8 research outputs found

    Piggybacking an Additional Lonely Bit on Linearly Coded Payload Data

    Full text link

    Grant-Free Massive MTC-Enabled Massive MIMO: A Compressive Sensing Approach

    Full text link
    A key challenge of massive MTC (mMTC), is the joint detection of device activity and decoding of data. The sparse characteristics of mMTC makes compressed sensing (CS) approaches a promising solution to the device detection problem. However, utilizing CS-based approaches for device detection along with channel estimation, and using the acquired estimates for coherent data transmission is suboptimal, especially when the goal is to convey only a few bits of data. First, we focus on the coherent transmission and demonstrate that it is possible to obtain more accurate channel state information by combining conventional estimators with CS-based techniques. Moreover, we illustrate that even simple power control techniques can enhance the device detection performance in mMTC setups. Second, we devise a new non-coherent transmission scheme for mMTC and specifically for grant-free random access. We design an algorithm that jointly detects device activity along with embedded information bits. The approach leverages elements from the approximate message passing (AMP) algorithm, and exploits the structured sparsity introduced by the non-coherent transmission scheme. Our analysis reveals that the proposed approach has superior performance compared to application of the original AMP approach.Comment: Submitted to IEEE Transactions on Communication

    Piggybacking an Additional Lonely Bit on Linearly Coded Payload Data

    No full text
    We provide a coding scheme, by which an additional lonely bit can be piggybacked on a payload data packet encoded with a linear channel code, at no essential extra cost in power or bandwidth. The underlying principle is to use the additional bit to select which of two linear codes that should be used for encoding the payload packet, this way effectively creating a nonlinear code. We give a fast algorithm for detecting the additional bit, without decoding the data packet. Applications include control signaling, for example, transmission of ACK/NACK bits(c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.</p

    Blind LDPC encoder identification

    Get PDF
    Nowadays, adaptive modulation and coding (AMC) techniques can facilitate flexible strategies subject to dynamic channel quality. The AMC transceivers select the most suitable coding and modulation mechanisms subject to the acquired channel information. Meanwhile, a control channel or a preamble is usually required to synchronously coordinate such changes between transmitters and receivers. On the other hand, low-density parity-check (LDPC) codes become more and more popular in recent years due to their promising capacity-approaching property. The broad range of variations in code rates and codeword lengths for LDPC codes makes them ideal candidates for future AMC transceivers. The blind encoder identification problem emerges when the underlying control channel is absent or the preamble is not allowed in AMC systems. It would be quite intriguing for one to build a blind encoder identification technique without spectrum-efficiency sacrifice. Therefore, in this thesis, we investigate blind LDPC encoder identification for AMC systems. Specifically, we would like to tackle the blind identification of binary LDPC codes (encoders) for binary phase-shift keying (BPSK) signals and nonbinary LDPC codes for quadrature-amplitude modulation (QAM) signals. We propose a novel blind identification system which consists of three major components, namely expectation-maximization (EM) estimator for unknown parameters (signal amplitude, noise variance, and phase offset), log-likelihood ratio (LLR) estimator for syndrome a posteriori probabilities, and maximum average-LLR detector. Monte Carlo simulation results demonstrate that our proposed blind LDPC encoder identification scheme is very promising over different signal-to-noise ratio conditions
    corecore