centroid. This method did not produce better results.
In fact, this method did not enhance the location of the centroids but instead, moved the
centroids to a location that generated a "constant", average-like accuracy regardless of
the number of centroids. The results of this are shown in Figure D.15 for Gabor Regular
only. Note that this method was initially tested using Gabor Regular. Based on the results
obtained which did not show any improvement and based on the long computation time
of SIFT+Gabor (more than 7 days per 10 runs) it was decided not to perform this operation
on the SIFT+Gabor algorithm.

D.1.7 Bag of Features Thresholding

The following tests intend to establish the effect on overall accuracy that different thresholds
have when generating the bag of features (Figure D.16). It is noted previously that the
trend of the results generated from KM appear to be similar applying either pre-selected
seeds in the original method or random seeds. Subsequently, the comparison is made
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Figure D.15: KM++ with random seed with testing data excluded from clustering intending to
select the best centroid – Gabor Regular.

mainly based on the results produced by applying KM with a pre-selected set of seeds.
Figures generated implementing KM as well as KM++ with random training and testing
image data are shown in Figure D.17, Figure D.18 and Figure D.19 for reference.
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Figure D.16: SIFT-Gabor using original KM centroids excluding testing data. Threshold tested
from 1 to 50 in increments of 1.

As stated earlier, when the testing data are included in the clustering there is a tendency
for the accuracy to increase as the number of words increases for both Gabor Regular
and SIFT+Gabor methods. Interestingly, when the threshold value is greater than 10, the
accuracy tends to remain more or less stable. The accuracy of Gabor Regular reported
earlier also appears to be higher than its counterpart of SIFT+Gabor when the threshold
is increased. This highlights the importance of choosing the threshold for the bag of
features correctly. When the testing data are excluded from the clustering, the accuracy
seems to be the highest when the number of words is 1200 instead of 2000. However,
this inclination will again diverge when other algorithms (KM or KM++ with or without
random training/testing images) are applied which are shown in the following figures.
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Figure D.17: SIFT+Gabor using KM++ centroids including testing data. Threshold tested from 1
to 50 in increments of 1.
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Figure D.18: SIFT+Gabor using KM centroids excluding testing data with random images. Thresh-
old tested from 1 to 50 in increments of 1.
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Figure D.19: SIFT+Gabor using KM++ centroids excluding testing data with random images.
Threshold tested from 1 to 50 in increments of 1.
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D.2 Pigment Analysis

D.2.1 Black and White Identification

For this test, the objective was to identify the black and white pixels of a painting. This
effectively requires identifying three classes: black, white or colour. To achieve this, a
simple neural network consisting of an input layer with 33 elements corresponding to a
pixel reflectance, a hidden layer of 1 neuron and a single output. The training set consisted
of the following:

• 30000 samples of augmented white reflectance labelled as 1

• 30000 samples of augmented black reflectance labelled as 0

• 30030 artificial mixtures generated with 15 pigments in the reference database
selected by [171] in steps of 10% all labelled as 0.5

The neural network was trained to produce a numerical prediction based on the
reflectances provided and a threshold was applied to the output to classify the prediction
as black (prediction < 0.1), white (prediction > 0.9) or colour otherwise.

The result of the classification is shown in Table D.1 where the values obtained with
the method in [171] are shown for comparison. Figure D.20 highlights the classified pixels
where a good similarity is found between the neural network approach and the original
method. This result shows that neural networks could be a potential candidate for pixel
classification.

(a) (b)

Figure D.20: Results of black/white/colour identification using (a) the original method and (b) a
neural network.
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Table D.1: Comparison of results from NN for
black/white/colour identification.

Neural Network 3.68% 1.68% 94.64%

Method in [171] 7.59% 6.78% 85.63%

Method White Area Black Area Colour Area

D.2.2 Pure Pigment Identification Using Decision Trees

Another ML evaluated for pure pigment identification is decision trees. Four different
trees were evaluated: fine, medium and coarse. As opposed to the neural network in
the previous section, the trees were trained and tested with reflectance of pixels of image
68P11 classified with the method of [171]. The training set, therefore, consisted of pure
pigments whose label corresponds to the index in the reference pigment database and
all other mixed/negative pixels labelled as class 0. The evaluation was performed using
k-fold and the results are summarised in Table D.2.

Table D.2: Results of pure pigment identifi-
cation using decision trees.

Fine 96.5%

Medium 95.2%

Coarse 98.8%

Tree Topology Accuracy

Although the results obtained seemed to show a high accuracy, the training and testing
data are highly imbalanced and therefore the accuracy is driven by the correct classification
of mixed pigments rather than pure pigments as shown in the confusion matrix of the
fine tree shown in Figure D.21; the grey diagonal represents the accurate classifications.
The high accuracy is driven by the correct classification of non-pure pixels (class 0).
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 Figure D.21: Confusion matrix for a fine tree classifier with 15 outputs (pure pigments) and
non-pure pigments (class 0).
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D.2.3 Pure Pigment Identification Using Support Vector Machine Classifiers

A fine Gaussian SVM classifier was designed to identify 18 classes: any of the 17 pure
pigments (including black and white) in the reference pigment database or a non-pure
colour. For this particular test, the use of true data in the training process was evaluated.
To achieve this, the pixels of all 11 images available were classified using the improved
method proposed in [171] using RMSE and raw reflectance values. The results of the
classification showed that the number of pure pigment pixels is highly imbalanced with
some pigments not present in any of the images analysed regardless of the method used.
For example, the total number of pixels per pigment in all 11 painting images are: Black -
166014; White Pb - 163165; Emerald - 23909; Ultramarine - 0; Viridian - 0; Green Cd - 0;
Prussian B. - 0; Cobalt B. - 5614; Cerulean B. - 47170; Violet Cd - 5732; Yellow Cr - 83046;
Y. Ochre - 4576; Orange Cd - 11624; T. Rossa - 0; R. Sienna - 2875; Carmine - 0; Vermilion -
43. To overcome this problem the following approach was used:

• Set the number of samples to 3000 (average number of reflectances per pure pigment
found)

• If the number of pure reflectances is less than 3000, balance the number using data
augmentation

• If the number of pure reflectances is greater than 3000, randomly select 3000

• Randomly select 3000 samples from the non-pure reflectances

A total of 54000 samples were compiled. For the calculation of the confusion matrix,
the number of folds was set to 5. The confusion matrix is shown in Figure D.22. The results
show that the fine Gaussian SVM classifier accurately distinguishes pure from non-pure
pigments.

The selected SVM classifier was evaluated using the data from painting 68P11. This is,
the reflectance of each pixel was fed into the classifier to predict whether the reflectance
belonged to one of the 17 pure pigments or to a non-pure pigment. To reduce computation
time the hyperspectral images were downsized to ensure the maximum number of total
reflectances per painting did not exceed 130000. To enhance the visualisation of the results,
the non-pure pixels were coloured with grey to allow white and black to be identified
(Figure D.23). For a true comparison, the images were also re-analysed using the original
method but downsized to match the size of the images tested with the classifier.

The results of the processing show a good correlation of pigments identified by the
SVM suggesting that this SVM model generated is adequate for the identification of pure
pixels including black and white.

183



APPENDIX D. APPENDIX 4 ADDITIONAL TEST RESULTS
T

ru
e

 C
la

s
s
 

0 2719 21  4 10 37 15 68 20 36 26     17 22 5 

1  3000                 

2   2983               17 

3 134   2824              42 

4 213    2787              

5 59 168    2772           1  

6 205 3     2792            

7 200 2      2798           

8 77 8       2915          

9 50 12        2938         

10 116          2884        

11            2872      128 

12  1           2999      

13              2640    360 

14               2884   116 

15 172 3              2825   

16 5 37           6    2952  

17 47 2  16           1   2934 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

  Predicted Class 

Figure D.22: Confusion matrix for SVM classifier. Accuracy 95.40%.

(a) (b)

Figure D.23: Comparison of pure pigments identified in 68P11 with (a) original improved method
and (b) SVM classifier.
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