3,818 research outputs found

    Muscle Coordination Contributes to Function after Stroke; Proprioception Contributes to Control of Posture, Movement

    Get PDF
    More than half of stroke survivors experience persistent upper extremity motor impairments that can negatively impact quality of life and independence. Effective use of the upper extremity requires coordination of agonist/antagonist muscle pairs, as well as coordination of multiple control actions for stabilizing and moving the arm. In this dissertation, I present three studies in which I recorded isometric torque production, single joint movement and stabilization, and clinical measures of function and impairments after stroke to evaluate the extent to which changes in coordination of agonist/antagonist muscles and of sequential control actions contribute to deficits after stroke. In Aim 1, I quantified the extent to which stroke-related deficits in the coordination of agonist/antagonist muscle pairs degraded the ability to generate, maintain, and relax cued torques about the elbow. Participants who survived stroke (SP) and neurologically intact participants (NI) performed pursuit tracking of step-changes in isomeric torque targets to investigate coordination of activation magnitude in elbow agonist/antagonist muscle pairs. SP had marked hypertonia of the primary flexor muscles, which led to increased compensatory activity in the primary extensor muscles. These stroke-related deficits of muscle coordination degraded ability to generate, maintain, and relax cued torque production. In Aim 2, SP and NI performed sequential combinations of elbow stabilization and movements to investigate impairments in execution and coordination of these fundamental control actions. Impaired proprioception in SP was associated with increased impairments in stabilizing the arm against a perturbation compared with SP with intact proprioception. Surprisingly, SP with intact proprioception had greater impairments when moving than did SP with impaired proprioception. These results support the supposition that deficits of somatosensation can differentially impact neural control of limb stabilization and movement. Aim 3 used correlation and forward regression to compare deficits of muscle coordination (Aim 1) and control (Aim 2) to one another in order to quantify the extent to which each could explain deficits of motor function after stroke. Taken together, the three studies revealed that stroke-related deficits in coordination timing and magnitude of muscle activation impact clinically-measured function, and that somatosensory deficits can differentially impair neuromotor stabilization and movement control

    Before programs: The physical origination of multicellular forms

    Full text link
    ABSTRACT By examining the formative role of physical processes in modern-day developmental systems, we infer that although such determinants are subject to constraints and rarely act in a “pure ” fashion, they are identical to processes generic to all viscoelastic, chemically excitable media, non-living as well as living. The processes considered are free diffusion, immiscible liquid behavior, oscillation and multistability of chemical state, reaction-diffusion coupling and mecha-nochemical responsivity. We suggest that such processes had freer reign at early stages in the history of multicellular life, when less evolution had occurred of genetic mechanisms for stabilization and entrenchment of functionally successful morphologies. From this we devise a hypothetical scenario for pattern formation and morphogenesis in the earliest metazoa. We show that the expected morphologies that would arise during this relatively unconstrained “physical” stage of evolution correspond to the hollow, multilayered and segmented morphotypes seen in the gastrulation stage embryos of modern-day metazoa as well as in Ediacaran fossil deposits of ~600 Ma. We suggest several ways in which organisms that were originally formed by predomi-nantly physical mechanisms could have evolved genetic mechanisms to perpetuate their mor-phologies

    Doctor of Philosophy

    Get PDF
    dissertationIn many species, male reproductive fitness is dependent upon the ability to physically compete for access to mates. The direct link between performance in male contests and reproductive success has led to the evolution of male-biased sexual dimorphism in traits that improve fighting performance. However, species variation in social structure often leads to differences in the relative importance of intraspecific aggression and corresponding variation in the degree of sexual dimorphism. Traits such as body mass and canine size have received much attention because they have a clear impact on male fighting performance. However, additional musculoskeletal adaptations may also be under selection. Traits that improve strength, agility, and maneuverability (i.e., whole-organism performance capacities) may improve aggressive performance and this may lead to the evolution of sexual dimorphism throughout the musculoskeletal system. Because the postcranial anatomy also functions as the primary locomotor system, morphological specialization for aggression may directly conflict with locomotor performance, resulting in a functional trade-off. Given that locomotion represents a substantial proportion of total energetic expenditure in many species, compromises resulting from an aggression-locomotion trade-off may be vital to understanding the evolution of behavioral and phenotypic diversity. In this dissertation, I first investigated the prevalence of sexual dimorphism in skeletal morphology in three subspecies of gray wolf (Canis lupus). I then expanded this study to 26 species of carnivores and 11 species of primates. I found male-biased sexual dimorphism in skeletal traits that are predicted to improve aggressive performance, making males better equipped for intraspecific competition. Across species, the degree of dimorphism increased with the intensity of male competition. Consistent with sexual selection theory, the evolution of this dimorphism was best explained by mating system. To test for evidence of a functional trade-off between aggressive performance and locomotion, I measured male competitive ability through social competition trials in semi-natural enclosures and locomotor economy through running trials in an enclosed treadmill and open-flow respirometry. I found evidence for an aggression-locomotion functional trade-off. Together, this work improves our understanding of the role of aggression in the evolution of vertebrates and the impact that specialization for aggression may have on locomotion

    Learning to push and learning to move: The adaptive control of contact forces

    Get PDF
    To be successful at manipulating objects one needs to apply simultaneously well controlled movements and contact forces. We present a computational theory of how the brain may successfully generate a vast spectrum of interactive behaviors by combining two independent processes. One process is competent to control movements in free space and the other is competent to control contact forces against rigid constraints. Free space and rigid constraints are singularities at the boundaries of a continuum of mechanical impedance. Within this continuum, forces and motions occur in \u201ccompatible pairs\u201d connected by the equations of Newtonian dynamics. The force applied to an object determines its motion. Conversely, inverse dynamics determine a unique force trajectory from a movement trajectory. In this perspective, we describe motor learning as a process leading to the discovery of compatible force/motion pairs. The learned compatible pairs constitute a local representation of the environment's mechanics. Experiments on force field adaptation have already provided us with evidence that the brain is able to predict and compensate the forces encountered when one is attempting to generate a motion. Here, we tested the theory in the dual case, i.e., when one attempts at applying a desired contact force against a simulated rigid surface. If the surface becomes unexpectedly compliant, the contact point moves as a function of the applied force and this causes the applied force to deviate from its desired value. We found that, through repeated attempts at generating the desired contact force, subjects discovered the unique compatible hand motion. When, after learning, the rigid contact was unexpectedly restored, subjects displayed after effects of learning, consistent with the concurrent operation of a motion control system and a force control system. Together, theory and experiment support a new and broader view of modularity in the coordinated control of forces and motions

    A Review of Anterior Instability of the Shoulder

    Get PDF
    Shoulder dislocations are increasingly being recognized among physical therapists as a common disabling condition in the health care setting. Surgeons are constantly attempting to improve and develop new surgical techniques to help patients who present with anterior instability. The purpose of this paper is to address the issue of anterior instability and its clinical importance to physical therapy. The shoulder complex demonstrates an important balance between stability and mobility. As the name implies, it is an extremely complicated joint with various components contributing to its strength. The shoulder joint is dislocated more often than any other major joint in the body. Approximately 95% of these shoulder dislocations are anterior in nature. This literature review will cover the pertinent anatomy of the shoulder, the biomechanics, the etiology, the rehabilitation, and the conservative versus surgical management. It will provide updated information which will be valuable to physical therapists treating patients with a diagnosis of anterior instability

    Adaptive Neural Networks for Control of Movement Trajectories Invariant under Speed and Force Rescaling

    Full text link
    This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.National Science Foundation (IRI-87-16960); Air Force Office of Scientific Research (90-0128, 90-0175

    Respiratory, postural and spatio-kinetic motor stabilization, internal models, top-down timed motor coordination and expanded cerebello-cerebral circuitry: a review

    Get PDF
    Human dexterity, bipedality, and song/speech vocalization in Homo are reviewed within a motor evolution perspective in regard to 

(i) brain expansion in cerebello-cerebral circuitry, 
(ii) enhanced predictive internal modeling of body kinematics, body kinetics and action organization, 
(iii) motor mastery due to prolonged practice, 
(iv) task-determined top-down, and accurately timed feedforward motor adjustment of multiple-body/artifact elements, and 
(v) reduction in automatic preflex/spinal reflex mechanisms that would otherwise restrict such top-down processes. 

Dual-task interference and developmental neuroimaging research argues that such internal modeling based motor capabilities are concomitant with the evolution of 
(vi) enhanced attentional, executive function and other high-level cognitive processes, and that 
(vii) these provide dexterity, bipedality and vocalization with effector nonspecific neural resources. 

The possibility is also raised that such neural resources could 
(viii) underlie human internal model based nonmotor cognitions. 
&#xa

    Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Get PDF
    We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa

    Changes in motor synergies for tracking movement and responses to perturbations depend on task-irrelevant dimension constraints

    Get PDF
    We investigated the changes in the motor synergies of target-tracking movements of hands and the responses to perturbation when the dimensionalities of target positions were changed. We used uncontrolled manifold (UCM) analyses to quantify the motor synergies. The target was changed from one to two dimensions, and the direction orthogonal to the movement direction was switched from task-irrelevant directions to task-relevant directions. The movement direction was task-relevant in both task conditions. Hence, we evaluated the effects of constraints on the redundant dimensions on movement tracking. Moreover, we could compare the two types of responses to the same directional perturbations in one- and two-dimensional target tasks. In the one-dimensional target task, the perturbation along the movement direction and the orthogonal direction were task-relevant and -irrelevant perturbations, respectively. In the two-dimensional target task, the both perturbations were task-relevant perturbations. The results of the experiments showed that the variabilities of the hand positions in the two-dimensional target-tracking task decreased, but the variances of the joint angles did not significantly change. For the task-irrelevant perturbations, the variances of the joint angles within the UCM that did not affect hand position (UCM component) increased. For the task-relevant perturbations, the UCM component tended to increase when the available UCM was large. These results suggest that humans discriminate whether the perturbations were task-relevant or -irrelevant and then adjust the responses of the joints by utilizing the available UCM

    Muscle contributions to knee joint stability: Effects of ACL injury and knee brace use.

    Get PDF
    • …
    corecore