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ABSTRACT 
 
 

MUSCLE COORDINATION CONTRIBUTES TO FUNCTION AFTER STROKE; 
PROPRIOCEPTION CONTRIBUTES TO CONTROL  

OF POSTURE, MOVEMENT 
 
 

 Maria C. Bengtson, B.S.E.  
 
 

Marquette University, 2017 
 
 

More than half of stroke survivors experience persistent upper extremity motor 
impairments that can negatively impact quality of life and independence.  
Effective use of the upper extremity requires coordination of agonist/antagonist muscle 
pairs, as well as coordination of multiple control actions for stabilizing and moving the 
arm. In this dissertation, I present three studies in which I recorded isometric torque 
production, single joint movement and stabilization, and clinical measures of function 
and impairments after stroke to evaluate the extent to which changes in coordination of 
agonist/antagonist muscles and of sequential control actions contribute to deficits after 
stroke. In Aim 1, I quantified the extent to which stroke-related deficits in the 
coordination of agonist/antagonist muscle pairs degraded the ability to generate, 
maintain, and relax cued torques about the elbow. Participants who survived stroke (SP) 
and neurologically intact participants (NI) performed pursuit tracking of step-changes in 
isomeric torque targets to investigate coordination of activation magnitude in elbow 
agonist/antagonist muscle pairs. SP had marked hypertonia of the primary flexor muscles, 
which led to increased compensatory activity in the primary extensor muscles. These 
stroke-related deficits of muscle coordination degraded ability to generate, maintain, and 
relax cued torque production. In Aim 2, SP and NI performed sequential combinations of 
elbow stabilization and movements to investigate impairments in execution and 
coordination of these fundamental control actions. Impaired proprioception in SP was 
associated with increased impairments in stabilizing the arm against a perturbation 
compared with SP with intact proprioception. Surprisingly, SP with intact proprioception 
had greater impairments when moving than did SP with impaired proprioception. These 
results support the supposition that deficits of somatosensation can differentially impact 
neural control of limb stabilization and movement. Aim 3 used correlation and forward 
regression to compare deficits of muscle coordination (Aim 1) and control (Aim 2) to one 
another in order to quantify the extent to which each could explain deficits of motor 
function after stroke. Taken together, the three studies revealed that stroke-related deficits 
in coordination timing and magnitude of muscle activation impact clinically-measured 
function, and that somatosensory deficits can differentially impair neuromotor 
stabilization and movement control.  
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CHAPTER 1: RATIONALE AND SPECIFIC AIMS 
 
 
Rationale and Hypothesis 
 
 

Persistent impairment of the more-impacted upper extremity is a reality of life for 

the majority of survivors of stroke (Winstein et al. 2016). The most common upper 

extremity impairment is paresis, weakness thought to be driven in part by lost descending 

control (Lundy-Eckman 2007). Paresis can contribute to loss of function and disuse of the 

more-impacted upper extremity which can impact stroke survivors’ ability to perform 

activities of daily living, such as brushing one’s teeth or toileting, or even one’s ability to 

live independently if activities such as driving or performing work responsibilities are 

sufficiently impacted (Winstein et al. 2016). In this Dissertation, we hope to elucidate 

some of the factors we believe to underlie loss of function and motor impairment after 

stroke. Specifically, we study stroke-related changes in control and coordination of 

agonist/antagonist muscle pairs, stroke-related changes in fundamental control actions 

used to stabilize and move the arm, and how stroke impacts sequential coordination of 

these control actions. We then relate these measures to clinical measures of motor 

function and impairment in survivors of stroke.  

Clinical measures of function and impairment after stroke are multifaceted tools 

that quantify several aspects of impairment. One such measure of impairment, the Fugl-

Meyer Assessment, evaluates reflex abnormalities, the ability to move in and out of 

muscle synergies, and voluntary wrist and hand movement (FMM, Fugl-Meyer et al. 

1975). A measure of function, the Chedoke Arm and Hand Activities Inventory, 

evaluates performance of bilateral arm activities of daily living such as filling a glass of 
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water or cutting food (CAHAI, Gowland 1993). While these measures are clinically 

useful for staging and tracking recovery, the specific, stroke-related deficits underlying 

these broad measures remains unclear. Many research groups have sought to employ 

well-controlled laboratory-based assessments to fill this knowledge gap by characterizing 

how stroke-related impairments impact specific aspects of neuromotor control, as well as 

how those control deficits impact motor function.  

Well-organized coordination of agonist/antagonist muscle pairs in time and 

magnitude is crucial for creating controlled torque at a joint, such as that used to steady 

the arm against the force of gravity during movement. However, there are many reported 

deficits in muscular control after stroke that interfere with this type of muscle 

coordination and can decrease success of movements. Deficits include abnormalities in 

timing of contraction onset and/or termination (Chae et al. 2002, Kautz and Brown 1998), 

poor coupling of muscle activation patterns with a task objective (target tracking), and 

excessive muscle activation (Canning et al. 2000), which can lead to impairment in 

torque production (Kamper and Rymer 2001). Additionally, these abnormalities may be 

exacerbated at certain joint angles, such as when the arm is positioned such that a muscle 

is stretched beyond its static stretch reflex threshold, which is often within the range of 

achievable motion in survivors of stroke and can cause constant activation in the 

stretched muscle (Levin et al. 2000).  

There is evidence to suggest that a single point-to-point reach is actually 

controlled by a series of distinct neural mechanisms enacted sequentially (Humphrey and 

Reed 1983, Sheridan 1984, Schaal and Atkeson 1998, Sainburg et al. 1999). First, 

movement control is thought to consist of a feedforward controller that initiates 
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movement, and then a proprioception-based online feedback controller that corrects the 

trajectory as the movement occurs. As the movement approaches its end location a 

postural controller is thought to be used to terminate movement (Sainburg et al. 1999, 

Scheidt and Ghez 2007, Ghez et al. 2007). In healthy point-to-point reaching, these three 

control actions are executed sequentially, but overlapping in time (thus blending the 

control phases into one another) and producing a smooth and accurate targeted 

movement. However, these control actions appear to be differentially impacted by stroke 

(Scheidt and Stoeckmann 2007, Schaefer et al. 2009).  

 The studies described in this Dissertation quantify kinematic coordination of 

sequential control actions and coordination of activation in agonist/antagonist muscle 

pairs in participants with unilateral stroke (SP) and compare them to coordination 

patterns used by neurologically intact (NI) participants. The coordination deficits 

observed in the SP are then used to quantify the extent to which these deficits can explain 

limitations in function and motor impairments observed after stroke. We test the 

hypotheses that deficits in coordinating timing and magnitude of agonist/antagonist 

muscle activations at the elbow and deficits in coordinating sequential stabilization and 

movement control actions contribute significantly to deficits in motor function and motor 

impairment after stroke.  

 
Aim 1: Quantify the extent to which joint angle-dependent deficits in 
agonist/antagonist muscle coordination degrade the ability to produce controlled, 
goal-directed changes in elbow joint torque after stroke.  
 
 

Prior work has examined isometric torque production tasks at the more affected 

elbow (Canning et al 1999; Chang et al. 2013; McCrea 2003) and wrist (Chae et al. 2002) 
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in order to characterize the impact of stroke on aspects of neuromuscular coordination 

including maximal torque production (Chae et al. 2002, McCrea 2003), rates of torque 

development and reduction (Canning et al. 1999, McCrea 2003), spontaneous discharge 

of motor units (Chang et al. 2013), and the degree of co-activation (Chae et al. 2002) 

during torque production without the potential confound of limb motion and the abnormal 

velocity-dependent reflex responses it can elicit. Findings of these experiments include 

marked weakness and slow rates of torque development (McCrea et al. 2003, Canning et 

al. 1999), in addition to delay in the initiation and termination of muscle activation (Chae 

et al. 2002), as well as sustained increases in spontaneous discharges of motor units after 

voluntary activation (Chang et al. 2013) 

Additionally, arm position has been observed to contribute significantly to muscle 

function and torque production after stroke. Levin and colleagues describe studies 

designed to characterize deficits in the regulation of stretch reflex thresholds - a 

neuromuscular mechanism believed to underlie hemiparesis after stroke (Levin et al., 

1997) and other brain injuries (Levin et al., 2000). In NI participants, there is no part of 

the achievable range of motion in the arm that will spontaneously trigger stretch reflex. In 

11/12 SP however, Levin and colleagues (2000) found that static flexor stretch reflexes 

were spontaneously triggered (consequently giving rise to involuntary hypertonia) when 

the arm was placed in joint angles within the physiological range of motion. Similar 

effects were observed in the extensors of approximately one third of SP. These abnormal 

stretch reflexes limited the range in which reciprocally organized muscle activity could 

be generated. They were also related to reductions in the maximal flexor and extensor 

torques that the hemiparetic participants were able to produce when the functional agonist 
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muscle was lengthened. Unfortunately, no attempt was made to link these results to 

motor function, thus leaving unresolved the question of how joint angle-related deficits of 

motor control might contribute to deficits of motor function post-stroke. 

In the first experiment, NI and SP participants completed a series of isometric 

step-torque tracking tasks at the elbow, alternating between matching moderate flexion or 

extension torque targets and a relaxed (no torque) target. Each task was repeated at three 

elbow joint angles to allow testing with each muscle shortened, neutral, and lengthened. 

Kinetic performance and electromyograms (EMG) were used to calculate measures of 

torque production and coordination of agonist/antagonist muscle activation during 

relaxation and torque generation. These measures were used to quantify differences in 

agonist/antagonist muscle coordination and torque production between SP and NI. They 

then were used to model motor function after stroke as measured by CAHAI and 

synergy/strength-based motor impairment as measured by FMM. We tested the hypothesis 

that position-dependent deficits of coordination of agonist/antagonist activation – and 

any resulting constraints on elbow joint torque production – explain significant variance 

in motor impairment and deficits of motor function after stroke.  

 
Aim 2: Quantify the extent to which stroke impairs control and coordination of limb 
stabilization and movement.  
 
 

Reaching, though a familiar behavior, is far from simple. As previously 

mentioned, a single targeted point-to-point reach consists of at least three distinct control 

actions that are sequentially executed with some overlap to produce smooth and accurate 

reaches. Studies explicitly seeking to test differential impacts of stroke on stabilization 

and movement control actions have found that after stroke, these control actions adapt 
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differently from one another to visuomotor perturbations (Schaefer et al. 2009), and that 

proprioceptive deficits are associated with deficits in final position control (Scheidt and 

Stoeckmann 2007). Observations by other groups studying reaching impairments after 

stroke, while not explicitly designed to test for deficits in control actions, have identified 

segmented reaching, i.e., a loss of movement smoothness after stroke, and inaccuracy in 

achieving the final desired hand position and thus are suggestive of the types of control 

impairments that might be expected (Cirstea and Levin 2000, Dipietro et al. 2009, 

Kamper et al. 2002, Krebbs et al. 1999, Levin 1996, McCrea et al. 2005, Roby-Brami et 

al. 1997, Rohrer et al. 2002, Rohrer et al. 2004, Trombly 1992).  

In order to isolate these control actions to the greatest extent possible, we 

simplified reaching to a single-joint task about the elbow. This choice allowed us to study 

the coordination of sequential stabilization and movement control actions in a controlled 

manner. In this experiment, SP and NI performed a series of targeted, point-to-point 

elbow movement tasks with the initial and final conditions perturbed by the presence or 

absence of an adjacent stabilization task. Baseline performance of stabilization and 

movement control actions was quantified for SP and NI. Then, measures of sequential-

task coordination were calculated using performance in the composite 

stabilization/movement conditions. Finally, these measures of control and sequential 

coordination were used in an attempt to model function as measured by the CAHAI and 

impairment as measured by FMM. I tested the hypothesis that deficits of coordination 

between sequential limb stabilization and limb movement control actions correlate 

significantly to motor impairment and deficits of motor function after stroke.  
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Aim 3: Quantify the extent to which stroke-related deficits in coordination of 
sequential stabilization and movement control actions, and coordination of 
activation in agonist/antagonist muscle pairs, account for decreased functional 
ability as measured by the Chedoke Arm and Hand Activities Inventory and motor 
impairment as measured by the upper extremity portion of the Fugl-Meyer 
Assessment.  
 
 
  The experiments described above were designed to quantify the extent to which 

stroke-related deficits of agonist/antagonist muscle coordination degrade the ability to 

produce controlled, goal-directed changes in elbow joint torque (Aim 1), as well as the 

impact of stroke on stabilization and movement control actions, and finally, the 

coordination of these actions when enacted sequentially (Aim 2). The final analyses were 

designed to compare outcome measure from Aim 1 and Aim 2 to one another to evaluate 

the extent to which each deficit could account for decreased functional ability and motor 

impairments in the upper extremity after stroke.  

Analyses in this Aim were restricted to SP. First, we tested for correlations 

between upper extremity function and impairment, and clinical and research measures of 

specific somatosensory, physical, and mild cognitive impairment; measures of 

agonist/antagonist muscle coordination from Aim 1 and Aim 2; and measures of 

coordination of sequential stabilization and movement control actions from Aim 2 to 

quantify the extent to which these measures were related. Next, we used forward 

regression to quantify the extent to which these measures could account for differences in 

clinical function and motor impairment in the upper extremity in our cohort of SP. We 

tested the hypothesis that coordination of elbow flexors and extensors, and coordination 

of sequential stabilization and movement control actions, account for significant 

variability in clinically measured motor function and impairment after stroke.  
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 The experiments described in this Dissertation characterized differences in 

coordination of muscle activity in an agonist/antagonist pair for controlled torque 

production and coordination of sequentially executed control actions in SP and NI 

participants and used these measures to model motor function and impairment post-

stroke. Our findings in Aim 1 support and expand our knowledge of changes in 

coordination of agonist/antagonist muscle pairs in the upper extremity after stroke and 

their implications on torque production at the elbow. Our findings in Aim 2 expand 

knowledge of the differential impacts of stroke on stabilization and movement-control as 

well as the impact of stroke on sequential coordination of these control actions, and 

propose a mechanism for observed differences in control that complements and expands 

current thinking in the field. Finally, by quantifying the impact that these coordination 

deficits have on functional deficits after stroke, we advance our understanding of factors 

that may contribute to motor function after stroke.  
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CHAPTER 2: BACKGROUND 
 
 
Prevalence of motor deficits after stroke 
 
 

Stroke affects motor control in numerous ways. Damage to descending 

neuromotor systems can result in loss of inhibitory control which can manifest in 

spasticity, abnormal patterns of muscle activation, and disability in performing selective 

movements (Bobath 1990). Loss of range of motion, dexterity, and muscle weakness are 

also common motor outcomes of stroke (Kamper et al. 2002, Trombly 1992). In addition 

to motor impairment, sensory impairment of proprioception and light touch are also 

frequently reported (Brain 1956). These deficits can impair motor function, which 

requires both efferent commands and afferent sensation (Twitchell 1954). This project is 

motivated by the belief that clinicians will be better able to optimize the design and 

delivery of therapies to improve motor function following stroke if we can better 

understand - on an individual-by-individual basis – specific impairments after stroke.  

 
Changes in descending neural control can affect motor control after stroke 

 
 
Middle cerebral artery (MCA) occlusion is the most common type of stroke, 

accounting for more than half of first strokes in the 1000-patient Lausanne Stroke 

Registry (Bogousslavsky et al. 1988). The MCA provides blood flow to most of the 

lateral hemispheres – including portions of premotor, primary motor, primary 

somatosensory, and prefrontal cortices. In addition, MCA supplies parts of the internal 

capsule, particularly the posterior limb which contains corticospinal and thalamocortical 

projections; as well as the globus pallidus, putamen and caudate (Lundy-Eckman 2007). 
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Suminski and colleagues implicated cerebello-thalamo-cortical networks during a task 

requiring feedback control of hand position in neurologically-intact participants (2007). 

They also found task-related activity in prefrontal cortex, premotor cortex, supplemental 

motor area, and parietal cortex during stabilization of the hand (Suminski et al. 2007). 

These circuits involve sensory feedback and processing and are consistent with the 

necessity of knowing where the body is in space in order to effectively plan and execute 

movement (Sober and Sabes 2003). MCA occlusion would likely damage parts of these 

networks leading to motor deficits. Thus, it is not surprising that persistent motor deficits 

are observed in approximately half of stroke survivors (Roger et al. 2012). 

 
Intact neural control of movement in the upper extremity 
 
 

A neurologically intact human can use the arm to make movements that are fast, 

smooth, and accurate. The corticospinal tract (CST) carries information for conscious 

control of fractionated movement in neurologically-intact humans. Primary motor cortex 

(M1) is the primary planning output center of the corticospinal tract. The majority of 

intracortical connections in M1 occur within a radius of 1 to 2 mm, suggesting that this 

proximity is functionally important (Scheiber 2001). M1 has a somatotopic organization 

that is highly consistent with observed functional task-groupings of muscles in skilled, 

highly fractionated (individuated) motor control, e.g., representations of the thumb and 

wrist – which necessarily must work together – are highly overlapped, while 

representations of disparate parts – such as the thumb and the foot – do not overlap 

(Scheiber 2001). Thus, M1 is organized in a manner to facilitate fractionated control of 

functional task-related muscles.  
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The connection patterns from descending CST neurons are consistent with the 

hallmarks of skilled motor behavior in the human upper extremity, such as fractionated 

movement driven by selective activation of small groups of task-related muscles (Buys et 

al. 1986). Neurons descending from CST to the spinal cord are known to make direct 

connections with alpha-motoneuron ("MN) pools (Fig. 2.1, thick blue lines). 

Connections from a given descending CS neuron tend to be focused on a small number of 

motoneuron pools that are highly linked functionally (Buys et al. 1986), and can – 

through connections with spinal interneurons – exert both excitatory and inhibitory 

actions at the "MN level (Lundberg and Voorhoeve 1962).  
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Figure 2.1: Descending control of volitional movement. Square boxes indicate motor tracts, concave 
diamonds indicate "-motoneruons, hexagons indicate Ia-afferents (dashed lines are muscle spindles), 
ellipses indicate Ia inhibitory interneurons. Dashed circles indicate location known to experience 
presynaptic inhibition, elaborated in next figure. Y endings indicate excitatory synapse, filled circle 
endings indicate inhibitory synapse. Blue traces represent glutamatergic (+) synapses, green traces 
indicate monoaminergic (+) synapses, orange traces indicate acetylcholinergic (+) synapses, and black 
traces represent glycinergic (-) synapses. 

 
 
In addition to direct connections between CST and "MN pools, neurons from the 

CST also synapse with interneurons. The implications of these connections will be 

discussed further below.  
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Reticulospinal tract is viable candidate for restoration of motor function after damage to 
corticospinal tract  
 
 

After stroke, many survivors recover motor control to some extent, but the 

recovered function may differ significantly from motor control prior to the stroke. Some 

have argued for the role of cortical reorganization and ipsilateral CST projections in 

motor recovery (c.f. Jang 2009). However, CST reorganization does not necessarily result 

in measurable improvement in motor function (Nudo et al. 2001). Under normal 

conditions CST is thought to inhibit the reticulospinal system (RS) both in the brain and 

at the spinal level (Ortiz-Rosario et al. 2014). After damage to the CST by stroke, RS 

may become the primary driver of motor function in the upper extremity (Baker 2011).  

Recent experiments in nonhuman primates implicate the reticulospinal (RS) 

system as the primary motor tract responsible for recovery of motor function after 

damage to the CS tract (Zaaimi et al. 2012). Using a non-human primate model, Zaaimi 

and colleagues (2012) made extensive unilateral lesions in descending CS input to the 

spinal cord, effectively destroying contralateral CS input to the more affected side while 

leaving intact descending ipsilateral CS input from the intact hemisphere of the CS. Six 

months after the lesions were made, Zaaimi and colleagues made intracellular recordings 

of motoneurons innervating hand and arm muscles while stimulating either ipsilateral 

(intact) CS, or ipsi-, and contralateral RS targets. Stimulation in the ipsilateral CS did not 

provoke significant response in recorded motoneurons in either the lesioned animals or in 

non-lesioned controls. However, post-lesion stimulation of both the ipsilateral and 

contralateral RS tract led to increased response in recorded motoneurons compared with 

intact control animals, especially in recorded flexor motoneurons (Zaaimi et al. 2012). 



 

 

14 

This suggests that the RS is a good candidate for driving functional motor recovery after 

stroke, but only motor recovery within synergy patterns as all descending pathways 

originating in the brainstem, including RST, innervate pools of neurons for flexion / 

extension, not individual muscles for fractionated movement. 

 
Neural causes of weakness after stroke 
 
 

One commonly observed motor impairment after stroke is weakness (Kamper et 

al. 2002, Trombly 1992, McCrea et al. 2003, Canning et al. 1999). This may be due in 

part to changes in neural drive. While RS has been found to descend approximately in 

parallel with CS, excitatory post-synaptic potentials in "MNs resulting from RS input 

have approximately 20% of the amplitude observed from comparable CS input (Riddle et 

al. 2009). In the upper extremity, RS input has been shown to innervate flexors more than 

extensors (Baker 2011), consistent with observed imbalances in flexor and extensor 

strength after stroke (Beer et al. 2007). Additionally, connections from descending RS 

neurons tend to be spread across a larger number of "MNs and muscles with less focused 

drive than observed in CS (Peterson et al. 1975, Matsuyama et al. 1997). Thus, weaker, 

imbalanced, more highly dispersed descending input driven by RS would be expected to 

produce less neural drive – and therefore less muscle contraction and less torque 

production – than observed with intact CS control.  

Additionally, involuntary co-contraction of muscles may contribute to observed 

weakness. One mechanism for reducing antagonist activity during volitional movement is 

reciprocal inhibition through Ia pathways (Fig. 2.1, Crone 1993). Ia pathways are 

modulated by Ia afferent input (which is excited by stretching muscle) as well as by 
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descending control from CS (Hultborn and Udo 1972). When descending CS input is lost, 

there is less excitatory input to the Ia inhibitory interneurons, which leads to a decrease in 

inhibition at the antagonist "MN. Thus, antagonist "MNs may be closer to threshold, 

which can lead to greater activity in the antagonist muscle prior to and during movement. 

Torque measured at a joint is the net torque produced by all muscles contracting across 

the joint. Thus, if there is elevated antagonist muscle tone (i.e., antagonist muscles are 

contracting), the forces exerted by those muscles will reduce the net force about the joint 

and contribute to measured weakness.  

 
Neural causes of slowness after stroke 
 
 

Another common motor deficit after stroke is slowness of muscle recruitment 

(Chae et al. 2002), torque production (McCrea et al. 2003, Canning et al. 1999), and 

movements (Roby-Brami et al. 1997, Levin 1996, Cirstea and Levin 2000, Trombly 

1992, Kamper et al. 2002). Potential neural contributors to slowness after stroke include 

differences in neurotransmitters between the CS and RS, weaker and less focused 

descending input from RS drive, and decreased CS drive of Ia inhibitory pathways acting 

on task-antagonist muscles.  

While both CS and RS pathways are known to directly innervate "MNs (see Fig. 

2.1), differences in the time course of activation may result from differences in 

neurotransmitters released by the two pathways. The primary neurotransmitter of CS is 

glutamate (Al Masri 2011) while monoamines such as serotonin and norepinephrine are 

more prevalent in RS (Lundy-Eckman 2007). Glutamate is a fast-acting excitatory 

neurotransmitter with synaptic action on sub-millisecond time scales between release and 
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inactivation (Danbolt 2001). Monoamines are slow-acting neurotransmitters with 

synaptic action ranging from 10 ms to multiple-minute time scales (Lundy-Eckman 

2007). The slower excitation of "MNs by the monoaminergic RS may contribute to 

slower activation of muscle after stroke.  

In addition to releasing slow-acting monoamines, connections between the RS 

and "MNs are both weaker and more diffuse than those made by the CS. While the 

implications of this with respect to torque production are discussed above, it is important 

to note that strong, concurrent (“bursting”) innervation of functional task-related "MN 

pools is also crucial to driving the functional task-coordinated muscle activation 

underlying fast movement of a limb segment about a joint. For example, in order to 

perform a ballistic movement, such as throwing a ball, many task-related muscles must 

activate concurrently in a small time window to produce the power needed to launch the 

projectile (ball).  

Additionally, for fast movements to occur, antagonist muscle activity must be 

suppressed to prevent “braking” of the movement. In the intact motor system, CS 

pathway facilitates the suppression of antagonist muscle activity through inhibitory Ia 

pathways (see Fig. 2.1). CS makes synapses directly onto Ia-inhibitory interneurons that 

project onto antagonist "MN pools while simultaneously projecting axon collaterals onto 

agonist "MN pools (Fig. 2.1; Lundberg and Voorhoeve 1962, Hultborn and Udo 1972, 

Day et al. 1983, Cavallari et al. 1984). Thus, as the system is preparing to move but prior 

to volitional movement, CS can bring functional task-related agonist "MN pools closer to 

threshold while suppressing activation in antagonist "MN pools. This pattern of 

reciprocal agonist activation and antagonist suppression can facilitate fast responses and 
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accelerations at the onset of volitional movements. With loss of descending CS input, the 

Ia pathway must wait for input from afferents associated with muscle spindles which will 

not occur until after movement has begun and a muscle is stretched. Thus, the antagonist 

"MN pools will not be actively suppressed prior to movement potentially leading to 

delays in movement initiation as well as slower movement at onset due to resistance from 

residual antagonist muscle activation. 

 
Neural causes of non-smooth control after stroke 
 
 

Loss of smoothness is a hallmark of arm movement after stroke (Cirstea and 

Levin 2000, Dipietro et al. 2009, Krebbs et al. 1999, McCrea et al. 2005, Rohrer et al. 

2002, Rohrer et al. 2004). Normal movement results from a combination of descending 

signals and afferent sensory signals (cf. Nielsen 2004). In neurologically intact humans, 

short point-to-point arm movements typically consist of a single smooth movement 

characterized by a smooth, bell-shaped tangential velocity profile (Fishbach et al. 2006, 

Cirstea and Levin 2000). Very long-duration arm movements – such as tracking an 

unpredictable target over several minutes – consist of a series of submovements at 

intervals of 400 to 500 ms (Craik 1947). These submovements are characterized by the 

presence of multiple peaks in the tangential velocity trace caused by proprioceptive 

feedback signals used to correct for perceived position errors (Vince 1948, Keller et al. 

1996, Schaefer et al. 2009, Xu-Wilson et al. 2011). This observation is consistent with 

constant accumulation of error information and periodic discrete corrections. When 

proprioceptive feedback is lost, such as in large-fiber sensory neuropathy, submovements 

are eliminated and endpoint accuracy is degraded (Gordon et al. 1995). Thus, 
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proprioceptive feedback contributes positively to position accuracy and periodically 

modulates smooth movement in the intact human motor system. 

Excitatory proprioceptive feedback to "MNs is modulated by presynaptic 

inhibition (Fig. 2.2) which causes release of the inhibitory neurotransmitter GABA onto 

the sensory afferent nerve’s axon (Rudomin and Schmidt 1999) and thus prevents 

neurotransmitter release by that nerve. When the excitatory output from the afferent is 

suppressed, there is less excitatory input to the "MN, and thus less innervation of the 

muscle. Presynaptic inhibition is thought to have central origin and is affected by input 

from both the CS and RS tracts (Rudomin and Schmidt 1999). Additionally, presynaptic 

inhibition is affected by multiple afferent and spinal-level inputs (Rudomin and Schmidt 

1999, Quevedo 2009).  
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Figure 2.2: Descending and spinal inputs to "–motoneurons showing presynaptic inhibition. Y endings 
indicate excitatory synapse, ball endings indicate inhibitory synapse, ellipsoidal ending indicates 
GABAergic inhibitory synapse. Dashed shape encloses mechanisms of presynaptic inhibition including a 1st 
order primary afferent depolarization (PAD) interneuron, white circle with black excitatory axon, and last-
order PAD interneuron, purple circle with inhibitory axon, and inhibitory interneurons, black circle with 
inhibitory axon. CS: Corticospinal tract, RS: reticulospinal tract; Ia cells in Ia reflex pathways including 
afferent (dashed line and blue excitatory axons and synapses) and inhibitory interneuron (black axon with 
ball end); Cu.: cutaneous afferent, VS: vestibulospinal system; Ib: Ib afferent. Blue traces represent 
glutamatergic (+) synapses, green traces indicate monoaminergic (+) synapses, orange traces indicate 
acetylcholinergic (+) synapses, purple oval traces represent GABAergic (-) inhibitory synapses, and black 
ball-ended traces represent glycinergic (-) synapses.  
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Presynaptic inhibition is a process involving a series of interneurons, the most 

significant of which are 1st order primary afferent depolarization (PAD) interneurons 

(Fig. 2.2, white excitatory interneuron) and last-order PAD interneurons (Fig. 2.2, purple 

inhibitory interneuron). 1st order PAD interneurons are excitatory interneurons that 

receive excitatory input from Ia, Ib, cutaneous, vestibuolospinal and CS sources, as well 

as indirect inhibition from CS (Rudomin and Schmidt 1999, Pierrot-Deseilligny and 

Burke 2005). When sufficiently excited, 1st order PAD interneurons excite last-order 

PAD interneurons to drive presynaptic inhibition, thus reducing excitatory afferent input 

to the "MN and indirectly decreasing the amount of excitation to muscle. In addition to 

excitatory input from 1st order PAD interneurons, last-order PAD interneurons also 

receive indirect inhibition from the RS pathway (Rudomin and Schmidt 1999, Pierrot-

Deseilligny and Burke 2005). This connection allows RS drive to suppress presynaptic 

inhibition, thus allowing more excitatory afferent signal into the "MN. If the CS has 

suffered significant damage leaving the RS to modulate presynaptic inhibition, it is likely 

that presynaptic inhibition would be depressed and more afferent excitation would 

bombard "MNs.  

Unregulated afferent input to "MNs extinguishes smooth movement. Fink and 

colleagues (2014) created a mouse model in which the last-order PAD interneurons were 

eliminated. The loss of these inhibitory GABA-ergic projections to sensory afferents – 

such as Ia proprioceptive afferents – greatly decreased regulation of excitatory signals 

from afferents to "MNs. This unregulated excitation precluded smooth movement in the 

forelimb of the mouse. Thus, appropriate regulation of proprioceptive feedback is 

essential to motor control and execution of smooth movements. 
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After stroke, there are several potential drivers of degraded proprioceptive 

integration that may contribute to jerkiness of movement. First, damage to sensory areas 

or connecting tracts within cortex could interfere with cortical perception of afferent 

signals and their integration into motor planning and execution. Second, if cortical 

regions involved in regulating presynaptic inhibition are damaged, direct afferent signals 

to "MNs may lack appropriate regulation. Finally, even if proprioceptive feedback is 

somehow unaffected by a stroke, slowness of movements could lead to more instances of 

the natural corrective interruption cycle that underlies submovements in the intact motor 

system – as seen in tracking tasks performed by neurologically-intact humans (Craik 

1947).  

 
Neural causes of elevated muscle activation and co-activation after stroke 
 
 

The presence of persistent muscle activation after volitional movement is 

completed is widely observed in stroke (Burne et al. 2005, Chang et al. 2013, Mottram et 

al. 2009, 2010). In order to make a simple movement, such as flexing the elbow joint, the 

agonist muscles (in this case elbow flexors) must be activated while the antagonist 

muscles (in this case elbow extensors) are suppressed. If activity in the antagonist muscle 

is not effectively suppressed, the agonist muscle must contract more forcefully to 

overcome the antagonist contribution. In the intact motor system, the CS suppresses 

activity in task-antagonist muscles by inhibiting antagonist "MN pools.  

When descending CS input to Ia inhibitory interneurons is lost, the ability to 

suppress activity in the task-antagonist "MN pool prior to movement onset is impaired 

because the Ia inhibitory interneurons target antagonist "MN pools (see Fig. 2.1). 
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Additionally, loss of descending CS input to 1st order PAD interneurons could decrease 

the amount of presynaptic inhibition acting on afferent terminals. This can lead to 

activation of the antagonist muscle during a functional task. During movement, the 

antagonist muscle is typically stretched, thus exciting Ia afferents which make excitatory 

monosynaptic connections with the antagonist "MN pool (see Fig. 2.1). Presynaptic 

inhibition is an effective mechanism for suppressing that excitatory monosynaptic stretch 

reflex (see Fig. 2.2). Thus, decreased presynaptic inhibition can contribute to greater 

activation of antagonist muscles during movement, and therefore can lead to greater co-

activation.  

Additionally, the slower time course of monoaminergic excitatory input from the 

RS system can lead to long-duration muscle activation compared with the fast-acting 

glutamatergic excitatory input from CS. While glutamate can be inactivated on a sub-

millisecond time course, monoamine neurotransmitters can persist for tens to tens-of-

thousands of milliseconds (Lundy-Eckman 2007). This persistent, monoaminergic 

excitation of "MN pools by descending RS input can lead to elevated co-activation in 

many functional tasks that require reciprocal activation of agonist / antagonist muscle 

groups. In a task such as cutting food with a knife – neglecting activation at hand, wrist 

and shoulder – elbow flexors and extensors can alternate their roles as agonist and 

antagonist on sub-second time scales. If there is long-acting excitation on either muscle 

group that is not effectively suppressed by functional inhibition, it stands to reason that 

one would observe elevated levels of co-activation during such a task.   
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Stroke related changes in muscle  
 
 

Stroke-related changes in descending control can lead to changes in muscle 

composition. These compositional changes can lead to alterations in muscle properties 

that can have functional impacts on strength, speed, and smoothness.  

 
Motor units and muscle fiber types 
 
 

There are three predominant types of motor unit in humans: slow units, fast 

fatigue-resistant units, and fast fatigable units.  These motor units are highly associated 

with the three most common muscle fiber types found in humans (Lieber 2002). Slow 

motor units are typically associated with slow oxidative (type I) muscle fibers which 

develop tension at the slowest rate and tend to create the smallest amount of tension 

amongst the fiber types. Slow oxidative muscle fibers also are the most fatigue-resistant 

type. Fast fatigue-resistant motor units are typically associated with fast oxidative-

glycolytic muscle fibers (type IIa). These muscle fibers create force more quickly and 

typically create more tension than slow oxidative muscle fibers, but they also fatigue 

more quickly. Fast fatigable motor units are typically associated with fast fatigable 

muscle fibers (type IIb). Of the common muscle fiber types, these usually develop the 

largest tension, contract the fastest, and fatigue the fastest.   

After stroke, the proportion of muscle fiber types may change within muscle. In 

the more impacted vastus lateralis (DeDeyne et al. 2004) and rectus femoris (Severinsen 

et al. 2016), muscle fiber composition was observed to skew to a greater percentage of 

fast fibers after stroke compared with the less impacted side. In the contralesional tibialis 

anterior, however, muscle fiber composition changed to have a greater percentage of slow 
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muscle fibers compared with the ipsilesional muscle and with muscle biopsies from 

neurologically intact controls (Frontera et al. 1997). Interestingly, the clinical 

significance of muscle fiber changes on decreased force production after stroke may be 

small. Severinsen and colleagues (2016) found that isometric force production in the 

more impacted rectus femoris of 36 stroke survivors in the chronic phase of recovery was 

not correlated with proportions of muscle fiber types, but was correlated with mean 

muscle fiber cross-sectional area.  

 
Muscle mechanics affect force production and velocity 
 
 
 Individual muscle fibers have an optimal length at which the contractile elements 

are optimally overlapped and can create maximal isometric force. When the muscle fiber 

is lengthened, force decreases due to lack of overlap in contractile elements, and when 

the muscle fiber is shortened, force decreases due to excessive overlap of contractile 

elements (Lieber 2002). This length-tension relationship appears to be reflected in whole 

muscle activation, i.e., the maximal isometric torque a muscle can produce is dependent 

on the joint angle at which it held. When the joint is at its optimal angle, the maximal 

possible volitional torque is at its highest level (cf. Rack and Westbury 1969). 

In some survivors of stroke, individual muscle fibers shorten, which can reduce 

the maximal force produced by individual muscle (Gray et al. 2012). Additionally, total 

maximal force production for whole muscles in the more impacted limbs tends to 

decrease. Survivors of stroke frequently have severely compromised force production 

when the muscle is shortened which can further reduce functional range of motion (Gray 

et al. 2012). One potential reason for this would be that when a muscle is greatly 
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shortened, its opposing antagonist muscle is generally lengthened. If the lengthened 

muscle is producing force (passively or actively, see below for further discussion), the 

shortened agonist muscle may not be able to generate enough force to create a net joint 

torque. Often, the joint angle at which optimal torque can be produced after stroke no 

longer coincides with functional behaviors.  

 Additionally, the amount of force a muscle can produce is dependent on the 

velocity of contraction and whether the muscle is shortening or lengthening during 

contraction (Lieber 2002). When a muscle is actively shortening, it cannot produce more 

force than it would isometrically. As velocity of muscle shortening increases, the 

maximum force that the muscle can produce decreases precipitously. When an active 

muscle fiber is lengthened, however, it can produce greater forces than are observed 

isometrically due to increased resistance from the stretching of elastic connective tissues. 

The force-velocity relationship is most studied in the shortening (concentric) case. In this 

case, as velocity of muscle contraction increases, the maximal force the muscle can 

generate decreases. Similarly, as load increases, the rate at which a shortening muscle 

contracts must decrease. After stroke, the greatest deficits of force production are 

observed in concentric contractions, with smaller deficits in isometric force production, 

and the smallest deficits in eccentric contractions (c.f. Gray et al. 2012). Additionally, 

survivors of stroke may not be able to achieve high volitional movement velocities (Gray 

et al. 2012).  
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Muscle architecture affects contraction velocity and force production 
 
 
 The maximal physiological limit of muscle contraction is determined by muscle 

fiber length. Fiber length determines the possible change in length of the muscle fiber and 

the maximal velocity at which it can contract. Longer fibers are able to contract more 

quickly than shorter fibers and can cover a greater distance as they shorten (Lieber 2002). 

After stroke, decreases in muscle fiber length have been observed in the more impacted 

gastrocnemius and brachialis (Gray et al. 2012). These changes in muscle fiber length, 

and the concomitant shortening of muscle frequently observed after stroke, would lead to 

decreases in maximal muscle contraction velocity (due to reduced contraction velocity of 

shorter fibers) and to reduced range of motion.  

Force production of muscle is related to physiological cross-sectional area 

(PCSA). PCSA is a value calculated to model the theoretical cross-sectional area of all 

muscle fibers within a given muscle. PCSA is determined by the equation:  

#$%& = 	)∗+,-	(/)1∗234567
    [Eq. 2.1] 

where 8 is the mass of the whole muscle, 9 is the pennation angle of the muscle fibers, : 

is a constant value denoting the density of muscle, and ;<=>?@ is the muscle fiber length 

(Lieber 2002). Thus, a muscle’s PCSA increases as muscle mass increases, as pennation 

angle decreases with respect to the axis of force production, or as fiber length decreases.  

While muscle fibers have been observed to shorten after stroke, and the few 

studies on pennation angle of muscle after stroke show that it tends to decrease relative to 

the axis of force production, weakness is still among the most commonly described 

physical deficits after stroke (Gray et al. 2012). Given that these observed changes in 

fiber length and pennation angle would serve to increase PCSA, this suggests that 
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reductions in muscle mass are the predominant driver of lost PCSA-related force 

production capacity after stroke.  

In addition to PCSA, force production of muscle is also related to the maximal 

stress capacity of the muscle (Zajac and Winters 1990). Maximal stress capacity is the 

largest amount of force per unit of cross-sectional area that the muscle can generate. 

Maximal stress is related to the quality and alignment of contractile fibers (JM Winters, 

Personal Correspondence, November 2017) as well as resting sarcomere length (Taylor 

2000). Taylor found that as resting sarcomere length increases, the maximal stress 

capacity of muscle – and therefore the maximal force production of otherwise similar 

muscles – increases (2000). After stroke, muscle fibers have been observed to shorten 

(Gray et al. 2012) which would contribute to decreased maximal stress capacity and thus 

to decreased force production capacity. 

Imaging studies have found decreases in anatomical cross-sectional area of 

muscle in the more impacted upper arm, forearm, and thigh after stroke (Berenpas et al. 

2016, Hunnicut and Gregory 2017, Ryan et al. 2002). A systematic review found that 

decreases in lean muscle mass on the more impacted side range from 4.5% to 14.5%, 

compared with the less impacted side (English et al. 2010). These decreases are likely 

related to a decrease in the quantity of contractile fibers on the more impacted side. 

Hafer-Macko and colleagues (2008) performed a Western blot analysis comparing the 

quantity of myosin heavy chains in the more impacted and less impacted vastus lateralis. 

They found decreases in the quantity of myosin heavy chains associated with every 

muscle fiber type in the more impacted muscle than in the less impacted muscle. This 

result suggests that there is a decrease in the number of contractile fibers in the more 
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impacted muscle, therefore it would not be surprising that there is a loss of force 

capacity. This loss of lean mass directly contributes to decreased PCSA. Overall, 

decreases in lean mass and anatomical cross-sectional area of muscle (partially due to 

decreases in the amount of myosin heavy chains) indicate that architectural changes in 

contractile tissue degrade force production capacity after stroke.  

 Furthermore, there are changes in non-contractile elements of muscle after stroke 

that may have functional importance. Infiltration of intramuscular fatty tissue has been 

recorded in the more impacted thigh of chronic-stage stroke survivors (Hafer-Macko et 

al. 2008, Ryan et al. 2002). Additionally, spastic muscles have been observed to have 

greater collagen accumulation and demonstrate greater stiffness than comparable muscles 

from neurologically intact controls (Booth et al. 2001, Eby et al. 2016, Friden and Lieber 

2003). These phenomena suggest changes in structural components of the muscle (such 

as collagen and titin; Lieber 2002) and would likely cause increases in the force exerted 

when passively stretching muscle. For example, if the passive force created by the 

stretching triceps increases as the biceps concentrically activate to flex the elbow, the 

biceps would need to create greater force to overcome the passive force of the triceps 

muscle and achieve the same net torque about the elbow.  

Finally, tendon properties may also change after stroke. The Achilles tendon in 

the more impacted leg has been found to lengthen and become more compliant (Gray et 

al. 2012). Changes such as these would make tendon less capable of quickly and 

effectively transmitting forces from a contracting muscle to the skeleton. Thus, after 

stroke, muscle function may be further impaired by infiltration of fatty tissue, changes in 
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structural proteins such as collagen and titin that alter the passive properties of the 

muscle, and reduced capability of tendons to effectively transmit force.  

 
Post-stroke motor impairments are also due to changes in descending control and muscle 
remodeling  
 
 

Weakness after stroke has both neural and muscular causes. Potential neural 

contributors include decreased and more diffuse descending drive to motor units which 

would decrease agonist force production, as well as decreased inhibition in task-

antagonist muscles prior to and during movement, which would increase antagonist 

tension against the intended movement. Potential muscular contributions include loss of 

lean muscle mass, degraded quality of myo-tissue, and decreases in PCSA (and therefore 

force generation capacity) as well as increased passive tension in muscles which would 

increase opposing force. 

Slowness observed after stroke also likely has both neural and muscular causes. 

Potential neural contributions include decreases in descending control of Ia pathways (see 

Fig. 2.1) which can, in intact motor control, perform early recruitment of task-agonist 

motor units while inhibiting activity in task-antagonist motor units prior to the start of 

movement allowing for fast launch of movement. Impairments in this mechanism after 

stroke could result in slower launch of movement. Additionally, simple loss of quantity 

or quality of descending drive may reduce the ability to concurrently activate a large 

number of motor units. Potential muscular contributions to slowness include the 

force/velocity characteristics observed after stroke due to decreases in PCSA and muscle 

fiber length. The force capacity of muscle fibers, and whole muscles, tends to be reduced 

after stroke. Force production during concentric contractions is most degraded by stroke. 
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This is disadvantageous for creating fast movements, especially those that must overcome 

resistance from pathological stiffness (passive or active) in lengthening task-antagonist 

muscles. If overall force capacity is decreased, and lower velocity movements are capable 

of creating greater forces than higher velocity movements, slowness could be used as a 

compensatory behavior.   

Loss of movement smoothness is another characteristic frequently observed after 

stroke. Long-duration movements tend to involve proprioception-driven submovements 

(which increase measured jerk). Improper descending modulation of proprioceptive 

signals into activity at the motor units can interfere with the production of smooth 

movement.  Further, the degradation of sensory integration with movement at a central 

level could impair planning of smooth movement. Additionally, changes in distribution 

of muscle fiber types, combined with changes in descending innervation, could interfere 

with smooth or sustained recruitment of muscle fibers leading to jerky movement. 

Finally, increased stiffness combined with weakness could lead to slower, longer duration 

movements that allow more time for proprioceptive corrections to take place.  

 
It is difficult to disambiguate between the neural and muscular causes of motor 
impairment after stroke  
 
 

 It is difficult to clinically – or experimentally – tease apart stroke-related neural 

and muscular contributions to motor dysfunction. After stroke, there are bilateral changes 

in muscle architecture that are not explained by a simple disuse model, suggesting that 

there may be a neural component to muscle remodeling (Berenpas et al. 2017). Thus, 

even the physical manifestation of muscle – which contributes largely to its function – is 

highly interlinked with neural deficits.  



 

 

31 

Additionally, within stroke, there can be differing etiologies for apparently similar 

motor dysfunction. For example, in a study by Eby and colleagues (2016), all stroke 

survivors tested demonstrated increased passive torque production in the more impacted 

arm compared with the less impacted arm. However, muscle biopsies showed increased 

shear modulus (muscle stiffness) in only half of the participants, but not in the other half. 

Thus, the same observable phenomenon (passive torque generation) had clearly differing 

causes within the group of similarly-presenting participants. These differences would not 

have been distinguishable without the use of invasive and labor-intensive methodologies. 

 
Coordination of multiple muscles  
 
 

If one considers a simple, two-muscle model consisting of a task-agonist and a 

task-antagonist that move a joint, the difficulty of separating neural and muscular 

contributions becomes clear. To perform fast, controlled targeted movements, agonist and 

antagonist muscles must work together coordinating activation timing and magnitude, 

force production and velocity. In a neurologically intact motor system, the agonist muscle 

produces a burst of activity (muscle activation) at the beginning of movement, becomes 

close to quiescent during the middle, and then is activated again toward the end of 

movement. The antagonist is active at a time that largely overlaps the quiescent period in 

the agonist. This pattern of activation allows for a fast launch of movement, followed by 

quick movement cessation, and damping at the end of movement to prevent oscillation 

about the endpoint (c.f. Marconi et al. 2006). 

Execution of this series of events requires exquisite descending control activating 

the correct motor units at the correct time, fast response from the motor units, fast 
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activation of muscle, and quick deactivation of muscle as well. This combination would 

allow the agonist to create an appropriate level of force quickly, and allow the antagonist 

to remain largely inactive except to help stop the movement and stabilize the limb when 

required. As described above, the ability to quickly create force in the agonist can be 

impaired both by loss of descending drive and changes in muscle properties. Likewise, 

increases in antagonist force production can be either neural or muscular in origin. These 

neural and muscular contributors intertwine to create the weakness, slowness, and 

jerkiness of movement so often observed after stroke.  

 
Rehabilitation of upper extremity motor function after stroke 
 
 

The four most common impairments in the upper extremity after stroke are loss of 

fractionated movement, abnormalities in muscle tone, somatosensory impairments, and 

paresis (Lang et al. 2013). Fractionated movement refers to the ability to activate single 

muscles, or very small functional groups of muscles, in isolation of other muscle in order 

to move selective joint segments. Abnormalities in muscle tone can refer to either 

hypotonia, in which there is a lack of muscle tone, or hypertonia, in which there is 

excessive muscle tone. Somatosensory impairments can include lost or impaired light 

touch, kinesthesia (motion sense), or position sense. Paresis, the decreased ability to 

activate motor units and therefore decreased ability to activate muscle, accounts for the 

majority of lost upper extremity function after stroke (Lang et al. 2013, Winstein et al. 

2016).  

While much of motor recovery after stroke is spontaneous, there is evidence that 

natural recovery alone does not account for all improvement in disability observed after 
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stroke (Teasell et al. 2003). Rehabilitation has been shown to improve motor function 

(Hebert et al. 2016, Stroke Foundation 2017, Winstein et al. 2016). Additionally, 

rehabilitation can improve quality-of-life outcomes after stroke, such as increasing the 

likelihood of being discharged to home rather than remaining institutionalized for life, 

enhancing recovery, and increasing independence in performing activities of daily living 

(Winstein et al. 2016).  

 
Measures of rehabilitation: Function and impairment 
 
 
 In stroke rehabilitation, “function” generally refers to the ability to perform a task, 

such as buttoning a shirt or pouring a glass of water. The term “impairment” generally 

refers to limitation in body structure or function, such as decreased pinch-grip strength or 

wrist extension. Function and impairment are related, but it is not a one-to-one negative 

correlation. Improvements in function can be achieved without any change to impairment 

by modifying movement patterns to achieve a task-goal (e.g., leaning with the trunk to 

compensate for decreased elbow extension, stabilizing an object against a surface to 

compensate for weakness, or using the less-affected hand to perform a task). These 

modifications are also called compensatory movements. Impairment, however, cannot be 

addressed through compensation.  

 
Impairment-focused training 
 
 
 Resistance training after stroke can increase muscle cross-sectional area, decrease 

intramuscular fat, and decrease myostatin – a substance which inhibits growth of muscle 

tissue (Ryan et al. 2011). However, there is strong evidence that while strength-training 
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therapies can be beneficial for general health after stroke, they are ineffective for 

improving function in the more impacted upper extremity (Eng 2004, Teasell et al. 2003). 

This may be due to the fact that many functional tasks require dexterous use of the hand, 

which is not addressed by resistance training. 

 
Task-oriented training 
 
 
 Task-oriented rehabilitation involves training survivors of stroke on tasks that 

replicate or relate to the types of behaviors that are used to perform daily activities. There 

are two primary approaches to task-oriented rehabilitation: Restorative and compensatory 

(Lang et al. 2013). In restorative therapy, the primary focus is on reestablishing motor 

patterns to an “intact” state. This approach may be more appropriate for patients with 

mild impairment. Patients with mild impairment may have more residual corticospinal 

input, and could – perhaps – use plasticity in the corticospinal tract to re-learn skilled 

behaviors. The corticospinal tract is responsible for the fractionated motor control 

characteristic of much of functional use of the hand and arm (Buys et al. 1986, Scheiber 

2001).  

In compensatory therapy, the goal is to maximize function, i.e., to help the patient 

achieve the functional objective by whatever means necessary including using one hand 

or through the use of adaptive tools (Lang et al. 2013). Compensatory therapy may be a 

more appropriate approach for those with greater impairment who are unlikely to ever 

substantially recover lost control of the hand and arm. For patients with more severe 

injuries to the corticospinal tract, there is no known neural system that can replace the 

fractionated movement required for full use of the hand, and thus there is no secondary 
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neural system thought to be capable of fully “restoring” motor patterns making 

compensation a viable alternative.  

There is strong evidence that task-oriented training improves functional recovery 

(i.e., ability to perform specific tasks), although it may not reduce impairment (such as 

pinch grip strength). This suggests that much of functional recovery may be more 

compensatory (achieving the end goal regardless of method used) rather than restorative 

(performing a task in the same manner as one who has not had a stroke) (Quinn et al. 

2008, Langhorne et al. 2011).  

Only a small subset of patients, i.e., those whose CS tract is largely intact, are 

capable of regaining “normal” motor function. Thus, while restorative therapy is 

obviously appropriate for patients with very mild impairment, and compensatory therapy 

is appropriate for those with severe impairments, it is more difficult to predict in patients 

with moderate impairments if restorative therapies will be effective, or if the patients 

would be better served by compensatory therapy. Advances in testing methodologies for 

the intactness of the CS tract may help rehabilitation professionals set appropriate goals 

and select appropriate rehabilitation methodologies to achieve the best possible 

outcomes.  

 
Factors that improve rehabilitation outcomes 
 
 
 Post-lesion neural plasticity begins within a few hours of stroke onset (Oujamaa et 

al. 2009). Thus, the current best-practice for stroke treatment is that patients are admitted 

to interdisciplinary stroke rehabilitation units as soon as they are medically stabilized 

(Teasell et al. 2003, Quinn et al. 2008). Interdisciplinary stroke rehabilitation teams 
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consist of a clinical social worker, psychologist, physiatrist, rehabilitation nurses, and 

physical, occupational and speech therapists depending on the patient’s needs (Bukowski 

et al. 1986). Treatment in the specialized stroke unit includes any standard medical care 

necessary, combined with early exposure to formal restorative interventions administered 

by the therapy team, as well as more frequent and consistent encouragement to use the 

more impacted arm outside of formal therapy such as a rehabilitation nurse requiring a 

patient to reach and grasp a cup of water rather than bringing it to the patient’s mouth 

directly. Additionally, members of the interdisciplinary team coordinate their efforts to 

make sure the patient is receiving the best care available as he or she progresses through 

recovery.  

There is strong evidence associating early mobilization, which is more likely to 

happen within a specialized stroke unit than in a standard medical ward, with improved 

outcomes after stroke (Teasell et al. 2009). Care given in a specialized stroke unit has 

been demonstrated to provide long-lasting functional gains (Hebert et al. 2016, Stroke 

Foundation 2017, Teasell et al. 2003, Winstein et al. 2016). Additionally, this approach 

has improved quality-of-life outcomes including reduced mortality, decreased 

dependency, decreased length of hospital stay, and increased likelihood of discharge to 

home compared with treatment on a standard medical ward (Hebert et al. 2016, Teasell et 

al. 2009). Current recommendations for stroke rehabilitation include mobilizing the 

patient within 24-48 hours of stroke once he or she has been medically stabilized. 

Patients who have enough rehab needs and the ability to tolerate 3 hours of therapy a day 

are then recommended to go to Inpatient Rehabilitation for a minimum of three hours of 

task-specific therapy per day delivered by an interdisciplinary stroke team. Upper 
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extremity treatments are patient-specific depending on his or her specific deficits and 

goals (Hebert et al. 2016, Stroke Foundation 2017, Winstein et al. 2016). 

 Multiple randomized controlled trials have provided strong evidence that greater 

intensity of therapy results in improved function after stroke (Han et al. 2012, Quinn et al. 

2008, Teasell et al. 2003), although increased intensity of therapy may not improve 

measures of function that rely heavily on hand function (Winstein et al. 2016). In a 

review of randomized controlled trials, Oujamaa and colleagues (2009) found evidence 

that increasing early stroke rehabilitation (during the second through fifth weeks after 

stroke onset) from 10 hours to 25 hours over four weeks was associated with significant, 

long-term improvements in hand function. Similar correlations between intensity (in 

hours) of outpatient rehabilitation and degree of improvement have been reported 

(Dombovy et al. 1986). In chronic stroke, moderate increases of classic rehabilitation 

therapy in an outpatient setting (9 hours) were not found to lead to improvements, but 

large doses (57 hours) led to functional improvement in moderately impaired individuals 

(Oujamaa et al. 2009). Han and colleagues (2012) observed significant improvements in 

impairment scores in survivors of stroke in the acute phase of recovery: patients receiving 

3 hours of therapy per day had significantly greater improvements in two measures of 

upper extremity impairment compared with patients who had received one hour of 

identical therapy.  

 
Effective therapy for the upper extremity and promising experimental results  
 
 
 Constraint Induced Movement Therapy (CIMT) is a rehabilitation protocol which 

combines intensive therapy doses with forced use of the more-affected arm and hand 
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during activities of daily living outside of rehabilitation (Taub et al. 2006). Over the 

course of CIMT, patients are given 6 hours of training by a physical therapist each day 

for 10 days over the course of 2-weeks. The therapy portion of CIMT consists of 

restorative “shaping” of motor patterns. In this protocol, tasks are selected that address 

the individual patient’s motor deficits, then ideal task performance is modeled by the 

therapist, the patient is prompted/cued to perform the task in the ideal manner, and is 

given immediate feedback on speed and quality of movement. Difficulty of the tasks 

increases as the patient proceeds through therapy. In addition to 60 hours of formal 

therapy, the less-impacted arm is immobilized for 90% of the patient’s waking hours 

throughout the therapy window to encourage use of the more impacted arm and hand in 

activities of daily living. CIMT has been demonstrated to lead to significant improvement 

in functional ability of the upper extremity after stroke (Taub et al. 2006) and is the most 

effective protocol currently available for upper extremity rehabilitation (Oujamaa et al. 

2009).  CIMT is, however, limited to those individuals who have some active wrist and 

finger extension to begin with, as the original animal model of forced use was based on a 

deafferented animal model with intact descending corticospinal pathways but absent 

afferent sensory feedback (Taub 1993). 

The intensive, individualized training that is a hallmark of CIMT makes it very 

costly to administer, given the large number of therapist hours required (Wolf 2007). It is 

also very frustrating for participants with a significant drop out rate (Wolf, personal 

conversation). There is some evidence that another upper extremity rehabilitation 

protocol, the Bobath Concept, may be able to deliver similar functional gains in mildly-

impaired survivors of stroke with fewer therapist hours required (Huseyinsinoglu et al. 
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2012). Additionally, while early studies of CIMT showed significant improvements on 

research measures, it is not clear that these improvements are clinically significant (Wolf 

2007), and the impacts of CIMT may not be long-term. A Cochrane Review of the 

studies of CIMT found that most studies concluded there was no persistent benefit of 

having received CIMT 6 months after the end of therapy (Sirtori et al. 2009). Finally, the 

applicability of CIMT to the majority of survivors of stroke is limited. Participants in the 

randomized controlled trials testing CIMT were limited to those who could voluntarily 

produce ≥ 10° of extension at the metacarpophalangeal and interphalangeal joints, and ≥ 

20° of extension at the wrist (Taub et al. 2006). This capability is characteristic of 

relatively mild impairment, and may suggest that the corticospinal tract is at least 

partially intact in these individuals (Winstein et al. 2016, cf. Zaaimi et al. 2012). 

Unfortunately, this level of impairment describes a minority of hemiplegic stroke 

survivors, estimated to between 5 and 30% of stroke survivors (Wolf 2007). 

 Robotic therapy for the upper extremity allows for increased dosage with less 

hands-on time from a therapy professional, and thus can decrease treatment cost of high-

dose rehabilitation therapy. Most robotic approaches allow the patient to perform 

repetitive tasks involving repeated movement of the shoulder, elbow, and in some cases 

the wrist (Oujamaa et al. 2009).  Patients receiving robotic therapy for the upper 

extremity generally show improved use of the joints trained but these improvements do 

not transfer to significant improvements in use of the hand which is not trained (Teasell 

et al. 2009). Thus, while robotic therapy may potentially reduce specific impairments 

after stroke, it does not necessarily contribute to improvements in function (Kwakkel et 

al. 2008, Oujamaa et al. 2009).  For example, improved strength and range of motion of 
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the elbow may reduce impairment in reaching, but without improvement in hand 

function, ability to perform functional tasks with the more-impacted arm will still be 

limited.  

 Additionally, recent research has produced several promising techniques and tools 

that may improve rehabilitation outcomes. Visualization of motor activities, when used in 

combination with physical rehabilitation, has been found to improve both motor 

impairment and arm function in those with moderate impairments and no cognitive 

deficits (Ojuamaa et al. 2009). Electrical stimulation of distal portions of the median, 

ulnar, and radial nerves of the more affected arm in conjunction with physical 

rehabilitation was shown to improve paretic hand function in chronic stoke patients, 

though the result was not long-lasting (Oujamaa et al. 2009). Finally, Lang and 

colleagues (2013) recommend the use of accelerometry for tracking the effectiveness of 

therapeutic interventions in increasing use of the more-impacted limb. Here they placed 

an accelerometer on each of the stroke survivor’s wrists, and used the data as a method 

for quantifying the impact of therapeutic interventions on actual daily use of the more 

impacted arm after stroke so that therapeutic approaches may be evaluated and changed 

in light of empirical outcomes.  

 
Limitations to upper extremity motor rehabilitation after stroke 
 
 

While rehabilitation does appear to contribute to improved quality-of-life 

outcomes after stroke, such as reduced mortality and increased likelihood of being 

released to home, its overall beneficial effects on motor control are modest (Teasell et al. 

2003). In spite of hundreds of clinical trials of rehabilitation interventions, the extent of 
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damage to corticospinal pathways and the structural integrity of descending white matter 

pathways dictate the extent of possible upper extremity motor recovery (Stinear et al. 

2012).   

The best guideline for predicting upper extremity recovery is the PREP algorithm 

(Stinear et al. 2012). In this algorithm, patients are first tested 72 hours after stroke; 

patients who demonstrate shoulder abduction and finger abduction (i.e., have a manual 

muscle testing (MMT) score of 8-10/10 for those joints, which is indicative of relatively 

intact contralateral corticospinal control, cf. Zaaimi et al. 2012) are predicted to have 

clinically complete upper extremity recovery and can be discharged home with a home 

exercise program. Patients who score <8/10 often go to inpatient rehab, and can be tested 

at 2 weeks using transcranial magnetic stimulation to attempt to evoke motor potentials 

from the ipsilateral motor cortex; those who respond to stimulation have the potential for 

notable motor recovery. Patients who do not show either of these indications of some 

level of intact descending corticospinal control can undergo further testing in MRI to 

examine structural integrity of the descending white matter pathways; those with a low 

ratio of CS tract density between the two hemispheres have limited potential for upper 

extremity recovery, while those with a high ratio have no potential for upper extremity 

recovery.  

The group who sees the greatest benefit (better quality-of-life outcomes, motor 

improvements) when receiving specialized rehabilitation care instead of purely medical 

treatment are those who have moderate rather than severe impairments (Teasell et al. 

2009). Those with mild impairments may have enough residual function in the more 

impacted arm to begin spontaneously using it in daily life (and thus largely self-
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rehabilitate). Those with severe impairments may lack the descending neural control to 

ever allow sufficient motor recovery of the more impacted limb for it to be used in daily 

life regardless of intervention. Thus, those with moderate impairment may not be able to 

fully restore motor control, but specialized training – restoring motor capability where 

possible and teaching compensation where necessary – may help them to achieve greater 

return of function than they would without intensive therapy.  

However, even within the group of stroke survivors for whom rehabilitation 

would appear to be most useful, there can be variability in underlying factors contributing 

to clinically-identical symptoms (cf. Eby et al. 2016) as well as large differences in neural 

plasticity from person to person (Oujamaa et al. 2009). These differences can be difficult 

or impossible to distinguish through standard clinical observation (e.g., involved research 

methods, such as muscle biopsies or longitudinal studies of neural activity, are not part of 

clinical care after stroke). This variability makes designing, studying, and implementing 

effective interventions extremely difficult. Until we better understand the mechanisms 

underlying deficits after stroke, we do not have the tools to rationally and systematically 

develop better interventions. 

 
Measurement of impairment and function after stroke 
 
 
 Given that stroke has highly variable impacts from one person to the next, it is 

important to quantify the deficits within each individual. This practice is useful in the 

clinic for selecting appropriate therapy and tracking progress. It is important in research 

because variations in motor performance during an experiment may potentially be 

explained by type or extent of deficits.  
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Composite measures of upper extremity impairment and function  
 
 
 The Fugl-Meyer Assessment of Sensorimotor Function (FMA, Fugl-Meyer et al. 

1972) is a comprehensive impairment-based assessment of physical status and 

performance following stroke, which is measured by a Likert-type scale with a total of 

266 points possible. The motor portions of these measures are defined by Brunnstrom’s 

stages of recovery, beginning with complete flaccidity, progressing through the 

development of spasticity, synergistic movement, out-of-synergy movement, individuated 

joint control, and finally normal motor function (Sawner and LaVigne 1992). A subset of 

this section is the upper extremity motor evaluation (FMM), which includes assessment of 

the Brunnstrom stages, including wrist and hand function, and tremor and dysmetria of 

rapid arm movements. The FMA is a gold standard clinical evaluation that has excellent 

intra- and interrater reliability for the measure in each subsection and as a whole 

(Gladstone et al. 2002). The FMM can, however, be limited by ceiling effects. The use of 

a complimentary measure of function can provide additional information to better 

characterize meaningful motor deficits after stroke (Gladstone et al. 2002).  

 The Chedoke Arm and Hand Activity Inventory (CAHAI) is a clinical evaluation 

of bilateral upper extremity function after stroke that consists of 13 real-life tasks. These 

tasks reflect a full range of normative movements, pinches and grasps, and stages of 

motor recovery after stroke (Barreca et al. 2004, Sawner and LaVigne 1992). Examples 

of tasks include dialing a phone, opening a jar, and buttoning a shirt. Performance on 

each task is scored on a scale of 1 to 7. A score of 7 indicates complete independence, 

i.e., the participant was able to perform the task quickly and effectively without needing 

to stabilize the arm or objects. A score of 1 was awarded if the participant performed less 
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than 25% of the effort required to complete the task or if the task was deemed unsafe to 

attempt. This measure has high interrater reliability and is more sensitive to change in 

clinically important changes in arm impairment than the Action Research Arm Test, a 

comparable measure (Barreca et al. 2005).  

 
Individual impairment measures 
 
 
 The upper extremity FMA includes a sensory subsection that contains coarse 

measures of proprioceptive acuity (FMP) and light touch (FMLT; Fugl-Meyer et al. 1975). 

The test used in the FMP is also known as the “up or down?” test. In this measure, the 

participant sits with the limb relaxed and eyes closed while the clinician supports the limb 

and moves a single joint up and down through a comfortable range of motion. When the 

clinician stops moving the joint, the participant is to report if the segment is extended, 

“up”, or flexed, “down” (DeGowin et al., 1987; Epstein et al., 2008). The task is repeated 

six times at each the thumb, wrist, elbow, and shoulder.  Proprioception at each joint is 

rated with a score of absent (0), impaired (1), or intact (2). In the light touch portion of 

the FMA (FMLT), a clinician lightly touches the patient’s more affected arm and hand. 

Sensation of light touch scored as absent (0), impaired (1), or intact (2) compared to the 

less affected limb. Interrater reliability of the sensory portion of the FMA is excellent in 

total. However, there are observed ceiling effects of the FMP, and interrater reliability of 

FMLT alone is moderate (Lin et al 2004).  

The Arm Movement Detection Test (AMDT) is a robotic test of proprioceptive 

acuity in the arm that allows for fine discrimination in measurements of kinesthetic 

detection threshold. This research measure uses a horizontal planar robot to perturb the 
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hand. Participants complete 10 trials, alternating between ascending perturbations (0 to 2 

N) and descending perturbations (2 to 0 N). As each trial progresses, the researcher asks 

“do you feel your hand moving?” The participant responds with “yes” or “no.” The 

researcher then adjusts the amount of perturbation up or down to find the threshold of 

movement detection. The advantage of this measure is that it provides a ratiometric 

measure of one aspect of proprioception (kinesthesia), that can be compared to a 

normative range. The AMDT was found to reliably discriminate between those with 

intact and impaired proprioception and is reliable across repetitions (Mrotek et al. 2017). 

 The Modified Ashworth Scale (Ashworth 1964, Bohannon and Smith 1987) is a 

measure of muscle tone/spasticity determined by assessing velocity-dependent resistance 

to passive motion. A clinician supports the joint to be tested and moves it slowly to 

establish its available passive range of motion. The clinician then moves the joint quickly 

through the range of motion in flexion and extension. The resistance felt is graded on 

scale of 0 to 4. A score of 0 indicates that there is no increase in tone compared to the 

less-affected side (and is considered “normal”), and a score of 4 indicates muscle tone so 

severe that it renders the tested joint rigid. The MAS has good interrater reliability at the 

elbow when performed by a trained clinician (Bohannon and Smith 1987, Pandyan et al. 

1999).  

 The Montreal Cognitive Assessment (MoCA, Nasreddine et al. 2005) is designed 

to test visuospatial/executive function, naming, attention, language, abstraction, delayed 

recall, and orientation and is sensitive to mild cognitive impairment. Scores range from 0 

to 30 with ≥26 considered normal. The MoCA has high test-retest reliability and internal 

consistency.  It also has high sensitivity and specificity while detecting mild cognitive 
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impairment in those without speech deficits, however scores can be artificially lowered in 

participants with expressive aphasia. Cognitive deficits can interfere with rehabilitation 

protocols (Oujamaa et al. 2009) and could potentially interfere with performance on 

research tasks.  

 
Changes in isometric torque production and muscle function after stroke 
 
 

Isometric tasks are a useful experimental paradigm because they allow one to 

collect data on torque production and muscle activity while minimizing the impact of 

uncontrolled, non-experimental changes in muscle length, joint angle, and velocity. 

McCrea and colleagues (2003) investigated isometric torque production by asking 

hemiparetic survivors of stroke and neurologically intact controls to perform cued 

maximal elbow flexion and extension exertions. Participants were instructed to develop 

maximal torque as quickly as possible, sustain that torque for 3 seconds, and then reduce 

torque as quickly as possible. This study reports that, compared with the neurologically 

intact controls, the more affected arm of stroke survivors demonstrated marked weakness 

and took longer to both develop and reduce torque. A similar finding was reported by 

Canning and colleagues (Canning et al. 1999). Consistent with previously discussed 

changes in neural and muscular systems after stroke, the ability to quickly modulate 

torque is impaired in chronic stroke.  

 
Changes in muscle activation in single joint, isometric tasks 
 
 

To better understand the role of delays in muscle activation and deactivation in 

the more affected limb after stroke, Chae and colleagues (2002) fixed the wrist in a 
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neutral position and asked stroke survivors to develop wrist flexor or extensor torque as 

forcefully and quickly as possible, and then to relax the muscle as quickly as possible in 

response to an auditory cue. Electromyographic activity of primary wrist flexors and 

extensors was analyzed to estimate the time-delay between cue transitions and changes in 

EMG activity relative to baseline activity. The authors found that muscles in the more 

affected arm demonstrated significantly greater delay in initiation and termination of 

muscle contraction relative to the less affected arm. These delays correlated significantly 

with upper limb motor impairment (FMM) and physical disability (quantified by the Arm 

Motor Ability Test, which assesses ability to perform activities of daily living).  

More recently, Chang and colleagues performed an isometric torque production 

experiment that examined the relationship between spontaneous discharge of motor units 

and spasticity, weakness, and force variability. Stroke survivors and neurologically intact 

participants generated cued submaximal isometric elbow flexion torque while 

intramuscular EMG activity in biceps muscles was recorded (Chang et al. 2013). While 

some intermittent spontaneous discharges were observed in resting biceps muscles in 

both groups (consistent with prior observations of Mottram et al. 2009 and Mottram et al. 

2010), sustained increases in the rate of spontaneous discharges were observed after 

voluntary activation only in the more involved limb after stroke (Chang et al. 2013).  

 
Joint-position dependence of muscle function after stroke 
 
 

Several research groups have found that properties of muscle activation can vary 

with limb position after stroke. Kamper and colleagues (2001) found that when taking a 

spasticity measurement in the more affected arms of chronic-stage stroke survivors, the 
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initial muscle fiber length had a significant impact on reflex response. As muscle fiber 

lengths increased (i.e., as the muscle lengthened/stretched) the magnitude of the reflex 

response increased. In addition, the reflex was triggered with less movement from the 

already stretched starting position compared to when the test was executed with the limb 

in a position that shortens the muscle. A related study of stroke survivors by Levin and 

colleagues (Levin et al. 2000) found that at the affected elbow, the static stretch reflex 

threshold for the biceps and triceps lay within the physiological range in 11/12 and 4/12 

participants, respectively. This indicates that when the arm was physically between the 

static stretch reflex threshold and the physiological joint limit, Levin and colleagues 

observed involuntary muscle activation in recorded electromyograms consistent with 

hypertonia. This phenomenon was not observed in neurologically intact participants, as 

the static stretch reflex threshold for this group was consistently outside of the 

physiological range of motion.  

Additionally, Levin and colleagues found that stroke survivors with abnormal 

stretch reflex thresholds showed reductions in maximal flexion and extension torques 

when the agonist muscle was in a shortened position. In some hemiparetic participants, 

joint-angle ranges were found in which no active torque could be produced either in 

extension, or in both flexion and extension while EMG recordings showed co-activation 

of the agonist/antagonist pair. The range in which reciprocally organized agonist and 

antagonist muscle activity could be generated was limited in all but one stroke survivor. 

These ranges were related to the boundary values of stretch reflex thresholds found 

during passive muscle stretch. Reductions in this range were correlated with motor 

impairment as quantified by the FMM, suggesting that deficits of elbow torque production 
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and deficits of motor control are related. Unfortunately, no attempt was made to link 

these results to motor function, leaving unresolved the question of how joint angle-related 

deficits of motor control might contribute to deficits of motor function post-stroke.  

 
Impairments of goal-directed arm movement after stroke 
 
 

Reaching behaviors facilitate interaction with objects in the environment, which is 

essential for executing many functional activities such as brushing one’s teeth. However, 

approximately half of stroke survivors must live with chronic motor deficits that impact 

many tasks including the simplest of point-to-point movements (Roger e al. 2012). These 

deficits can include limitations in range of motion, muscle weakness, slowness, 

segmented reaching, and inaccuracy in final hand position (Roby-Brami et al. 1997, 

Levin 1996, Cirstea and Levin 2000, Trombly 1992, Kamper et al. 2002).   

 
Simple point-to-point movements consist of multiple control actions 
 
 

A single point-to-point movement can be considered to be a ‘motor primitive,’ 

which is a pre-programmed behavior used as a building block for other, more 

complicated behaviors (Sheridan 1984, Mussa-Ivaldi and Bizzi 2000, Schaal and Atkeson 

1998). Each movement is controlled by a series of distinct, overlapping neural 

mechanisms enacted sequentially. These mechanisms consist of a feedforward movement 

controller to initiate movement, an online feedback controller to correct the movement in 

progress, and a separate positional controller to control final endpoint stabilization 

(Feldman 1980a, b, Humphrey and Reed 1983, Sainburg et al. 1999).  
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Later studies by Scheidt and Ghez (2007) focused specifically on the movement 

controller initiating movements and the positional controller that stabilizes the limb at the 

end of movements. Movements were encouraged to be fast and smooth to prevent 

evoking online error correction. This was accomplished by using a paradigm of 

visuomotor adaptation in both point-to-point “reaching” movements (presumed to invoke 

a sequence of movement à position control actions) and out-and-back reversal 

movements or "slicing" (presumed to invoke a sequence of movement à movement à 

position control actions). They found that learned adaptation of reach endpoints within a 

visuomotor rotation task did not generalize to a similar adaptation of the first “slicing” 

movement trajectory within the same visuomotor rotation. They also found that 

adaptation of slicing movement trajectories did not generalize to a difference in the reach 

endpoint, even though the reach endpoint and the slice turnaround point were co-located. 

Both of these results suggest that final position (reach endpoint) adapted separately from 

the movement trajectory (reversal endpoint). These findings suggest that movement 

trajectory and end effector location are influenced by separate neural control 

mechanisms. 

In support of this idea, Ghez and colleagues (2007) presented evidence that slice 

reversals and reach endpoints are represented in different reference frames: slice reversals 

are computed in a hand-centered coordinate frame and reach endpoints are calculated in 

an eye- or head-centered frame. The idea was further supported by Scheidt and 

colleagues (2011) who described a single-joint, reach/slice task in which limb impedance 

was altered at the end of reaching through cued co-activation. Results of this experiment 

suggest that both reaches and reversals share a common control action to initiate 
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movement toward a target, but used separate control actions to terminate movement and 

stabilize the limb at the final target. These studies suggest that the position and movement 

control actions are the result of separate neural control systems. If separate neural control 

systems do underlie position and movement control, it stands to reason that injury to one 

system may not generalize to the other.  

 
Control actions can be differentially impaired after stroke 
 
 

There is evidence that the movement and positional controllers can be affected 

differentially by stroke. Scheidt and Stoeckmann (2007) found that all but the most 

impaired stroke survivors could make feedforward reaching movements in the presence 

of an unpredictable perturbation, whereas nearly all survivors had marked deficits in their 

ability to bring the hand to rest at the target. Moreover, participants with impairments in 

proprioception had greater stabilization deficits (i.e., higher variability at the end of 

movement) than those with intact proprioception. 

Schaefer and colleagues have repeatedly found evidence that movement control 

and position control during multi-joint reaching tasks in the less-affected, ipsilesional 

arm, can also be differentially impacted by stroke (Schaefer et al. 2007, 2009a, 2009b, 

Haaland et al. 2009). They propose a model of laterality of control actions to explain 

these differences. In their model, lesions in the left hemisphere of the brain contribute to 

deficits in movement control actions, and lesions in the right hemisphere contribute to 

deficits in position control. Similarly, another multi-joint reaching experiment performed 

with the more-impaired, contralesional arm, found that a left hemisphere lesion was 

associated with degradation of movement trajectory control while a right hemisphere 
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lesion was associated with degradation of movement termination, i.e., position control 

(Mani et al. 2013).  

 
Synthesis 
 
 

Restoration of “normal” motor control is an ideal of stroke rehabilitation and 

recovery. Effective motor control requires that one be able to formulate and execute a 

motor plan. To formulate the motor plan, one needs to know the objective of movement 

as well as the current state of the motor system, and be able to integrate that information 

to develop a plan for action. In order to execute that motor plan, descending signals from 

the brain travel to the spinal cord where they act on motoneuron pools and interneuron 

networks to facilitate activation in task-agonist motoneuron pools and suppress activation 

of non-necessary motoneuron pools (such as in task-antagonist muscles that are not 

required for stability). These motoneurons then activate muscles that generate the torques 

required to move and stabilize the limb. 

However, failure at any point in this system compromises ability to perform 

functional movements. Loss of sensory information impairs knowledge of the current 

limb state and how it is changing. Loss of the ability to integrate information causes 

disconnects between the known state, the actions planned, and the action taken. Loss of 

planning impairs the ability to use information and send useful signals to the spinal cord. 

Loss of descending pathways cuts off information – excitatory and inhibitory – to 

neurons in the spinal cord even if a successful movement plan was developed. All of 

these neural changes also lead to changes in muscle. Muscle can still receive input from 

motoneurons after stroke, yet can be less able to activate in a functional manner. Muscle 
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begins to lose mass and shorten; fiber types may shift. Tendons may lengthen and 

increase slack to compensate for these changes in muscle.  

The composite effects of these neural and muscular changes can cause weakness, 

slowness, loss of smooth movement, and persistent co-activation of muscles, all of which 

undermine a person’s capacity to perform functional movements. Despite decades of 

effort to develop rehabilitation interventions that can reduce upper extremity impairment 

and restore functional behavior, there are surprisingly few effective interventions in the 

upper extremity, and those that do exist are predominantly suitable for a subset of 

survivors of stroke. In order to understand the limitations of current rehabilitation 

approaches – and to potentially create new ones – we must better understand these 

fundamental changes after stroke. 

In this Dissertation, I seek to better understand how stroke impacts 1) the 

coordination of magnitude and timing of an agonist/antagonist muscle pair during 

targeted force production in the elbow, 2) superposition of movement and position control 

during point-to-point movements of the elbow, and 3) how changes in these fundamental 

building blocks of motor control relate to deficits in specific and generalized measures of 

function and impairment. Given the high levels of variability observed in deficits after 

stroke, it is important to quantify a broad range of potentially relevant motor and sensory 

characteristics for each individual to prevent (or account for) confounds observed in 

experimental performance.  
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CHAPTER 3: WEAKNESS AND DEFICITS OF ELBOW MUSCLE AGONIST/ 
ANTAGONIST COORDINATION REDUCE MOTOR FUNCTION AFTER STROKE 

 
 

After stroke, motor function can be persistently impaired. The ability to produce 

controlled torques is important for moving the arm. In order to produce controlled 

torques, one must be able to coordinate the activity of agonist/antagonist muscle pairs in 

time and in magnitude. In this study, participants with stroke (SP) and neurologically-

intact (NI) participants generated and ceased cued, moderate isometric torques at the 

elbow. We found that SP performance when generating and reducing torques was 

impaired compared to NI participants. We also found that while participants in both 

groups could modulate phasic muscle activity to some extent to create torques, SP had 

elevated levels of co-activation during torque transitions, when holding a torque, and 

when relaxing compared to NI. Weakness was the only variable found to account for 

significant variance in impairment of the more-impacted arm, as measured by the upper 

extremity motor portion of the Fugl-Meyer Assessment. Finally, we found that weakness, 

speed of torque production, and coordination of agonist/antagonist muscle pairs 

accounted for significant variance in function of the more-impaired arm, as measured by 

the Chedoke Arm and Hand Activities Inventory. These findings demonstrate that above 

and beyond the motor deficits characterized by weakness, deficits in the ability to 

coordinate flexor and extensor muscles at the elbow correlates significantly with deficits 

of motor function after stroke.   
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Introduction 
 
 

The ability to produce and maintain appropriate levels of torque about joints is 

critical for performing functional tasks such as lifting and holding a glass of water. This 

requires that agonist/antagonist muscle groups work together to provide appropriate 

levels of opposing forces in time. Stroke can impair this ability. A common consequence 

of stroke is damage to the corticospinal system (primary and secondary motor and 

somatosensory cortices, subcortical structures, and/or the corticospinal tract), which 

causes upper extremity (UE) impairments including paresis (weakness), loss of the ability 

to produce "fractionated" or isolated movement at individual joints, abnormal muscle 

tone (spasticity) and/or deficits of somatosensation (c.f., Lang et al., 2013).  

The specific neural injuries caused by stroke vary from one person to the next, 

giving rise to a broad range of sensorimotor impairments expressed in the population of 

survivors (Kunesch et al., 1995). The literature and common clinical experience clearly 

find that stroke-related impairments contribute significantly to deficits of motor function 

(Biennerhassett et al., 2007; Hermsdörfer et al., 2003; Wagner et al., 2007; Scheidt and 

Stoeckmann, 2007; Zackowski et al., 2004), thereby limiting independent living and 

quality of life (Taub et al., 1993; Tyson et al., 2008). For example, in one study involving 

a cohort of 104 stroke survivors, Duncan and colleagues report high correlation between 

a clinical measure of impairment (the UE Fugl-Meyer Motor Assessment) and 

performance on a clinical assessment of motor function in activities of daily living (the 

Barthel Index) (Duncan et al., 1992).  

However, clinical measures of impairment such as the FMM are multifaceted tools 

that quantify several aspects of impairment (e.g., reflex abnormalities, inability to move 
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in and out of synergy, lack of voluntary wrist and finger motion) and then only with 

coarse resolution. Similarly, measures of motor function are also multifaceted, in that 

they assess the ability to perform a variety of tasks simulating everyday activities such as 

bathing, dressing, eating, and manipulating hand-held objects such as a phone, ruler, or 

coffee jar. It remains unclear just how much each of the various impairments evaluated 

by these clinical instruments contributes to stroke-related deficits of motor function.  

Many research groups have sought to employ well-controlled laboratory-based 

motor assessments using high-resolution instrumentation to fill this knowledge gap by 

characterizing how stroke-related impairments impact specific aspects of neuromotor 

control, and then how those control deficits impact motor function. As an example, Levin 

and colleagues describe studies designed to characterize deficits in the regulation of 

stretch reflex thresholds - a neuromuscular mechanism believed to underlie spasticity and 

contribute to motor impairment after stroke (Levin et al., 1997; see also Powers et al., 

1988; Powers et al., 1989; Kamper et al., 2001) and other brain injuries (Levin et al., 

2000). In Levin's study from 2000, elbow kinematics (position and velocity) and 

electromyographic activity (EMG) were recorded from patients with hemiplegia and 

neurologically intact individuals during passive and active elbow flexion and extension 

movements under varying conditions to characterize stretch reflex threshold angles in the 

arm. The data also allowed the investigators to relate how deficits in the regulation of 

static stretch reflex thresholds contribute to deficits of active torque production during 

slow reaching motions. Eleven out of twelve individuals with hemiplegia had static flexor 

muscle stretch reflex thresholds within the elbow's normal range of motion, giving rise to 

involuntary muscle activation consistent with hypertonia. One third of participants with 
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hemiplegia demonstrated this phenomenon in their extensors as well. By contrast, 

neurologically intact control participants did not have static stretch reflex thresholds 

within the physiological range of motion.  

Participants exhibiting abnormal stretch reflex thresholds also had lower maximal 

flexor and extensor torques (i.e., greater weakness) when the agonist muscle was in a 

lengthened position. The range in which reciprocally organized agonist and antagonist 

muscle activity could be generated was limited in all but one hemiparetic participant. In 

some hemiparetic participants, ranges were found in which no active torque could be 

produced in the extensor or either muscle group. These ranges were related to the 

boundary values of stretch reflex thresholds found during passive muscle stretch, thus 

establishing a link between deficits of elbow torque production and deficits of motor 

control revealed in the disorganization of central regulation of individual muscle stretch 

reflex thresholds. Unfortunately, no attempt was made to link these results to motor 

function, thus leaving unresolved the question of how joint angle-related deficits of motor 

control might contribute to deficits of motor function post-stroke.  

Taking a different approach, other groups have examined isometric torque 

production tasks at the elbow (Canning et al 1999; Chang et al. 2013; McCrea 2003) and 

wrist (Chae et al. 2002) to characterize stroke's impact on neuromuscular coordination, 

while also controlling for limb motion and the abnormal velocity-dependent reflex 

responses it can elicit. Two relevant studies found that the more-affected arm is slower 

both to produce and to relax from the production of cued maximal torques at the elbow 

(Canning et al. 1999, McCrea et al. 2003), thereby demonstrating that the ability to 

modulate muscle force in a timely fashion is impaired in chronic stroke. A similar study 
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of isometric wrist torque control (Chae et al. 2002) also found significantly greater delay 

in the initiation and termination of muscle contraction in the paretic arm relative to the 

non-paretic arm after stroke. In that study, delays in initiation and termination of muscle 

contraction were found to correlate significantly with upper limb motor impairment (as 

quantified by the UE portion of the Fugl-Meyer Motor Assessment) and physical 

disability (i.e., deficits of motor function as quantified by the Arm Motor Ability Test).  

More recently, Chang and colleagues (2013) recorded intramuscular EMG 

(iEMG) activity in biceps as chronic stroke survivors performed cued submaximal 

isometric elbow flexion torques in both limbs.  They used the data to examine the 

relationship between weakness, force variability and spontaneous motor unit discharge. 

While some spontaneous discharge was observed in resting biceps muscles in both arms 

of all 10 participating stroke survivors, sustained increases in spontaneous discharge rate 

were observed after voluntary activation only in the more-involved limb. In this study 

weakness (not spasticity) was the primary factor interfering with voluntary force control 

within their small cohort of chronic stroke survivors because the incidence of 

spontaneous discharge was not related to force variability or weakness. Each of these 

prior studies report weakness and disordered timing in the activation and deactivation of 

agonist muscles after stroke, but Chae and colleagues (2002) attempted to relate observed 

deficits in strength and selective activation of muscles to deficits of motor function.  

None of these studies evaluated variations in coordination of agonist/antagonist muscle 

activation magnitude that would be expected to arise closer to – or farther from – the 

bounds of the joint's range of motion due to joint angle-dependent deficits of stretch 

reflex regulation as described by Levin and colleagues (2000). 
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In the current study, we sought to quantify the extent to which position-dependent 

deficits in the coordination agonist/antagonist muscle activations degrade the ability to 

produce controlled, goal-directed changes in elbow joint torque after stroke. Survivors of 

a single unilateral stroke and neurologically intact control participants performed a set of 

experimental tasks wherein they were required to quickly and accurately produce, hold, 

and release targeted, submaximal isometric elbow flexion and extension torques. We 

analyzed elbow torque signals and EMG activities recorded from primary elbow flexor 

and extensor muscles when the tasks were performed with the elbow fixed in 3 different 

flexed positions within the middle of its range. We hypothesized that position-dependent 

deficits of agonist/antagonist coordination correlate significantly to clinical measures of 

motor impairment and functional deficits after stroke. To that end, we used stepwise 

forward regression analysis to assess the extent to which differences in performance on 

composite clinical measures of motor impairment (i.e., the upper extremity component of 

the Fugl-Meyer Motor Assessment) and motor function (i.e., Chedoke Arm and Hand 

Activity Inventory) correlate with measures of neuromuscular coordination derived from 

performances in the isometric torque task.  

 
Methods 
 
 
Participants 
 
 

Twenty-three adults provided written informed consent to participate in this study 

in compliance with policies established by the Marquette University Institutional Review 

Board (protocol number HR-1507). Thirteen of the participants were survivors of 

unilateral stroke (SP) (5 female; 34 to 70 years of age), and ten were age-range matched 
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neurologically-intact (NI) controls (4 female; 49 to 76 years of age; see Table 3.1). All 

SP were more than 6 months post-stroke, demonstrated motor deficits at time of testing, 

and were able to perform the task comfortably. Exclusion criteria included: inability to 

follow two-step instructions (assessed during participant screening); inability to place the 

arm within 20˚ of the horizontal plane while supported (or experiencing pain in that 

position); fixed contracture or a history of tendon transfer; profound atrophy of muscles 

in the target area(s) of testing; history of a bleeding disorder, myasthenia gravis, 

amyotrophic lateral sclerosis or any other disease that might interfere with neuromuscular 

function. Medical records were solicited for all SP to verify lesion location and type. 

Although we did not exclude participants based on recent botulinum neurotoxin therapy 

(three participants had received injections within three months of participation, noted in 

Table 3.1), none had received injections in the month prior to experimental testing. We 

asked participants to perform isometric torque-tracking tasks. Data collection occurred in 

a single experimental session lasting about 2 hours, including setup. SP used the more-

involved arm to perform the tasks, whereas NI used the arm reported as dominant. 
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Table 3. 1Participant characteristics 

Group	 ID	 Age	 Sex	 Test	
Hand	

Dom.	
Hand	

Flx.	
Musc	

Ext.	
Musc	

Avg.	
Max.	t 	
(Nm)	

FMM	 CAHAI	 FMP	 MAS	 MoCA	 Years	since	
stroke	

Lesion	
Type	 Lesion	Location	

NI	 1	 62	 M	 R	 R	 BIL	 TLG	 51.7	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 2	 62	 F	 R	 R	 BIS	 TLT	 22.6	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 3	 60	 M	 R	 R	 BIS	 TLT	 30.3	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 4	 63	 F	 R	 R	 BRD	 TLG	 20.3	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 5	 72	 M	 R	 R	 BIS	 TLT	 30.3	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 6	 66	 F	 R	 R	 BIS	 TLG	 32.6	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 7	 70	 M	 R	 R	 BIS	 TLG	 58.3	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 8	 76	 M	 R	 R	 BIS	 TLT	 46.9	 *	 *	 *	 *	 *	 *	 *	 *	

NI	 9	 51	 F	 R	 R	 BRD	 TLG	 28.6	 *	 *	 *	 *	 *	 *	 *	 *	

SP	 101‡	 57	 M	 L	 R	 BRD	 TLG	 17.3	 27	 18	 3	 1.5	 27	 12	 I	 R:	Midbrain	

SP	 102‡	 59	 M	 R	 R	 BIS	 TLG	 27.9	 20	 24	 8	 4	 26†	 7	 I	 L:	MCA,	BG,	Insular	Cortex	

SP	 103	 65	 F	 L	 R	 BRD	 TLG	 7.0	 30	 23	 8	 6	 26	 29	 I	 R:	**	

SP	 104‡	 52	 M	 R	 R	 BIS	 TLG	 8.8	 21	 23	 8	 3.5	 23†	 13	 **	 L:	**	

SP	 106‡	 64	 F	 R	 R	 BIS	 TLG	 12.5	 45	 32	 4	 2	 14†	 24	 **	 L:	**	

SP	 107‡	 61	 M	 R	 R	 BIS	 TLG	 13.0	 27	 15	 2	 2.5	 10†	 12	 I	 L:	MCA	Distribution	

SP	 108	 61	 M	 L	 R	 BIL	 TRT	 6.2	 9	 14	 5	 3	 28	 9	 I	 R:	Frontal/Temporal/Parietal	

SP	 110	 62	 M	 L	 R	 BIS	 TLG	 25.6	 41	 63	 8	 4.5	 23	 7	 I	 R:	BG	&	Caudate	

SP	 111‡	 69	 F	 R	 R	 BIS	 TLT	 9.3	 23	 46	 8	 3	 25	 35	 H	 L:	PCA	

SP	 112	 34	 M	 L	 L	 BIS	 TLG	 15.9	 21	 23	 5	 4.5	 27	 6	 H	 R:		

SP	 113	 63	 F	 L	 R	 BIS	 TLG	 24.8	 37	 52	 5	 3.5	 22	 10	 **	 R:	**	

SP	 114	 64	 M	 L	 R	 BRD	 TLG	 35.8	 66	 90	 8	 0	 24	 7	 I	 R:	Multi-focal	Periventricular	
White	Matter	

SP	 115	 70	 F	 L	 L	 BIS	 TLT	 16.6	 32	 30	 8	 1.5	 22	 13	 H	 R	
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NI:	neurologically	intact;	SP:	stroke	participant;	M:	male;	F:	female;	R:	right;	L:	left;	DOM:	dominant;	Flx	Musc:	Flexor	selected,	BIL:	long	biceps,	BIS:	short	biceps,	BRD:	
brachioradialis.	Ext.	Mus:	Selected	extensor,	TLG:	long	triceps,	TLT,	lateral	triceps.	t:	torque.	FMM:	upper	extremity	motor	portion	of	Fugl-Meyer	Assessment.	CAHAI:	Chedoke	
Arm	and	Hand	Activities	Inventory.	FMP:	upper	extremity	proprioception	portion	of	sensory	subsection	of	Fugl-Meyer	Assessment.	MAS:	Modified	Ashworth	Scale.	MoCA:	
Montreal	Cognitive	Assessment.	I:	ischemic,	H:	hemorrhagic.	R:	right	hemisphere,	L:	left	hemisphere.	MCA:	middle	cerebral	artery,	PCA:	posterior	cerebral	artery,	BG:	basal	
ganglia.	‡	expressive	aphasia;	**	medical	records	not	available		
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Clinical Assessments 
 
 

All SP were initially evaluated by the same physical therapist who assessed 

sensorimotor function (Table 3.1).  Upper extremity impairment was evaluated using the 

motor and sensory subtests of the Fugl-Meyer assessment (FMA; Fugl-Meyer et al. 

1975). The motor portion of the FMA (FMM) assesses reflexes and stages of coordinated 

movement with a total score range from 0 to 66, where 0 indicates a complete lack of 

reflexes or volitional movement and 66 indicates intact reflexes, and arm/hand 

movements. The sensory portion of the FMA includes a coarse test of proprioceptive 

integrity (the clinical "up or down?" test; DeGowin et al., 1987; Epstein et al., 2008), 

which assesses proprioceptive discrimination at the shoulder, elbow, wrist and thumb. 

Here, the clinician asks the participant to close their eyes, moves the tested joint up and 

down several times, and when the joint stops moving, the participant is asked to indicate 

joint orientation (up or down). Six repetitions were performed at each joint. If the 

response was brisk and accurate with no errors, proprioception at that joint was rated 

“intact” and scored as a 2; if the participant was unable to respond with confidence and/or 

they made 1 error, proprioception at the joint was rated “impaired” and scored a 1; if the 

participant was unable to determine position and/or made 2 or more errors, 

proprioception at the joint was rated “absent” and scored a 0. Scores were summed across 

joints to give a maximum possible score of 8. Results of the "up or down?" test were 

corroborated using a robotic test of proprioceptive integrity that uses ascending and 

descending amounts of mechanical perturbation to the hand in order to quantify an 

individual’s movement detection threshold, described previously (Mrotek et al., 2017).  
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We assessed muscle tone at the elbow using the Modified Ashworth scale (MAS; 

Bohannon and Smith 1987). The MAS grades flexor and extensor muscle tone about the 

joint on a scale that ranges from 0 to 4, where a 0 indicates no increase in tone compared 

to the less-affected arm and a 4 indicates tone so severe as to render the arm rigid. To 

obtain an overall estimate of spasticity at the elbow, MAS scores were averaged across 

the elbow flexors and extensors. We screened for cognitive impairments using the 

Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005). The MoCA was 

designed to detect impairment of short-term memory recall, visuospatial information 

processing, executive function, attention, working memory, and language. MoCA scores 

≥ 26 on a 30-point scale are considered normal whereas scores ≤ 25 suggest cognitive 

impairment. We used the 13-item Chedoke Arm and Hand Activity Inventory (CAHAI; 

Barecca et al. 2005) to assess function in the more affected limb during bimanual 

activities of daily living such as pouring a glass of water and buttoning a shirt.  Individual 

assessments on the CAHAI score from 1 to 7, giving a maximum possible total of 91 

points. An item score of 1 indicates that the participant could not perform the task 

whereas a score of 7 indicates that the more affected arm was used fully and efficiently in 

the bimanual task.  Results are summarized in Table 3.1.   

 
Experimental Setup 
 
 

Participants were seated in a high-backed chair with the test arm rigidly coupled 

to a custom fixture mounted to a 6-degree-of-freedom load cell (model 75E20A4-I125-

AF, JR3, Woodland, CA), which was mounted on a Biodex dynamometer (Biodex 

System 3, Biodex Inc., Shirley, NY). The torso was securely strapped to the chair with 
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Velcro straps to minimize trunk motion. The arm was oriented palm downward with the 

elbow's center of rotation aligned to that of the dynamometer.  Seat location was adjusted 

such that the upper arm was abducted to within 20º of horizontal, and shoulder horizontal 

flexion was less than 20º. During testing, the dynamometer was used to rotate the elbow 

into each of three predefined positions: a “neutral” position (N, with the forearm flexed 

90º relative to the upper arm), a flexed position (F, neutral +25º), and an extended 

position (E, neutral -25º; Fig 3.1A). Elbow flexion/extension torque signals from the load 

cell were low-pass filtered using a passive, 1st-order, 300 Hz hardware filter, prior to 

digitization at a rate of 1000 samples per second. 
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Figure 3.1: Experiment setup and procedure. A: Participants viewed a scrolling digital display with a 
discrete-transition torque target (B, gray) and real-time elbow torque feedback (B, black). All torque 
targets were set at 20% !"#$ for torque production or resting baseline for relax cues. A: Participants sat 
upright with the arm locked in each of three positions: neutral, N (90° elbow flexion); flexed, F (N - 25°); 
and extended, E (N + 25°). EMG signals were recorded from elbow flexors and extensors. C-E: 
Participants performed three tasks: a flex/relax task (C), an extend/relax task (D), and a flex/extend task 
(E), horizontal bar represents 20 seconds, vertical bar represents 20% AMT. F: Participants performed 
MVIC collection followed by each of the three tasks repeated twice in each of the three positions. Order of 
positions and discrete transition blocks were randomized across participants. 

 
 

Surface EMG was recorded from three elbow flexor muscles (BICS: short head of 

biceps; BICL: long head of biceps; BRD: brachioradialis) and two elbow extensor 

muscles (TRILT and TRILG: lateral and long heads of triceps, respectively). EMG 

signals were band-pass filtered with an active, 20-450 Hz filter and amplified with a gain 

of 1000 (Bagnoli-8, Delsys Inc., Natick, MA) prior to digitization at a rate of 1000 

samples per second. 
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Experimental Tasks 
 
 

Each participant performed four different isometric, goal-directed elbow torque 

production tasks while viewing a vertical display screen showing two scrolling traces 

(target and feedback cursors) moving across the screen at a rate of 2.5 cm/s. The torque 

target - represented by the dashed gray line in Fig. 3.1B - corresponded to the 

instantaneous value of elbow flexion/extension torque participants were instructed to 

produce. Upward deviations represented flexion torque, and downward deviations 

represented extension. The torque cursor (represented by the black trace in Fig. 3.1B) 

corresponded to the instantaneous elbow flexion/extension torque actually generated by 

the participant as measured by the load cell. Additional details of the visual display 

varied by task type, as described below. 

The first task (the "maximum voluntary exertion" task, MVE) was designed to 

identify each individual’s maximal capacity to produce elbow flexion and extension 

torques, !"#$, which were used to specify participant-specific torque production goals 

for the remaining tasks. Participants performed three sets of four, 10 s maximal exertion 

trials with one set in each of the three elbow positions (flexed, neutral, extended). Each 

set consisted of two flexion and two extension trials with a five second break between 

trials. In each trial, participants attempted to track a torque target that increased from 

relax at a rate of 6 N-m/sec and ultimately surpassed their maximal torque generation 

abilities. During each trial, participants were strongly encouraged to exert themselves to 

the point of failure.  Upon completing this task, we extracted the maximal voluntary 

elbow flexion and extension torques, as well as maximal voluntary isometric contraction 

EMGs (MVIC EMGs) from their data. We then identified 20% of the maximal measured 
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torque magnitude averaged across the flexion and extension conditions for all positions 

(i.e., 20% of the average !"#$) as the torque target for each participant for the subsequent 

tasks.  

For the two primary experimental tasks, participants were instructed to track 

discrete, step-wise changes in target torque that involved cued torque production in one 

direction only (flexion or extension), alternating with cued "relaxation" back to the 

baseline level of torque measured immediately prior to trial onset.  These tasks allowed 

us to assess each participant’s ability to produce rapid changes in isometric elbow joint 

torque in each of the three joint positions. One task, the Flex/Relax task, involved the 

production of cued flexion torques from relaxation (FR) and cued relaxation after the 

production of flexion torque (RF; Fig 3.1C). The Extend/Relax task involved extension 

torque production from the "relaxed" state (ER) and relaxation after extension torque 

production (RE; Fig 3.1D).  For both primary tasks, each 60 s trial included 20 cued 

transitions between states (10 in each direction), with a 200 ms auditory tone coincident 

with the visual cue transitions. Flexion was cued by a 440 Hz tone, relaxation by a 700 

Hz tone, and Extension by a 1110 Hz tone.  In each case, the inter-cue interval was 

pseudorandomly distributed, such that transition times (2.9 ± 0.75 s; mean ± 1 SD) were 

unpredictable but identical across participants. Participants were instructed to: "Match the 

elbow torque cursor to the target trace as quickly and as accurately as possible." Each 

task was performed twice at each elbow position; the order of tasks was randomized 

across participants to minimize potential order effects (an example is shown in Fig. 3.1F). 

During pilot testing, we observed that stroke survivors consistently exhibited 

limitations in their ability to produce rapid changes in elbow joint torque. We therefore 
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asked each participant in this study to also perform a third variant of the step-tracking 

task (the Flex/Extend or “reciprocal” task). This supplemental experimental task was 

designed to test whether performance limitations observed during the primary 

experimental tasks reflected hard constraints (i.e., whether the participant could never 

exceed the rates of torque production observed in the Flex/Relax and Extend/Relax tasks) 

or whether the limitations were due to context-specific constraints on neuromotor control. 

The Flex/Extend task required generating a cued, goal-directed flexion torque after 

holding a steady-state extension torque (FE), and vice versa (EF), at each of the three 

elbow joint positions without intervening relaxation periods (Fig 3.1E). The timing and 

presentation of torque transition cues was the same as that described for the main torque 

tracking tasks. 

 
Data Analysis 
 
 

Digitized torque signals from the load cell were subsequently low-pass filtered 

with a 6th-order, zero-lag Butterworth filter (5 Hz cutoff frequency), and then divided by 

the participant's average !"#$ to yield a normalized measure of biomechanical 

performance, which controls for inter-participant differences in strength. The first three 

time derivatives of the normalized torque signal (which we refer to as %, %, and %) were 

calculated and examined within the 2.5 s interval immediately following cue 

presentation. For each transition, we identified the rate of torque change when it reached 

its peak value (%&'#() and the time when this occurred ()&'#(; refer to the vertical dashed 

lines in Figs 3.2A and 3.2B). We then defined the transition start time ()*+#,+) as the 

instant preceding )&'#(when ! first reached 10% of !&'#(. We defined transition end time 
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()'-.) as the moment after )&'#(when % first fell below 10% of !&'#(. ()*+#,+ and )'-. are 

represented by vertical dotted lines in Figs 3.2A and 3.2B.)  We also defined the target 

hold period as the time between transitions during which participants were to maintain a 

steady target torque at either the 20% maximal torque target or the baseline resting target 

(specifically, from tend + 500 ms to the )*+#,+ of the following transition; large horizontal 

gray boxes in Figs 3.2A and 3.2B). 
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Figure 3.2:	Discrete torque tracking task performance for one transition in one NI (A) and one SP (B) 
participant. t: torque target (20% !"#$, black) and the participant’s torque production (blue (A), orange 
(B), vertical scale bar indicates 10% tmax). % first time-derivative of torque (blue (A), orange (B), vertical 
scale bar indicates 100% tmax per second) was used to derive three time points (vertical dashed lines): 
!&'#( (center), transition start (10% !&'#(, left), and transition stop (10% !&'#(, right). The gray box 
immediately prior to !&'#( is the 50 ms window used to evaluate EMG during the transition. F: Raw (blue 
(A), orange (B)) and processed (black) normalized flexor activity, vertical scale bar indicates 10% MVIC. 
Horizontal dashed line indicates 0% MVIC in all EMG and EMG-derived measures. E: Raw (blue (A), 
orange (B)) and processed (black) normalized extensor activity. DiffA: Difference activity (blue (A), orange 
(B).  CoA: Co-activity (black), vertical scale bar indicates 10% MVIC. Horizontal scale bar shows 500 ms. 
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Prior observations of goal-directed reaching have indicated that stroke survivors 

may be slower to react and to execute movement, movements may lack smoothness, and 

accuracy of target capture and hold may be impaired (Trombly 1992; Cirstea and Levin 

2000). We defined five torque performance measures to quantify similar aspects of 

isometric torque production in these goal-directed tasks. First, we computed reaction time 

(RT) as the amount of time between transition cue and )*+#,+. Two additional measures 

pertained to performance during the transition (i.e., prior to tend): We defined Execution 

Time (ET) as the time between )*+#,+ and )'-.; Within the execution window, we 

quantified the relative smoothness of torque production using a Jerk Index (JI; 

dimensionless integrated squared jerk) previously described by Hogan and Sternad 

(2009): 

/012	45607 =
(+:;<=+>?@A?)

C

%D:@E
F %G ) 6)

+:;<
+>?@A?

	   [Eq. 1] 

This performance measure is sensitive to variations in the shape of the torque trajectory 

while remaining insensitive to variations in execution time and peak rate of torque 

change. The remaining two measures quantified performance after the end of transition. 

We quantified the ability to accurately produce a desired level of elbow torque by 

computing Target Capture Error Magnitude ( H'-. ), defined as the absolute magnitude 

of the difference between torque produced at )'-. and the specified target value. Finally, 

to quantify the participant's ability to maintain a desired level of sustained torque, we 

defined Hold Variability (IJKL.) as the standard deviation of the measured torque signal 

during the hold period. Individual transitions were excluded from analysis if the 

participant attempted transitions in advance of the cue, or if %&'#( was not in the cued 

direction. 
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All digitized EMG signals were notch filtered at 60, 120 and 180 Hz, (±10 Hz) 

using a 3rd-order, zero-lag Butterworth filter to remove line-noise interference. All EMG 

signals were then zero-meaned, rectified, and filtered with a 20 Hz low-pass, 2nd-order 

zero-lag Butterworth filter. EMG signals from maximal isometric torque production tasks 

were further filtered with a 100 ms, moving average filter and the maximal value (i.e., 

MVIC) was used as a normalization factor for the EMG signals from each respective 

muscle. For each muscle and for each individual trial, the processed EMG signal was 

then normalized to (i.e., divided by) the maximal value obtained for that muscle. 

For each participant, we selected a “primary flexor” and a “primary extensor” for 

detailed statistical analysis. These muscles were the elbow flexor and the elbow extensor 

muscles wherein EMG activities exhibited the greatest peak cross-correlation with the 

elbow flexion or extension torques (respectively) that were recorded during MVE trials. 

As listed in Table 3.1, the selected muscles varied across participants in both groups. 

Secondary measures of agonist/antagonist muscle coordination were calculated 

using EMG activities from the identified primary flexor and extensors. We estimated the 

amount of "wasted activation" (c.f., Thoroughman and Shadmehr, 2000) during isometric 

torque production by calculating a measure of instantaneous co-activation (CoA):  

MNO()) = min	[TU07N1 ) , 07)05WN1())].  [Eq. 2] 

CoA(t) represents the magnitude of normalized EMG activity that is approximately equal 

and opposite in the antagonist muscle pair.  We then quantified each participant’s ability 

to differentially activate these muscles by calculating a measure of difference-activation 

(DiffA):  

YZTTO ) = TU07N1 ) − 	07)05WN1()).   [Eq. 3] 
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DiffA(t) quantifies the instantaneous amount of phasic activation across the antagonist 

muscle pair during isometric torque production.  We used these CoA and DiffA to 

quantify instantaneous coordination of activation magnitude between the selected elbow 

flexor and extensor. We defined three, 50-ms time periods of interest over which we 

calculated average EMG activity for the primary elbow flexor and extensor, as well as the 

average CoA and DiffA measures derived from those EMG activities. To characterize 

muscle coordination during transitions between cued levels of elbow torque, we defined a 

50-ms window immediately prior to %&'#( (short horizontal black bars at the top of Figs 

3.2A and 3.2B). To characterize muscle coordination while participants maintained 

steady levels of cued torque (i.e., flexion, extension, relaxed), we defined another 

window starting 150 ms after the end of transition, (short horizontal gray bars at the top 

of Figs 3.2A and 3.2B). We also characterized "baseline" levels of muscle activity when 

participants were to supposed to be relaxed starting 200 ms prior to transition start in all 

trial types including a movement control action. 

 
Statistical Hypothesis Testing 
 
 

The current study had two specific objectives. The first was to quantify the extent 

to which arm position-dependent deficits in agonist/antagonist muscle coordination 

degrade the ability to produce controlled, goal-directed changes in elbow joint torque 

after stroke. The second was to test the hypothesis that stroke-related deficits of 

agonist/antagonist coordination are significantly correlated with motor impairment and 

deficits of motor function. To address the first objective, we compared the ability of NI 

and SP to perform four different, isometric elbow torque transitions {FR, RF, ER, RE} in 
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each of three different elbow positions {flexed, neutral, extended}.  Due to the broad 

range of impairment and considerable variability represented within our small cohort of 

stroke survivors, we employed the nonparametric inverse normal transform (INT; 

Leupson 2016) rank transform (RT Type 1; Conover and Iman 1981; see also Laczko et 

al. 2017) as our primary statistical analysis approach. In the INT-RT1 test, the entire set 

of observations for a given dependent variable is first ranked from smallest to largest, 

with the smallest observation having rank 1, the second smallest rank 2, and so on 

(average ranks are assigned in the case of ties). Next, ranks are standardized by 

computing their normalized ranks:  

4\] = Φ=_ `a 5 + 1 , 

where Ri are the ranks of the dependent variable, n is the number of observations and 

Φ=_ is the inverse normal transformation. Finally, a parametric F test [mixed model 

repeated measures analysis of variance (ANOVA)] is applied to the INT standardized 

ranks. The INT-RT1 analysis takes advantage of both between and within block 

information, resulting in a distribution-free test that compares favorably with the 

Friedman test and Fischer's randomization test in terms of robustness and power 

(Leupson 2016, Conover and Iman 1981), and has also been shown to be acceptable for 

assessing interactions between factors (Conover and Iman 1981).  

To achieve our first objective, we planned to use INT-RT1 ANOVA and post-hoc 

Bonferroni t-test to examine the main effects of participant group {SP, NIC}, transition 

type {FR, RF, ER, RE}, and elbow joint position {flexed, neutral, extended} on each of five 

torque performance variables { !&'#( , ET, JI, H'-. , IJKL.}. We expected that position-

related deficits in the ability to produce controlled, goal-directed changes in elbow joint 
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torque post-stroke would manifest as three-way interactions between joint position, 

transition type and participant group. In the absence of three-way interactions, two-way 

interactions between group and transition type would suggest that stroke-related 

coordination deficits in our isometric task do not depend substantially on elbow joint 

position. 

We next planned to use paired t-test to analyze INT-RT1 !&'#(  values from the 

supplemental Flex/Extend task transitions to determine whether torque production 

limitations in the primary experimental tasks were due to fixed constraints on the rate of 

muscular torque production, or whether observed limitations were due to context-specific 

constraints on neuromotor control. We specifically compared whether normalized !&'#(  

values produced in the FE and EF transitions could exceed those produced by the same 

participants during FR and ER transitions. A positive result in the SP group would suggest 

that torque production limitations exhibited by stroke survivors in the primary 

experimental tasks were in fact due to context-specific constraints on neuromotor control 

rather than on fixed neuromuscular constraints on the rate of muscular torque production. 

We next planned to use INT-RT1 ANOVA and post-hoc Bonferroni t-test to 

examine the main effects of participant group {SP, NIC}, transition type {FR, RF, ER, RE}, 

and elbow joint position {flexed, neutral, extended} on measures of neuromuscular 

coordination. We analyzed measures of flexor/extensor coordination (CoA and DiffA), 

and the muscle activation patterns that contribute to them [FLeXor activity (FLX); 

EXTensor activity (EXT)], during torque transitions (i.e., within the 50 ms window 

immediately preceding tpeak) and during maintenance of the acquired torque (i.e., from 

)'-.+150 to )'-.+200). We were particularly interested in the extent to which these 
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measures varied across participant group {SP, NIC}, transition type {FR, RF, ER, RE}, and 

elbow joint position {flexed, neutral, extended} and the extent to which they might 

explain variations in the performance variables derived from the isometric torque signals. 

  Finally, we tested the hypothesis that deficits of agonist/antagonist coordination 

correlate significantly with motor impairment and deficits of motor function after stroke 

using stepwise forward linear multiple regression analysis (Kachigan 1986; c.f., Harris 

and Eng 2007; Wagner et al. 2007). The first set of forward regressions sought to 

determine the extent to which specific impairments correlated with performance in the 

goal-directed isometric torque production task. In these analyses, specific impairment 

measures were used as input variables (e.g., !"#$, MAS, MoCA, FMLT, and AMDT 

scores) to model selected response variables that describe participant performance during 

torque transition ( !&'#( ) and after torque target capture (IJKL.). A second set of forward 

regression analyses sought to determine the extent to which broad measures of upper 

extremity function and impairment were explained by task performance, muscle 

coordination and specific impairments. In these analyses, the input measures included 

performance measures during the primary Flex/Relax and Extend/Relax tasks (i.e., 

!&'#( , ET, JI, H'-. , IJKL., CoATpeak, CoATend, DiffATpeak, and DiffATend) and specific 

measures of impairment (e.g., !"#$, MAS, AMDT, FMLT, MoCA); response variables 

included composite measures of upper extremity function (CAHAI) and impairment 

(FMM).  

All statistical testing was performed within the SPSS computing environment 

(IBM Corp, Released 2012). Corrections for multiple comparisons were employed such 

that statistical effects were considered significant using a family-wise error rate of α = 
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0.05. Data are reported as means ± SD within the text and displayed as means ± SE in the 

figures. 

 
Results 
 
 

The ability to initiate, maintain, and cease production of moderate (20% of 

average maximal) elbow flexion/extension torque was tested in 13 hemiparetic survivors 

of stroke and 10 neurologically-intact controls across three elbow joint angles. All 

participants were attentive and engaged in the tasks, and all attempted to follow task 

instructions during the experimental sessions. Within each trial (Figs 3.1C-3.1E), a torque 

transition was considered "good" if it was initiated after a minimum reaction time of 0.1 s 

and it was performed in the cued direction. Although performance varied considerably 

within the SP group, all participants excepting S108 were able to successfully perform all 

four tasks in all three elbow joint positions demonstrating that motor planning was 

preserved in these participants. S108 successfully performed the tasks when the elbow 

was flexed and in the neutral position, but failed to execute any valid torque transitions 

when the elbow was extended. Reaction times averaged 0.268 ± 0.062 s for NI 

participants and 0.471 ± 0.145 s for SP participants. Across all SP, 17.9% of transitions 

were excluded because the participant attempted transitions in advance of the cue or 

because %&'#( was not in the cued direction. By contrast, the failure rate was 2.6% for NI 

participants. Within the SP group, reaction times were not significantly correlated with 

overall MoCA scores (Pearson's r = 0.041, p = 0.895). A hardware error compromised 

the magnitude of recorded torques during testing of one NI participant (NI10); this 

participant's data were excluded from subsequent analysis. An EMG electrode came 
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loose during testing of another NI participant (NI3); this participant's EMG data from the 

affected trials were excluded from analysis. Finally, one stroke survivor (SP115) did not 

complete the Flex/Extend task, and was not included in analysis of that task's 

performance. 

 
MVE task performance 
 
 

In agreement with prior studies of isometric elbow torque production (Canning et 

al 1999; Chang et al., 2013; McCrea, 2003), average maximal torques (!"#$) were 

dramatically lower in the SP group as compared to the NI group [NI: !"#$ = 35.7 ± 13.32 

Nm, range {20.3, 58.3}; SP: !"#$ = 17.0 ± 9.1 Nm, range {6.2, 35.8}]. Within the SP 

group, !"#$ was positively correlated with both FMM (Pearson's r = 0.657; p=0.015, 

N=13) and CAHAI (r = 0.723; p=0.005, N=13). Therefore, to present each participant 

with torque targets that required comparable effort, we defined individualized torque 

targets for the remaining three experimental tasks as 20% of each individual's average 

!"#$ values. 

 
Primary experimental task performance  
 
 

Performance measures in the primary experimental task suggest that position-

dependent neuromotor impairments did not impact the ability to produce goal-directed 

changes in isometric elbow torque. As we shall show, variations in performance were 

instead largely dependent on whether a participant had had a stroke, and whether they 

were attempting to generate elbow torque or relax from torque generation. We used 

separate, mixed-model, repeated measures, INT-RT1 ANOVA and post-hoc Bonferroni t-
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test to examine the main and interaction effects of participant group {SP, NI}, transition 

type {FR, RF, ER, RE}, and elbow joint position {flexed, neutral, extended} on each of the 

five torque performance variables: { !&'#( , ET, JI, H'-. , IJKL.}. We observed a 

consistent main effect of group across all five performance variables (F(1, 216) ≥ 182.199 

and p < 0.0005 in all cases) and transition type (F(3, 216) ≥ 4.483 and p ≤ 0.004 in all 

cases), but not of elbow joint position (F(2, 216) ≤ 1.452 and p ≥ 0.236 in all cases). 

Although we observed consistent interaction between group and transition type (F(3, 216) ≥ 

4.165, p ≤ 0.007 in all cases, discussed further in the coming paragraphs), we found no 

evidence of a three-way interaction between group, transition type and position (F(12,216) ≤ 

1.410 and p ≥ 0.163) in any case.  

Across all performance variables, the main effect of group adhered to 

expectations with the SP group demonstrating impairments in performing transitions 

between targeted torque levels and sustaining targeted torques compared with NI controls 

(Fig 3.3). Compared to the NI group, SP made torque transitions that were slower (NI: 

!&'#(  = 108 ± 21 %!"#$/s; SP: !&'#(  = 60 ± 21 %!"#$/s) and of longer duration (NI: 

ET = 0.367 ± 0.068 s; SP: ET = 0.695 ± 0.151 s), less smooth (NI: JI = 168 ± 77; SP: JI 

= 1471 ± 1119), less accurate upon target capture (NI: H'-.  = 1.1 ± 0.3 %!"#$; SP: 

H'-.  = 7.6 ± 4.8 %!"#$), and more variable during the hold interval (NI: IJKL. = 0.4 ± 

0.1 %!"#$; SP: IJKL. = 1.3 ± 0.8 %!"#$). 
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Figure 3.3: Kinetic performance of NI and SP in step-torque tracking task. Gray bars, generating torque 
(Flex from relax, Extend from relax; white bars, relaxing from torque production (Relax from flex, Relax 
from extend). Error bars are ± 1 S.E.M. A: peak rate of torque change during transition. B: Execution time 
to complete transition. C: Dimensionless jerkiness of torque transition. D: Target error at end of torque 
transition. E: Hold variability during steady state hold of torque or relaxation.  
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As we describe below, ANOVA also revealed main effects of transition type for 

all performance variables and interactions between group and transition type for all 

performance variables. The NI group expressed consistent performance dependencies on 

transition type (torque production vs. relaxation) regardless of task (Flex/Relax vs. 

Extend/Relax), therefore we first describe the main effect of transition type as it was 

present within the NI group. We then describe how SP participants deviated from that 

"normal" pattern of results using post-hoc paired t-test where appropriate. When 

describing the transition type differences for the NI group, we collapsed across tasks, i.e., 

{FR, ER} and {RF, RE}, prior to performing post-hoc t-tests. As SP performance was less 

consistent across task- and trial-types, behavior was not collapsed across task prior to 

performing post-hoc t-tests in the SP group.   

NI participants had a faster peak rate of torque change when relaxing than when 

generating torque; SP participants demonstrated the opposite pattern (Fig. 3.3A). We 

observed a main effect of transition type on !&'#(  depending on whether participants 

were producing torque from rest or relaxing from torque production (F(3,216) = 4.483, p = 

0.004). NI exhibited faster rates of torque change when relaxing vs. producing torques 

(T8 = 5.351; p = 0.001). SP exhibited slower rates of torque change when relaxing vs. 

producing elbow torques (T12 = 2.938; p = 0.012). Additionally, SP exhibited lower 

!&'#(  values in the Flex/Relax task than in the Extend/Relax task (T12 = 3.113; 

p = 0.009). 

The pattern of results observed for !&'#(  was also reflected in transition 

execution times and Jerk indices (i.e., transition smoothness). NI participants took less 

time to relax than to generate torques, while SP participants took as long or longer to 
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relax than to generate torques (Fig. 3.3B). We observed a main effect of transition type 

on ET (F(3,216) = 14.057, p < 0.0005), as well as an interaction between group and 

transition type (F(3,216) = 12.020, p < 0.0005). For the NI group, ETs were shorter when 

relaxing vs. generating torques in both tasks (T8 = 5.22; p = 0.001). By contrast, SP took 

as long or longer to relax after actively generating flexion torque (in the Flex/Relax task; 

RF vs. FR), and about as long to relax after generating extension torque (in the 

Extend/Relax task; RE vs. ER). Moreover, SP participants exhibited longer execution 

times on average in the Flex/Relax task than in the Extend/Relax task (T12 = 2.758; 

p = 0.017).  

SP made jerkier transitions than NI, which was most pronounced in the 

Flex/Relax task. Within JI (Fig. 3.3C), we observed a main effect of transition type 

(F(3,216) = 14.303, p < 0.0005) and an interaction effect of group by type (F(3,216) = 8.978, 

p < 0.0005). For the NI group, relaxation transitions were smoother than transitions made 

to capture cued torques in both tasks (T8 = 4.917; p = 0.001). For SP participants, only 

the Extend/Relax task tended to exhibit relaxations that were smoother than torque target 

capture transitions; relaxations in the Flex/Relax task had JI values as large or larger than 

those in torque target capture transitions (Fig 3.3C). Thus, for SP participants, deficits of 

performance during the torque transition period appear to be more prevalent in the 

Flex/Relax task.  

For both groups, target capture error tended to be lower when participants 

attempted to relax to baseline than when generating cued torques (T22 = 2.758, p = 0.012, 

Fig. 3.3D). Despite the appearance of elevated target capture errors at the end of ER 



 

 

84 

transitions in the SP group, the interaction between group and transition type for H'-.  

(F(3,216) = 2.921, p = 0.035) did not remain significant after Bonferroni correction. 

SP demonstrated greater hold variability when sustaining targeted torques than 

did NI, though both groups demonstrated less torque variability when relaxing than when 

generating a moderate torque. For the final behavioral measure, IJKL., we again saw main 

effects of both trial type (F(3,215) = 69.467, p < 0.0005) and an interaction effect of group 

by trial type (F(3,215) = 4.165, p = 0.007, Fig. 3.3E). As expected, NI participants produced 

less torque variability when they were instructed to relax the arm than when they were to 

produce a steady-state elbow torque, regardless of task (T8 = 10.997; p < 0.0005). While 

that same pattern was also observed in the SP group (T12 = 5.683; p < 0.0005), SP 

participants also appeared to exhibit task-dependent weakness in the pattern of IJKL. 

values, in that hold variability after torque target capture in the Extend/Relax task 

exceeded that in the Flex/Relax task (T12 = 3.645; p = 0.003) (Fig 3.3E). 

  Taken together, the results of these analyses found no systematic effect of elbow 

position, despite apparent deficits in the ability to produce and hold targeted torques (e.g., 

weakness), as well as deficits in the ability to relax the muscles about the elbow after 

active torque production (Fig 3.3A).  Moreover, deficits of performance during the torque 

transition period appear to be more prevalent in the Flex/Relax task, whereas deficits of 

maintaining steady torque values are particularly prevalent in the Extend/Relax task. 

 
Supplemental task performance 
 
 

We next sought to test whether decreased torque production rates observed in the 

SP group during the primary experimental tasks reflected maximal performance in the SP 
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group or whether the reduced rates reflected task-specific constraints. We asked 

participants to perform a supplemental Flex/Extend task. This task required alternating 

transitions between elbow flexion and extension torques without intervening relaxation 

periods.  

In the Flex/Extend task, both NI and SP participants increased their torque 

transition rate, and SP participants demonstrated the capacity to achieve peak rates of 

torque production similar to those produced by NI participants in the primary 

experimental tasks (Fig 3.4). NI participants nearly doubled their peak rates of flexion 

and extension torque production relative to the tasks involving rest (FE > FR: T8 = 10.140, 

p < 0.0005; EF > ER: T8 = 9.620, p < 0.0005).  SP participants also increased their peak 

rates of flexion and extension torque production relative to the tasks involving rest (FE > 

FR: T12 = 5.308, p < 0.0005; EF > ER: T12 = 3.316, p = 0.006).  Importantly, SP 

participants were able to produce peak rates of flexion and extension torque change in the 

Flex/Extend task that equaled or exceeded those produced by the NI participants in the 

Flex/Relax and Extend/Relax tasks (NI FR = SP FE: T20 = 0.109, p=0.914; NI ER = SP EF: 

T20 = 0.184, p = 0.856).  Thus, limitations of maximal transition rate in the generate/relax 

tasks reflect task-specific constraints rather than maximal possible performance.  
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Figure 3.4: Peak rate of torque change during torque generation in primary (gray bars; flex from relax, 
extend from relax) and secondary (black bars; flex from extend, extend from flex) tasks. Error bars denote 
± 1 S.E.M.  

 
Coordination of agonist/antagonist muscle activation/deactivation during isometric 
elbow torque production/relaxation 
 
 

We next quantified the impact of stroke on coordinating the amount of activation 

in elbow flexor/extensor muscle pairs during isometric elbow torque production and 

relaxation. We focused our analyses on three time windows: baseline activity when 

resting prior to the generation of either flexion or extension torques, during transitions 

into and out of cued torque generation, and during the maintenance of steady cued torque 

after transition. 

 
Baseline (relaxed) EMGs prior to torque target capture: 
 
 

When relaxing prior to torque generation, SP had elevated activity in the flexors 

and extensors relative to NI. To examine “resting” activity in the elbow flexor and 

extensor, we evaluated normalized baseline EMG values measured at least 2 seconds 
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after the most recent torque generation cue (i.e., at least 2 seconds into cued “relaxation” 

prior to the next torque generation). Repeated measures ANOVA applied to baseline 

EMG values for the primary flexor muscle revealed a main effect of participant group 

(F(1,98) = 771.429, p < 0.0005) and transition type (FR, ER ; F(1,98) = 5.459, p = 0.022), but 

no main effect of joint position, or interaction between factors (Fig 3.5A).  Similarly, 

EMG values for the primary extensor muscle exhibited main effects of participant group 

(F(1,95) = 420.525, p < 0.0005) and transition type (FR, ER ; F(1,95) = 11.739, p = 0.001), but 

no main effect of joint position or interaction between factors (Fig 3.5B).  

The group effect was driven by the inability of the stroke survivors to turn off, at 

"rest," EMG activities not only in the muscle primarily involved in the task (i.e., the 

primary flexor in the Flex/Relax task and the extensor in the Extend/Relax task), but also, 

to a lesser extent, in the selected antagonist muscle. The main effect of transition type 

appears to be driven predominantly by the SP group retaining larger quantities of 

activation in the task-related agonist muscle, i.e., there was more residual flexor 

activation when resting prior to torque generation during the Flex/Relax task and more 

residual extensor activation prior to extensor torque generation.  
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Figure 3.5: Muscle activity at resting baseline prior to torque production transition (Flex from relax, 
Extend from relax). Error bars indicate ± 1 S.E.M. A: Resting flexor activity in NI and SP (% MVIC). B: 
Resting extensor activity in NI and SP (% MVIC).  

 
EMGs during and after torque target capture: 
 
 

Both NI and SP were able to modulate activity in the flexors and extensors to 

generate torque, which is consistent with both groups’ ability to generate isometric 

flexion and extension torques. We computed the difference between flexor EMGs in the 

time window just prior to !&'#( vs. the baseline time window for transitions requiring 

torque production (DEMGflex; Fig 3.6A), and a similar measure for extensor EMGs 

(DEMGext; Fig 3.6B).  ANOVA applied to these two performance measures revealed 

main effects of transition type (F(1,95) > 127.993, p < 0.0005, both cases), demonstrating a 

clear ability of both participant groups to modulate the primary flexors and extensors 

above and beyond the level of activation generated during "relaxed" baseline. We 

observed no main effect of participant group, limb position or interaction between 

factors. 
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Figure 3.6: Modulation of muscle activity and coordination during torque initiation and cessation in NI 
and SP. Gray bars indicate torque production (Flex from relax, Extend from relax), white bars indicated 
torque cessation (Relax from flex, Relax from extend). Error bars indicate ± 1 S.E.M. All values are % 
MVE.  A: Flexor activity, change from baseline to time of peak rate of change of torque. B: Extensor 
activity, change from baseline to time of peak rate of change of torque. C: Co-activation immediately prior 
to peak rate of change of torque in activation and cessation. D: Difference activation immediately prior to 
peak rate of change of torque in activation and cessation.  
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We found no evidence for a main effect of arm position or interaction between 

position and any factor in our analyses of EMG during goal-directed torque target 

capture. 

Group analysis of the two EMG variables sensitive to flexor/extensor muscle 

coordination (muscle co-activation, CoA, and difference activation, DiffA) revealed 

systematic deficits of muscular coordination after stroke that were primarily related to an 

inability to “quiet” activity in agonists and antagonists. Compared with the NI group, the 

SP group had greater flexor/extensor co-activation (CoA) during all transition types; 

although both groups had greater CoA when generating torque than when relaxing (Fig. 

3.6C). We found a main effect of group on CoA values during transition (F(1,213) = 

536.686, p <0.0005). This effect was driven by the SP group producing more CoA than 

the NI group. We also found a main effect of transition type (F(3,213) = 36.136, p < 0.0005) 

in that for both groups, we observed greater values of CoA during torque generation than 

during relaxations. Finally, we observed a significant interaction between group and 

transition type (F(3,213) = 10.929, p < 0.0005). For CoA, the interaction appears to be 

driven by the presence of relatively larger CoA values during torque production in the ER 

case vs. the FR case in the NI group, but no such differences for the SP group.  

Compared with NI, SP have greater DiffA in the agonist muscle during torque 

generation, and SP also maintain greater levels of agonist DiffA when relaxing from 

torque generation than do NI (Fig. 3.6D). We found a main effect of group on DiffA 

values during transition (F(1,213) = 5.158, p = 0.024), as well as a main effect of transition 

type (F(3,213) = 115.745, p < 0.0005).  For both groups, both measures of coordination 

yielded greater values during torque generation than during relaxations. We also observed 
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a significant interaction between group and transition type for both coordination 

measures (F(3,213) = 10.935, p < 0.0005). For DiffA the interaction appears to be driven 

primarily by differences during the relaxation conditions (e.g., compare NI RF < 0 vs. SP 

RF ≈ 0), whereby NI participants appear to have relaxed the primary task-agonist muscle, 

or even actively engaged the extensor (task-antagonist muscle) to some degree during the 

RF condition, whereas the SP maintained small amounts of net activation in the task- 

agonist muscle.  

In summary, CoA values during transition in the SP group appear to reflect the 

elevated tonic activities observed during baseline, elevated relative to the NI group. 

DiffA values in the SP group appear almost normal when creating torques (i.e., quite like 

those produced by NI participants), and slightly elevated relative to the NI group when 

instructed to relax back to baseline, resting torque.  

A similar pattern was obtained when we analyzed flexor/extensor muscle 

coordination during a time period after transition wherein participants were to maintain 

steady elbow torque values either at 20% of !"#$ or at rest (Fig 3.7). For CoA, we again 

found main effects of participant group (F(1,213) = 715.495, p < 0.0005) and a main effect 

of transition type (F(3,213) = 68284, p < 0.0005), with both effects mirroring those 

observed during torque transition (i.e., Figs 3.6C).  We also observed a significant 

interaction between group and transition type (F(3,213) = 15.876, p < 0.0005).   

Here, closer examination of SP data indicated that for those participants, there 

was no difference in CoA after transition when generating or relaxing from flexion (FR = 

RF; T(12) = 2.047,  p = 0.063), but there was greater CoA observed after transition in the 

extension torque generation task versus extension torque relaxation (ER > RE; T(12) = 
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3.540, p = 0.004). Analysis of DiffA after transition yielded a pattern of results virtually 

identical to those described during transition. Once again, we found no evidence in 

support of a main effect of arm position, or interaction between position and any other 

factor in the analyses of EMG after target capture. 
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Figure 3.7: Muscle coordination during steady state torque production (gray bars; Flex from relax, Extend 
from relax) and relaxation (white bars, Relax from flex, Relax from extend). Error bars indicate ± 1 S.E.M. 
All values in units of % MVE A. Co-activity during torque production and relaxation. B. Difference activity 
during torque production and relaxation. Positive values indicate flexor more active than extensor, 
negative values indicate extensor more active than flexor. Dots (right) indicate mean values for individual 
participants.  
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Neuromuscular coordination: correlations between EMG and Torque measures 
 
 

We used correlation and regression analysis to satisfy our study's first objective to 

quantify the extent to which deficits in agonist/antagonist muscle coordination degraded 

the ability to produce controlled, goal-directed changes in elbow joint torque after stroke. 

Because no main or interaction effects of arm position were found for the behavioral or 

EMG data, these analyses were performed with data from each SP participant averaged 

separately within each transition type. To limit the number of comparisons, we selected 

!&'#(  as our "during transition" dependent variable of interest, and IJKL. as our "after 

transition" dependent variable. We justify this choice because within the SP group, 

!&'#(  values were highly correlated with ET and JI values (r = -0.676, and r = -0.492, 

respectively; p ≤ 0.011 and n = 26 in both cases) and because IJKL. and H'-.  were also 

highly correlated (r = 0.813, p < 0.0005, n= 26). We then selected four EMG variables 

that we thought might influence torque target capture performance during and after 

transitions. These variables included: CoA and DiffA values during transition, as well as 

CoA and DiffA values after transition.  

Correlation analysis of the selected performance variables for torque 

initiation/termination and maintenance ( !&'#( and IJKL.) revealed that stroke-related 

deficits in flexor/extensor muscle coordination correlate significantly to maintaining a 

steady level of targeted torque, but not to the maximal speed of transition. We found 

IJKL. correlated with CoA during and after transition in the FR and RF tasks (|r| ≥ 0.677, p 

≤ 0.010, n = 13), and DiffA during and after transition in the ER task (|r| ≥ 0.703, p ≤ 

0.007, n = 13).  
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We next performed a regression analysis to distinguish the relative importance of 

specific sensory, physical, and cognitive impairments and muscle coordination in 

generating and holding a specified level of target torque. A series of eight forward 

regressions (two per transition type, using only data from that transition type) were used 

to identify relationships between our primary task performance variables !&'#(  and 

IJKL. and specific clinical impairment measures {FMLT, MAS, MoCA, AMDT, !"#$} 

and muscle coordination measures {CoA during and after transition, DiffA during and 

after transition}. To preserve a sense of causality in this analysis, only EMG measures 

that occurred prior to the behavioral event were taken into consideration, so CoA and 

DiffA after transition were only used as independent variables in the regression model for 

IJKL..  

In our correlation analysis of our primary task performance variables ( !&'#( and 

IJKL.) with measures of impairment and coordination, the only impairment or 

coordination variable that was found to be significantly correlated to !&'#(  was !"#$ 

(F(1,11) = 5.597, p = 0.037, adjusted R2 = 0.277). DiffA during transition, CoA after 

transition, and AMDT were found to relate to IJKL. (F(1,11) ≥ 10.196, p ≤ 0.009, adjusted 

R2 ≥ 0.434). Weakness impaired the ability to create rapid changes in torque production, 

while sensory impairment and impairments in coordination of agonist/antagonist muscle 

activation magnitude were associated with degraded ability to hold a consistent level of 

torque.  

We performed a final pair of forward regression analyses to test our main 

hypothesis that deficits of agonist/antagonist coordination (as quantified by the selected 

task performance variables in each transition type) correlate significantly with global 
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measures of motor impairment (as quantified by FMM scores) and deficits of motor 

function (as quantified by CAHAI scores). We also included the same set of impairment 

measures as potential variables in the model (e.g., !"#$, MAS, MoCA, FMLT, and 

AMDT scores).  

We used forward multiple regression to test the hypothesis that stroke-related 

deficits of agonist/antagonist coordination contribute significantly to motor impairment 

and deficits of motor function after stroke. Our models indicated that none of our 

coordination measures explained significant participant-by-participant variance in motor 

impairment scores, but a measure of flexor/extensor coordination was found to explain 

significant participant-by-participant variance in motor function scores, when combined 

with weakness and transition speed. When we treated FMM score as the outcome variable 

of interest, we found only one impairment variable (weakness, i.e., !"#$) to be a 

significant contributor to this composite clinical measure of motor impairment [F(2,23) = 

8.367, p = 0.015].  Weakness alone accounted for 38% of the variance in the dataset 

(adjusted r2); none of the coordination measures – either alone or in combination - were 

found to correlate significantly with performance on the FMM assessment. By contrast, 

three of the nine potential variables explained a significant amount of variance in the 

CAHAI scores [77% variance accounted for; F(3,9) = 14.956, p = 0.001]. These included 

weakness (!"#$), the maximal transition rate when relaxing from extension torque 

production ( !&'#( ), as well as a measure of coordination: DiffA after target acquisition 

when relaxing from extension torque production.  
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Figure 3.8: Results from forward regression analysis relating performance and EMG measures to 
impairment and function. A: Predicted and actual CAHAI values, solid line indicates line of best fit, dashed 
lines indicate 95% confidence interval; B: Predicted and actual FMM values, red lines as in A; C: Percent 
variance accounted for by each model term, dark blue indicates !"#$ , green indicates peak rate of change 
of torque when relaxing from extension, and yellow indicates after-transition DiffA when relaxing from 
extension.  

 
Discussion 
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been small relative to the overall impact of stroke. Stroke-related deficits of task 

performance did not reflect hard neuromuscular constraints because the stroke survivors 

were able to increase rates of torque production in a secondary experimental task that 

required direct transitions between the production of flexion and extension torques. 

Instead, Stroke-related deficits in task performance reflected deficits in the strength and 

coordination of elbow flexor/extensor muscle activations; importantly, stroke survivors 

exhibited elevated activity in flexors and extensors throughout the entire task cycle (i.e., 

both when attempting to produce torques as well as when attempting to relax from torque 

production) despite the apparent ability to differentially activate flexor and extensor 

activities to a similar extent as NI control participants. Analyses addressing our second 

experimental objective found that within our cohort of stroke survivors, only a measure 

of elbow joint weakness (but no measures of task performance) accounted for participant-

by-participant variations in Fugl-Meyer scores of motor impairment in the more-impacted 

arm. By contrast, weakness, speed of torque production, and measures of coordination 

between elbow flexor and extensor muscles all could account for significant portions of 

participant-by-participant variability in the Chedoke Arm and Hand Activities Inventory 

scores of motor function. These results support the conclusion that while motor 

impairment is influenced most strongly by weakness, deficits in the ability to coordinate 

flexor and extensor muscles at the elbow also contribute significantly to deficits of motor 

function after stroke.  

In nearly all of the performance measures examined, we observed an interaction 

between participant group and torque transition type. NI participant performance during 

and after torque target capture exhibited variations primarily dependent on whether they 
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were actively producing torque or whether they were relaxing after producing a targeted 

torque. By contrast, SP participants exhibited performance variations that depended 

strongly on whether the task required production and relaxation of flexion torques vs. 

extension torques. For the SP group, performance deficits during transition were greater 

in the Flex/Relax task than the Extend/Relax task, and performance deficits during the 

hold period at the end of transition were greater in the Extend/Relax task than the 

Flex/Relax task. We found no significant evidence of position-dependent coordination in 

this study. Rather, SP participants exhibited inability to deactivate elbow flexor and 

extensor muscles across all limb configurations during both of the primary experimental 

tasks (consistent with the presence of hypertonia and reflecting a significant deficit of 

flexor/extensor coordination). While the SP group retained the ability to increase muscle 

activity above the tonic level of activity in both the primary flexors and extensors, they 

also varied considerably in their ability to coordinate activity between the flexors and 

extensors.  

In the SP group, the ability to quickly modulate torque, !&'#( , was found to 

correlate significantly with weakness, while degraded ability to maintain a targeted level 

of torque, IJKL., was found to correlate significantly with sensory impairments and 

deficits of agonist/antagonist muscle coordination. In the multivariate regression models 

used to quantify the relationship between specific impairments, performance variables, 

and agonist/antagonist muscle coordination, only weakness was found to significantly 

correlate with impairment (FMM). Function (CAHAI) was found to be significantly 

correlated to weakness, ability to transition torques quickly, and ability to selectively 

activate muscles. Taken together, the results support the conclusion that deficits of 
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agonist/antagonist muscle coordination related to the inability to deactivate elbow flexor 

and extensor muscles contribute significantly to deficits of motor function after stroke, 

above and beyond the effect of muscle weakness. 

 
Factors contributing to apparent weakness after stroke 
 
 

It is well accepted – both in the clinic and in the literature - that weakness is a 

primary factor contributing to stroke-related deficits of motor control (Kamper et al. 

2006, Lang et al. 2013, Trombly 1992, among others) and of motor function (Ada et al. 

2006, Wagner et al. 2013, for a review see Lang et al. 2013). However, weakness is a 

composite measure with many potential etiologies, including muscular remodeling, motor 

unit changes, and changes in descending drive.  

After stroke, perhaps the most immediate and apparent cause of weakness is 

disuse and the associated atrophy of muscle in the more-involved limb (Hafer-Macko et 

al. 2008). The structural properties of skeletal muscle are largely determined by function 

(Lieber 2002). Therefore, changes in use – regardless of cause – result in changes in 

muscle. While different muscle fiber types are known to have different force production 

characteristics, changes in muscle fiber type after stroke are not consistent. Some studies 

have found that muscle fibers change to predominantly fast fibers (DeDeyne et al. 2004, 

Jakobsson et al. 1991, Landin et al. 1997, Severinsen et al. 2016) which have high force 

capacity but also fatigue quickly, while others have found that muscle fibers in the more-

involved limb become predominantly slow (Frontera et al. 1997), which would have 

lower force capacity and be more fatigue resistant.  
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 Given the inconsistencies in changes in muscle fiber types, it is possible that 

decreased physiological cross-sectional area (PCSA) of more-impacted muscles is more 

important than changes in fiber type in decreased capacity for force generation after 

stroke. PCSA is a theoretical measure of the cumulative cross-sectional area of every 

fiber in a muscle, and it is correlated with a muscle’s capacity to produce force (Lieber 

2002). PCSA decreases as anatomical cross-sectional area of muscle decreases. After 

stroke, the anatomical cross-sectional area of more-impacted muscles decreases 

(Berenpas et al. 2016, English et al. 2010, Hunnicut and Gregory 2017, Ryan et al. 2002). 

Much of this decrease may be explained by a loss of contractile tissue. Western blot 

analysis of the quantity of myosin heavy chains (an indicator of contractile elements in 

muscle) in biopsies taken from muscles in the more- and less-involved limbs in SP 

showed significant decreases in all types of myosin heavy chains in the more-involved 

muscles (Hafer-Macko et al. 2008). Thus, loss of contractile tissue and the associated loss 

of muscle cross-sectional area contribute to decreased capacity for force production after 

stroke.  

Additionally, torque measured about a joint (a logical measure of 

strength/weakness) is the net of all muscle torques applied about that joint. Thus, 

increased force generated by the task-agonist muscle would increase the measured force, 

while increased force generated by the task-antagonist muscle would decrease the 

measured force and contribute to observed weakness.  

After stroke, there is frequently increased passive tension in antagonist muscles 

(Eby et al. 2016, Frieden and Lieber 2003). Mechanical causes of passive tension include 

shortening of the muscle through deletion of sarcomeres (Ada et al. 2006, Gao and Zhang 
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2008) and increases in connective tissue that is resistant to stretch (Booth et al. 2001, 

Lieber 2002). Therefore, increased passive tension in muscles can lead to to measured 

weakness after stroke.  

Additionally, changes in motor units after stroke may contribute to observed 

weakness. Skeletal muscle contracts – and therefore exerts force – when it is activated by 

motor units (Lieber 2002). Stroke has been associated with changes in motor units 

innervating the paretic muscles, including a reduction in the number of motor units (Li et 

al. 2011), disordered recruitment of motor units (Hu et al. 2012), and abnormal saturation 

of firing rates within individual motor units. In spastic muscle, which is common after 

stroke, these patterns are observed even when the overall descending command is 

increasing (Gemperline et al. 1995, Mottram et al. 2014, cf. McCrea et al. 2005).  

Many of these changes may be related to changes in descending control after 

stroke. The middle cerebral artery supplies many areas known to be components of the 

corticospinal motor tract (CS; Lundy-Eckman 2007), and it is also the most frequent site 

of stroke (Bogousslavsky et al. 1988), thus the CS tract is often damaged after stroke. 

Controlled lesion studies in non-human primates suggest that lost CS input is replaced by 

input from the reticulospinal tract (RS; Baker 2011, Zaaimi et al. 2012). Compared with 

the CS tract, the RS tract makes weak, diffuse connections to motor units (Baker 2011, 

Matsuyama et al. 1997, Peterson et al. 1975, Riddle et al. 2009). Additionally, the CS 

tract primarily uses glutamate as its excitatory neurotransmitter (Al Masri 2011), while 

the RS tract uses monoamines which are much slower – both in activation and in 

deactivation – than glutamate (Lundy-Eckman 2007). Finally, loss of CS input can lead 
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to changes in spinal circuits giving rise to altered a-motor neuron excitability (Mazevet et 

al. 2003) and reflex patterns (Dewald et al. 1999). 

These changes in descending drive can contribute to weakness by causing 

decreased activation of motor units and adverse changes in inter-muscular coordination 

between muscles about a single joint. Maximal net joint torque will be reduced if the 

task-agonist muscle cannot be fully activated due to weak descending drive. The RS tract 

can only drive approximately 20% of the motor unit activation generated by CS and may 

therefore cause decreased activation of task-agonist muscle (Riddle et al. 2009). Maximal 

net joint torque will also be reduced if task-antagonists spanning a joint work against the 

task-agonist muscles (Levin et al. 2000). Consistent with the diffuse projections of RS, 

this can result from inability to selectively activate individual muscles (Lang and 

Scheiber 2004).  

Another form of inter-muscular dis-coordination can arise from deficits in timing 

muscle activation and deactivation of individual muscles spanning the joints (cf. Cirstea 

et al. 2003). These deficits are consistent with the slower activation and inactivation time 

course of monoamine neurotransmitters of RS compared with the glutamatergic drive 

from CS (Lundy-Eckman 2007). For example, delays in the initiation (cf. Canning et al. 

1999) and termination (Chae et al. 2002, Kautz and Brown 1998, McCrea et al. 2003) of 

motor neuron activity will compromise performance in most tasks requiring torque 

production (cf. Canning et al. 2000).   

The results of the current study supply independent confirmation of the 

significance of weakness after stroke by demonstrating that !"#$ correlated positively 

both with FMM scores and CAHAI scores. Although deficits of !"#$ in the SP group 
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relative to NI participants could have been due to any of the factors enumerated above – 

either alone or in combination – it is likely that deficits of inter-muscular coordination 

played an important contributing role in our study. Indeed, a novelty of our study is that 

when we identified a model for motor function (CAHAI scores), significant contributions 

were ascribed to weakness, rate of torque generation, and a measure of flexor/extensor 

coordination (the value of DiffA) obtained during the hold period immediately after 

isometric torque target capture. 

Further insight into this result can be drawn from the correlation analyses that 

characterized how deficits in agonist/antagonist muscle coordination degraded the ability 

to produce controlled, goal-directed elbow joint torques (our first study objective).  Even 

though differences in resting baseline EMG values between the NI and SP groups 

averaged only ~4 to 5% of their respective MVIC values (Figs 3.6A and 3.6B), the 

inability to suppress the primary muscle activities when nominally at rest appears to be a 

key deficit of neuromotor control after stroke; participants who produced greater levels of 

CoA during and after transition yielded worse hold performances (higher IJKL. values) in 

both primary tasks.  Conversely, stroke survivors who could generate greater DiffA 

values produced better hold performance (lower IJKL. values). These results demonstrate 

that the ability to selectively activate elbow flexor and extensor muscles - independent of 

weakness - is important for producing well-controlled submaximal elbow joint torques. 

Because DiffA after target capture also was found to be significantly related to CAHAI 

scores, we conclude that inability to selectively activate elbow flexor and extensor 

muscles during the maintenance of steady elbow torques contributes importantly to 

deficits of motor function after stroke. 
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Potential mechanisms of disordered agonist/antagonist coordination 
 
 
 In order to produce task-directed movement, the task-agonist and task-antagonist 

muscles must be selectively activated and deactivated to produce the necessary forces for 

movement. These patterns of activation and deactivation need to be coordinated both in 

time and in magnitude. After stroke, the ability to selectively activate muscle is often 

impaired (Lang et al. 2004, Lang et al. 2013). In the descending RS pathway, a single 

axon can project across multiple spinal roots (Peterson et al. 1975), thus innervating 

motoneuron pools associated with multiple muscles – potentially spread across multiple 

limbs – from a single descending axon. Axons originating in the CS, however, tend to be 

focused in their innervation on a small number of functionally-linked motoneuron pools 

(Buys et al. 1986). Thus, ability to selectively activate muscle is decreased after damage 

to the CS tract. Additionally, loss of targeted descending inhibition from CS can impair 

the ability to selectively deactivate muscle after stroke (Lundberg and Voorhoeve 1962).  

The timing of activation and deactivation may be impaired due to characteristics 

of the RS tract. RS excitation of motoneurons is approximately 80% weaker than similar 

input from CS (Riddle et al. 2009), so more excitatory input from RS would be required 

to drive a motoneuron to threshold than if driven by CS. Additionally, monoamines 

released by RS are slower to act and linger much longer in the synapse than does 

glutamate released by CS. Since monoamine transmitters are slower to degrade than 

glutamate, and can persist for minutes to hours after release (Lundy-Eckman 2007), this 

could lead to motoneurons remaining closer to threshold after excitation unless they 

receive sufficient inhibitory input.  



 

 

106 

Damage to CS can reduce descending inhibition (Lundberg and Voorhoeve 1962), 

which combined with lingering excitatory effects of monoamines could lead to persistent 

muscle activation. The incidence and consequence of increased background muscle 

activity has been studied using surface EMG (Burne et al. 2005) and intramuscular EMG 

(iEMG) (Mottam et al. 2009; Mottram et al. 2010; Chang et al. 2013). Each of these 

studies describes the presence of elevated EMG activity from spastic muscles that were 

nominally at rest. Burne and colleagues (2005) examined mechanical responses to 

imposed elbow perturbations in NI and hemiparetic arms of participants with stroke. This 

study found that the most conspicuous difference between the groups aside from 

weakness, was a modest rise (~3% of normal MVIC) in the background levels of 

contraction when the hemiparetic limbs were at rest. This is similar to the level of tonic 

activity observed at rest (baseline) in the current study (cf., Figs 3.5A and 3.5B).  

The consequence of this elevated tonic activity was that when the hemiparetic 

limbs were mechanically perturbed, the stretch reflex and the passive joint resistance 

were increased relative to resting normal arms (Burne et al. 2005). Importantly, when 

normal limbs voluntarily generated a similar amount of background flexor EMG activity, 

reflex gain and joint mechanical resistance were comparable across the two participant 

groups (Burne et al. 2005). Burne and colleagues concluded: "the rise in resting 

background muscle activity is a primary factor in the greater prominence of spastic signs 

(viz., increased reflex gain and passive joint resistance)." 
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Weakness and impaired neuromuscular coordination may also contribute to slowness 
 
 
 Impairments in force production capacity of muscle and in neuromuscular 

coordination after stroke may also contribute to slowness observed in the SP group. First, 

aforementioned changes in descending control may lead to slowness due to decreased 

rate of muscle activation. Weaker (Baker 2011), less organized (Matsuyama et al. 1997, 

Peterson et al. 1975, Riddle et al. 2009) descending drive using slow neurotransmitters 

(Lundy-Eckman 2007) would logically lead to slower contraction of individual muscles. 

Additionally, if antagonist muscles are generating forces – passively or actively – those 

forces must be overcome by the agonist muscles in order to create a net torque about the 

joint in the desired direction. Muscle can produce greater force when contracting slowly 

than when contracting quickly (Lieber 2002). Given that force generation capacity tends 

to be degraded after stroke, and greater levels of opposing force may be applied to a joint, 

slowness may be an adaptive strategy to allow weakened muscle to overcome increased 

force.  

 
Clinical implications 
 
 

Our current observations suggest that deficits of motor function after stroke are 

due, not only to weakness, but also to deficits in the ability overcome spontaneous 

activity within elbow flexor and extensor muscles. To enable clinicians to address the 

stroke-related deficits of sensorimotor control that most significantly compromise motor 

function, it will be important to develop therapeutic interventions that are able to reduce 

low-levels of sustained activity in spastic muscles at rest, while also promoting the 
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recovery of strength and reciprocal agonist/antagonist coordination required for complete 

independence in the performance of everyday activities. 

Most current therapeutic approaches do not appear to address this specific ideal. 

Although aerobic and strength training may be able to improve general fitness while 

addressing certain aspects of weakness due to muscle remodeling (Hafer-Macko et al. 

2008), that approach is less effective than task-specific training for improving 

coordination during tasks such as goal-directed reaching, especially in lower-functioning 

individuals (Thielman et al. 2004). Stretching and re-positioning joints in their full range 

may be effective at preventing contracture (Ada et al. 2001; see also Stoeckmann 2001), 

but this approach does little to improve strength and/or coordination, and may actually 

impede the patient's ability to terminate activation within the stretched spastic muscle. 

(c.f., Seo et al. 2009).  

Contemporary implementations of high-intensity motor training protocols such as 

constraint-induced movement therapy (Taub and Morris 2001) and rehabilitation robotic 

therapy (e.g., Lum et al. 2002; Reinkensmeyer et al. 2012) focus almost exclusively on 

task-specific training without directly addressing the root causes of strength and 

coordination deficits. Similarly, the use of certain pharmacological agents (c.f., Butefisch 

et al. 2002) and non-invasive brain stimulation techniques such as transcranial magnetic 

stimulation (c.f., Hoyer and Celnik 2011) and tDCS (Brown et al. 2003; but see also Levy 

et al. 2008) may enhance motor plasticity during recovery, they also do not directly 

address coordination deficits.  

Stoeckmann and colleagues (2009) considered the effect of resistive load type on 

muscle recruitment and co-activation during reaching movements performed by the 
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more-impacted and less-impacted arm after stroke. In this study, participants performed 

in-line reaches against an elastic load, a viscous load, and a mass load in order to 

characterize the muscle agonist/antagonist coordination strategies that survivors of stroke 

would use against these different load types. Survivors of stroke presented with motor 

deficits in both arms, with the more-impacted arm having the same, elevated co-

activation response to all three load types. In the less-impacted arm, however, elastic and 

viscous loads were associated with strong activation, and mass and viscous loads were 

associated with minimal co-contraction. This selective matching of resistive load type to 

specific coordination deficits (timing, torque production) warrants further investigation.  

Additionally, there are several existing pharmaceutical treatments for managing 

abnormal muscle tone and spasticity (Olvey et al. 2010). Concurrent pharmaceutical 

intervention to manage muscle tone may improve muscle coordination to some extent 

(Pandyan et al. 2002). Targeted or general anti-spasmodic treatments may be useful for 

reducing the persistent levels of co-activation (elevated muscle tone) observed after 

volitional effort (c.f. Figs. 3.6C, 3.7A). We suggest that further studies focus on 

therapeutic approaches combining appropriate, physician-guided pharmaceutical 

treatment of muscle tone abnormalities with high-intensity therapies designed to train 

motor coordination. 

 
Conclusion 
 
 
 The present study supports previous findings that coordination of muscle 

activation timing and activation magnitude in agonist/antagonist pairs is impaired after 

stroke. This discoordination was associated with impaired ability to quickly produce and 
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hold moderate torques, and to relax from torque creation. Additionally, our findings 

indicate that the ability to coordinate agonist/antagonist muscle pairs, in addition to 

weakness, is itself a significant factor contributing to loss of function after stroke.  
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CHAPTER 4: DIFFERENTIAL IMPAIRMENT OF STABILIZATION, MOVEMENT 
AFTER STROKE RELATED TO DEFICITS IN PROPRIOCEPTION  

 
 
 Many survivors of stroke experience persistent deficits in motor function that can 

negatively impact important activities of daily living. A key component for many 

common activities is moving the arm to bring the hand to an object. Even a simple 

behavior, like a point-to-point movement, consists of a series of stabilization and 

movement actions that allow the arm to perform a desired task. It has previously been 

reported that stroke can impact these stabilization and movement actions differentially. 

We sought to test the hypothesis that deficits in the control and coordination of arm 

stabilization and movement actions correlate significantly with deficits of motor function 

after stroke. Survivors of unilateral stroke and neurologically intact control participants 

attempted to perform six different tasks that combined two elementary behaviors in 

isolation and in sequential combination: elbow stabilization against perturbations, and 

flexion/extension movements of the elbow. We quantified performance on these tasks in 

order to determine the extent to which stroke-related impairments impact the kinematics 

and coordination of simple control actions contributing to moving the arm and holding it 

still. We then tested our hypothesis by examining the extent to which motor impairments 

and/or the ability to stabilize and move the arm can be used to model a common clinical 

assessment of motor function after stroke. For both participant groups (stroke survivors 

and neurologically intact controls), we found that sequential movement and stabilization 

actions interact in a manner consistent with the idea that stabilization and movement 

behaviors recruit distinct neuromuscular control actions. While we furthermore found 

that stroke-related deficits in proprioception degrade the ability to stabilize the arm, we 
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paradoxically found that stroke survivors with impaired proprioception produced 

smoother and more accurate movements than did stroke survivors with clinically intact 

proprioception. This finding supports the idea that proprioceptive feedback contributes 

differentially to the control of limb stabilization and movement. Contrary to our original 

hypothesis, we found that above and beyond the effects of weakness, none of the 

experimental measures of elbow control and coordination contributed significantly to a 

predictive model of motor function after stroke (as measured by the Chedoke Arm and 

Hand Activities Inventory).  

 
Introduction 
 
 
 Stabilization and reaching behaviors performed with the arm contribute positively 

to quality of life because they facilitate interaction with, and manipulation of, objects in 

the environment. However, approximately half of stroke survivors live with chronic 

motor deficits that impact many tasks including the simplest of point-to-point reaching 

(Roger et al. 2012) and stabilization behaviors (Scheidt and Stoeckmann 2007). 

Movement-related deficits can include limitations in range of motion, muscle weakness, 

slow and segmented movement, as well as and inaccuracy and instability of hand position 

stabilization (Cirstea and Levin 2000, Kamper et al. 2002, Levin 1996, Roby-Brami et al. 

1997, Scheidt and Stoeckmann 2007, Trombly 1992).   

A single point-to-point movement has been proposed to be a ‘motor primitive,’ a 

pre-programmed behavior that is used as a building block for other, more complicated 

behaviors (Flash and Hogan 1985, Schaal and Atkeson 1998, Sheridan 1984). However, 

there is evidence to suggest that point-to-point movements are controlled by a series of 
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distinct neural mechanisms enacted sequentially (Flash and Hochner 2005, Humphrey 

and Reed 1983). An experiment performed by Sainburg and colleagues (1999) provides 

evidence that movement is initiated by a feedforward, proprioception-dependent 

movement controller, that errors in the initial movement trajectory are corrected using a 

feedback, vision-dependent controller, and that final endpoint stabilization is controlled 

by a positional stabilization controller that is agnostic of the dynamics of movement. In 

healthy point-to-point movements, these three control actions appear to be executed 

sequentially (Sainburg et al. 1999), with the control actions overlapping in time (thus 

blending the control phases into one another) to produce smooth and accurate point-to-

point movements. 

Later, Scheidt and Ghez (2007) examined closely the limb movement controller 

that is used to initiate movements and the limb position controller that is used to stabilize 

the limb pose at the end of movement. They accomplished this by testing two-joint planar 

movements using a paradigm of visuomotor adaptation in both point-to-point “reaching” 

movements (presumed to invoke a specific sequence of control actions: arm movement 

generation à limb position stabilization) and out-and-back reversal movements or 

"slicing" (presumed to invoke a different sequence of control actions: movement 

generation à movement generation à limb position stabilization). Their findings 

demonstrated that movement trajectory and final stabilized limb positions are influenced 

by separate, differentially adaptable neural control mechanisms. In support of this idea, 

Ghez and colleagues (2007) presented evidence that slice reversals and reach endpoints 

are represented in distinct reference frames, with slice reversals represented in a hand-
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centered reference frame and reach endpoints represented in an ego-centric (i.e., eye-, 

head-, or shoulder-centered) reference frame.  

The existence of separate movement and position controllers was further 

demonstrated by Scheidt and colleagues (2011), who studied participants who practiced 

performing a single-joint, point-to-point reaching task in which limb impedance at the 

end of the reach was altered by means of cued elbow flexor/extensor muscle co-

activation. Analysis of electromyographic activity recorded during practiced reaches and 

occasional unpracticed reversal movements found that both the reaches and reversals 

were initiated using a common, shared control action that launched the hand from its 

starting position to an initial spatial goal. Both also shared a common limb-position 

stabilization controller that invoked similar levels of elevated co-contraction about their 

different, desired final positions. The kinematic consequence of this control policy was 

that whereas reaches performed in the presence of terminal co-contraction were highly 

accurate about the reach target, initial trajectories of unpracticed reversals far overshot 

that same spatial goal (Scheidt et al. 2011). This outcome was predicted by a model of 

movement control wherein the brain uses different mechanisms to plan the hand’s initial 

trajectory and final position in point-to-point movements, that it implements these control 

actions sequentially, and that trajectory planning does not account for specific impedance 

values to be implemented about the final stabilized limb position.  

Experimental evidence that the limb movement and position controllers can be 

affected differentially by stroke was provided by Scheidt and Stoeckmann (2007), who 

found that whereas all but the most impaired stroke survivors could make feedforward 

reaching movements in the presence of an unpredictable perturbation, nearly all stroke 
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survivors had marked deficits in their ability to bring the hand of their more-involved arm 

to rest at the target. Participants with impairments in proprioception had greater 

stabilization deficits (i.e., higher variability at the end of movement) than those with 

intact proprioception. 

The objective of the current experiment was to investigate the extent to which 

stroke impairs the ability to control and coordinate positional and movement control 

actions in the arm, and to determine how deficits in coordination between these control 

actions correlate with deficits in motor function. Building on the work of Ghez and 

colleagues (Kalakanis et al., 1999, Scheidt and Ghez, 2007; Ghez et al., 2007), we 

operationally define movement control actions as those that give rise to feedforward, 

point-to-point movements, and we define positional control actions that engage 

neuromusculoskeletal feedback mechanisms to stabilize the limb about a desired position. 

We operationally define “coordination” between control actions as the influence exerted 

by one control action on prior or subsequent control actions.  

We studied these basic control actions by requiring survivors of unilateral stroke 

and neurologically intact individuals to perform sequential combinations of targeted, 

single-joint point-to-point movements at the elbow, and forearm stabilizations against 

perturbation. We examined performance in the stabilization task in isolation and in 

sequential combination with cued movements both to examine the effect of 

somatosensory feedback deficits on the positional controller and to determine the impact 

of prior and subsequent movement on positional control. We examined performance in 

the initial feed-forward portion of targeted elbow point-to-point movements, in isolation 

and in sequential combination with prior stabilization actions, in order to evaluate the 
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extent to which the feedforward movement plan driven by the movement controller is 

influenced by deficits of somatosensory feedback, and by the performance of prior 

stabilizations. We then used clinical measures of impairment along with kinematic and 

electromyographic measures of movement and position control and coordination in a 

multilinear regression analysis to test the hypothesis that deficits in the control and 

coordination of arm stabilization and movement actions correlate significantly with 

deficits of motor function after stroke.  

 
Methods 
 
 
Participant characteristics and inclusion criteria:  
 
 
 Twenty-one adults provided written informed consent to participate in these 

experiments, which required participants to perform elbow stabilization and point-to-

point movement tasks - in isolation and sequentially - in a single experimental session 

that lasted approximately two hours. All participants provided written informed consent 

in compliance with Marquette University Institutional Review Board protocols. Ten 

participants were survivors of stroke (SP; 62.1 ± 5.3 years (mean+/-SD); 4 F), and eleven 

participants were neurologically normal, age-range matched controls (NI; 59.8 ± 13 

years; 4 F). All stroke participants were more than 6-months post-stroke, were able to 

follow two-step instructions (assessed during participant screening), and could perform 

the experiment task comfortably.  

Stroke participants were excluded from participation if they could not lift the 

more-impacted arm within 20˚ of the horizontal plane (supported), experienced pain 

when lifting the more-impacted arm, if they had received botulinum toxin injections in 
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elbow flexors or extensors within 4 months prior to the experiment, or if they were 

diagnosed with any other condition or disease that is known to interfere with 

neuromuscular function. The presence of contracture in the arm or shoulder did not 

exclude stroke survivors from participating in the experiment unless it prevented them 

from performing the task comfortably. Medical records were solicited for all stroke 

participants to verify lesion location and type.  

Clinical Assessments:  
 
 

All stroke participants underwent a battery of clinical tests administered by a 

licensed physical therapist on a day prior to the reported experimental session (Table 

4.1). We evaluated impairment in the upper extremity using the Fugl-Meyer Assessment 

of Sensorimotor Recovery After Stroke (FMA, Fugl-Meyer et al. 1975). The upper-

extremity motor portion of the FMA (FMM) is rated on a scale of 0 to 66 with a score of 0 

indicating a complete lack of reflexes and volitional movement in the more-impacted arm 

whereas a score of 66 indicates intact reflexes, arm-, and grasp-movements. The upper 

extremity sensory portion of the FMA includes a coarse test of proprioceptive acuity 

(FMP, the clinical “up or down?” test, DeGowin et al., 1987; Epstein et al., 2008) which 

was used to assess overall proprioceptive discrimination at the thumb, wrist, and elbow 

joints. Proprioception at each joint is graded “intact” (2), “impaired” (1), or “absent” (0). 

Scores were summed across joints to provide a total of 6 points possible for the FMP. The 

upper extremity light touch portion of the FMA (FMLT) was also assessed. In this test, the 

participant’s ability to detect light touch on the more-impacted arm is judged to be 

“intact” (2), “impaired” (1), or “absent” (0), with a maximal score of 4 points for FMLT. 
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An additional laboratory test of proprioceptive integrity (AMDT) was also administered. 

This measure has been described previously (Mrotek et al., 2017). 

Additional assessments screened for strength, mild cognitive impairment, 

spasticity, and motor function in the more-impacted limb. Maximal average elbow torque 

production (tmax) was measured while participants performed 6 isometric, maximal 

voluntary elbow flexion and extension exertions with a load cell at the elbow measuring 

torque. The maximal torque values were averaged to calculate a single measure of 

strength about the more-impacted elbow (see Chapter 3 for detailed methods). We 

screened for cognitive impairments using the Montreal Cognitive Assessment (MoCA; 

Nasreddine et al., 2005). The MoCA was designed to detect impairment of short-term 

memory recall, visuospatial information processing, executive function, attention, 

working memory, and language. MoCA scores ≥ 26 on a 30-point scale are considered 

normal whereas scores < 25 suggest cognitive impairment. Due to the verbal nature of 

many test responses, MoCA scores can be confounded by aphasia (participants with 

aphasia are noted in Table 4.1).  

We tested muscle tone of the more-impacted elbow flexors and extensors using 

the Modified Ashworth Scale (MAS, Bohannon and Smith 1987). This scale grades 

flexor and extensor muscle tone about a joint on a scale of 0 to 4 where a score of 0 

indicates that there is no increase in tone compared to the less-impacted side, and a score 

of 4 indicates muscle tone so severe as to render the tested joint rigid. MAS scores for 

more-impacted elbow flexors and extensors were averaged to obtain an overall estimate 

of muscle tone at the more-impacted elbow. We used the 13-item Chedoke Arm and 

Hand Activity Inventory (CAHAI; Gowland et al. 1993) to assess function in the more-
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impacted limb during bimanual activities of daily living such as pouring a glass of water 

and buttoning a shirt.  Individual assessments on the CAHAI score from 1 to 7, giving a 

maximum possible total of 91 points. An item score of 1 indicates that the participant 

could not perform the task whereas a score of 7 indicates that the more-impacted arm 

participated fully and efficiently in the bimanual task. Clinical assessment scores are 

reported in Table 4.1.  
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Table 4.1: Participant characteristics. Grp: Group; ID: participant number; ‡: presence of expressive aphasia; M: Male; F: Female; Dom: Dominant hand; !"#$%: 
Distance of flex target from home in degrees; Flex: Selected flexor; BRD: Bracihioradialis; BICS: Short head of biceps; BICL: Long head of biceps; Ext: Selected extensor; TRILT: lateral 
head of triceps; TRILG: long head of triceps; FMM: Upper extremity motor portion of Fugl-Meyer Assessment; CAHAI: Chedoke Arm and Hand Activity Inventory; FMP: 
Upper extremity sensory proprioception portion of Fugl-Meyer Assessment, summed at thumb, wrist, elbow; MoCA: Montreal Cognitive Assessment; I: Ischemic; H: 
Hemorrhagic;  MCA: middle cerebral artery; BG: basal ganglia; PCA: posterior cerebral artery; * not applicable; ** information not available. 

Grp. ID Age Sex Test 
Hand 

Dom. 
Hand 

!&'()  Flex. Ext. 
 

FMM CAHAI FMP MAS 
EL. 

MoCA Years 
since 

stroke 

Lesion 
Type 

Lesion Location 

NI 1 62 M R R 30° BRD TRILT * * * * * * * * 

NI 2 62 F R R 30° BRD TRILT * * * * * * * * 

NI 3 60 M R R 30° BICS TRILT * * * * * * * * 

NI 4 63 F R R 30° BRD TRILT * * * * * * * * 

NI 5 72 M R R 30° BICS TRILT * * * * * * * * 

NI 6 66 F R R 30° BICS TRILT * * * * * * * * 

NI 7 70 M R R 30° BICS TRILG * * * * * * * * 

NI 8 76 M R R 30° BRD TRILT * * * * * * * * 

NI 9 51 F R R 30° BICS TRILG * * * * * * * * 

NI 10 49 M R R 30° BICL TRILT * * * * * * * * 

NI 11 30 M R R 30° BICS TRILT * * * * * * * * 

SP 101‡ 57 M L R 16° BICS TRILG 27 18 1 1.5 27 12 I R: Midbrain 

SP 102‡ 59 M R R 30° BICS TRILT 20 24 6 4 26† 7 I L: MCA, BG, Insular Cortex 

SP 104‡ 52 M R R 21° BICL TRILT 21 23 6 3.5 23† 13 ** L: ** 

SP 106‡ 64 F R R 30° BRD TRILG 45 32 2 2 14† 24 ** L: ** 

SP 107‡ 61 M R R 21° BICL TRILG 27 15 1 2.5 10† 12 I L: MCA Distribution 

SP 110 62 M L R 30° BRD TRILG 41 63 6 4.5 23 7 I R: BG & Caudate 

SP 111‡ 69 F R R 17° BRD TRILG 23 46 6 3 25 35 H L: PCA 

SP 113 63 F L R 30° BICS TRILT 37 52 3 3.5 22 10 ** R: ** 

SP 114 64 M L R 30° BRD TRILG 66 90 6 0 24 7 I R: Multi-focus Periventricular 
White Matter 

SP 115 70 F L L 30° BICS TRILT 32 30 6 1.5 22 13 H R: ** 
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Experimental setup:  
 
 

Participants were positioned in a manner to isolate motion to flexion and 

extension of the elbow to the extent possible. Participants sat in an adjustable, high-

backed chair with their forearm and hand (palm down) fixed to the handle of a single 

degree-of-freedom robot (Fig. 4.1A). The elbow was supported and aligned with the 

robot's rotational axis such that the participant's hand moved along an arc in the 

horizontal plane (Scheidt et al., 2011). The participant's torso was secured to the chair 

with a neoprene harness in order to prevent compensatory movements of the trunk 

(Roby-Brami et al. 2003, Cirstea and Levin 2000). The more-impacted (SP) or dominant 

(NI) arm was positioned such that the upper arm was abducted 0° to 15° below 

horizontal, and horizontally adducted/flexed 0° to 15°. SP were fitted with a wrist brace 

in order to prevent wrist flexion during the task.  

The robotic device is powered by a low-inertia, brushless DC motor with an 

integrated resolver (D061A DC, Kollmorgen, Radford, VA), which can measure joint 

angle with a resolution better than 0.01°. The device is also outfitted with a 6 degree-of-

freedom load cell (67M25A-I40-A-200N12; JR3, Woodland, CA), which measures forces 

and torques applied to the adjustable handle. All control operations and data sampling 

were performed at 1000 samples per second with 16-bit resolution, and the resulting data 

were stored to hard drive for off-line analysis. 

An opaque screen obstructed the participant's view of the tested arm. Participants 

were instructed to direct their attention to a vertically-mounted computer monitor that 

was located 60 cm directly in front of them. The computer monitor (Fig. 4.1B) displayed 

visual cues and provided feedback related to task performance, as described below.  
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Surface electromyograms (EMG) were recorded from three elbow flexor muscles 

(short head of the biceps, BICS; long head of the biceps, BICL; and brachioradialis, 

BRD) and two elbow extensor muscles (lateral head of the triceps, TRILT; and long head 

of the triceps, TRILG). EMG signals were band-pass filtered with an active, 20-450 Hz 

anti-aliasing filter and amplified with a gain of 10,000 (DE-2.1 electrodes and Bagnoli 8 

Amplifier; Delsys Inc., Taunton, MA) prior to digitization at a rate of 1000 samples per 

second. 
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Figure 4.1: Experimental setup and tasks. A: Participant setup (opaque screen not shown); B: Participant 
viewed task instructions, target locations, and performance feedback on a visual display; C-H: Cartoon 
depictions trajectories of task types over time, C: Stabilize (S); D: Flex (FLX); E: Flex, Stabilize (FLX-S); 
F: Stabilize, Flex (S-FLX); G: Flex, Extend (REV); H: Stabilize, Flex, Extend (S-REV); I: Order of 
experiment blocks.  

 
Experimental Procedures:  
 
 

Each participant performed two calibration procedures. The first was designed to 

obtain data with which we could normalize each participant's EMG recordings for 

subsequent comparison across participants and groups. The second was designed to 

identify movement targets that were within each participant's active range of motion. For 

the first procedure, participants performed resting and maximal voluntary exertion 
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(MVE) tasks. Participants were seated in a high-backed chair away from the robot. The 

arm was supported against gravity and the elbow bent to approximately 90º flexion. 

Manual resistance was provided as each participant was instructed to "flex the elbow as 

hard as you can” for 10 seconds while EMG signals were recorded. The participant rested 

with the arm supported for 30 seconds and was then asked to “extend the elbow as hard 

as you can” for 10 seconds while EMG signals were recorded. After the two maximal 

exertions were recorded, the participant rested for at least 30 seconds, and was instructed 

to “relax the arm, let it become heavy” for 10 seconds to record resting EMG signals.  

For the second procedure, participants familiarized themselves with the 

movement space by performing 5 to 7 elbow flexion trials to verify that they could move 

comfortably over an appropriate range of elbow joint angles for the upcoming tasks. A 

home target (!"#$%) was placed at 90˚ of elbow flexion relative to full extension (see Fig. 

4.1A); this position was within the range of comfort for all participants.  For most 

participants, a default goal target (!&#'() was located at an elbow joint angle that was 30˚ 

flexed relative to the home position (i.e., at 120° of elbow flexion). Target locations were 

adjusted for individual stroke survivors if they were unable to consistently flex the elbow 

to the default goal target (see Table 4.1 for participant-specific target locations). A return 

target (!)%*+),) was located at an elbow joint angle that was 3˚ flexed relative to the 

home position (i.e., at 93° of elbow flexion); this target was used for cueing secondary 

sequential point-to-point extension movements, as described below. All targets described 

2.4° of rotation about the elbow, or ± 1.2° about each target location.  
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Primary Experimental Tasks:  
 
 

Participants learned and performed six experimental tasks designed to quantify 

coordination of sequential stabilization and movement control actions. Stabilizations 

required participants to attempt to maintain forearm position at a target location against 

small perturbing forces. Movements required participants to either flex or extend the 

elbow in order to move between spatial target locations. The six tasks required 

stabilizations or movements in isolation, or a series of two or more actions in selected 

sequential combinations.  

During the stabilization task, participants viewed a cursor that gave veridical, real 

time feedback of hand position and the desired target while the handle was perturbed by a 

5-second, sum-of-sinusoids torque signal (sum of 2.1- and 3.5-Hz sinusoids; 2 Nm peak 

to peak). Participants were instructed to keep the cursor inside the target (center of 

target ± 1.2°) for the duration of the stabilization period, and were provided the on-screen 

instruction to “STABILIZE!”.  

During the movement task, participants were instructed to perform a point-to-

point elbow movement between pairs of spatial targets as quickly and accurately as 

possible (Figure 1B). In the movement task, participants were cued to move when the 

screen displayed the home target, the goal target, a cursor showing veridical hand 

position, and an instruction to move, such as “FLEX!”. Cursor feedback was eliminated 

once the arm had moved 20% of the distance between the targets to prevent reliance on 

visual feedback during movement. Cursor feedback was reinstated when the arm had 

moved more than 80% of the distance between the home and goal targets. After 

completing a movement trial, participants viewed feedback of peak velocity achieved 
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during the trial and feedback of the location of the hand when velocity first reached zero 

after movement initiation.  

In the remaining four tasks, we required participants to perform sequential 

combinations of the movement and stabilization tasks. We constrained the initial or final 

conditions of a point-to-point elbow flexion movement by requiring participants to 

stabilize the arm against robotic perturbation just prior to, or just after, the movement task 

was completed. In a third combined task (the reversal task), we constrained the final 

conditions of the point-to-point elbow flexion movement by requiring participants to 

perform a point-to-point extension movement immediately after the initial flexion 

movement. In each of the conditions in which stabilization preceded a point-to-point 

flexion movement, the movement was cued approximately 250 ms after the end of 

perturbation. In conditions where stabilization was cued after movement, the stabilization 

period was initiated as soon as the movement completion conditions were met (i.e., the 

participant had moved at least 80% of the required distance and the hand had stopped 

moving). Adding these components to the basic feedforward point-to-point movement 

task allowed us to examine the impact of an explicit feedback task and sequential-task 

planning on the performance of the basic point-to-point elbow flexion task and to 

examine the impact of sequential-task planning on performance of the basic stabilization 

task. In the text that follows, we refer to the six task combinations as: stabilize (S, Fig. 

4.1C), flex (FLX, Fig. 4.1D), flex then stabilize (FLX-S, Fig. 4.1E), stabilize then flex (S-

FLX, Fig. 4.1F), reversal (i.e., flex-extend, REV, Fig. 4.1G), and stabilize then reversal 

(S-REV, Fig. 4.1H). 
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 Participants performed blocks of six trials of each task type to acclimate to the six 

task conditions. After the acclimation period, they performed the tasks in a mixed training 

phase in which they performed eight trials of each of the six task types using randomized, 

paired trials, i.e., two trials of the same task type were presented in succession, and then 

the task type was changed for the next two trials. Trials were paired so that participants 

could immediately use feedback from the first trial of a pair to modify performance on 

the second. Finally, in the performance assessment phase, participants performed blocks 

of 12 trials of each task type. The order of blocks within the performance assessment 

phase was randomized between participants to prevent order effects.  

 
Data Analyses 
 
 

All kinematic measures were calculated relative to qhome. Elbow joint kinematic 

data were low-pass filtered with a zero-lag, 4th order Butterworth filter (4 Hz cutoff 

frequency), then divided by the distance between qhome and qgoal (∆goal) to yield a 

normalized measure of flex target distance across participants (see Table 4.1 for flex 

target distance, !&#'(, in degrees), yielding normalized position values where 0% ∆goal 

describes the center of qhome, 100% ∆goal describes the center of qgoal, and negative values 

would describe extension of the arm beyond qhome. When normalized, target width is ± 

4% ∆goal. Normalizing the position data in this manner allows us to compare performance 

across participants despite some participants having limited range of motion. Velocity and 

acceleration were derived from the normalized position data.  

For stabilization tasks, we examined the mean normalized joint angle (µstabilize) 

and standard deviation of normalized joint angle (sstabilize) for the last 500 ms prior to the 
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end of the mechanical perturbation (see Figure 4.2A and B, dark gray box). For point-to-

point elbow flexion movements, we defined the start of movement, tstart, the time when 

the elbow joint velocity first reached 10% of its peak value (see Fig. 4.2 A and B, bright 

green line). We defined the end of movement, tend, to be the time when two criteria were 

simultaneously met: the elbow-joint velocity dropped below 10% of peak velocity and at 

least 80% of the target distance had been achieved (see Fig 4.2 A and B, red line). 

Execution time (ET) was defined as the time elapsed between the tstart and tend. We also 

identified two position error measures for the movement, the first measure (eprior) was 

taken 150 ms prior to tstart, and the second was position error at tend (eend).  
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Figure 4.2: Normalized kinematic and electromyographic performance for selected trials of NI09 (A) and 
SP114 (B) performing the S-FLX task. In A and B, position, velocity and acceleration data are normalized 
to the distance between qhome and qgoal (% ∆goal). Position: solid black line depicts measured handle 
position. Stabilization portion: vertical blue lines indicate start and end of mechanical perturbation of the 
hand. Gray box depicts 500 ms window in which kinematic stabilization performance was analyzed. Black 
vertical line indicates time of “go” cue for “flex” portion of the trial. Green and red vertical line indicates 
start and end of movement, respectively. Horizontal dashed red line indicates spatial movement completion 
threshold, horizontal black dashed line indicates target. Velocity: Medium gray trace depicts velocity 
derived from measured handle position. Vertical gray line depicts velocity peak used for further analysis 
(see below). Acceleration: Light gray line depicts acceleration. Pink dot indicates acceleration peak 
immediately prior to selected velocity peak. C: EMG recorded from NI09 during S- FLX trial; D: EMG 
recorded from SP114 during S- FLX trial. For both C and D panels, upper trace is the selected flexor, 
lower trace is the selected extensor (inverted). Light gray traces are zero-mean rectified EMG signals, 
black traces are normalized, low-pass filtered EMG signals used for analysis. Blue line indicates EMG 
window for stabilize, green line indicates EMG window ending 150 ms prior to movement start, and 
magenta line indicates EMG window prior to Apk.  

 
It has been noted that SP frequently use a strategy of multiple submovements 

(also called movement units) characterized by a multiphasic velocity profile when 

performing point-to-point movements instead of a single movement characterized by a 

smooth, bell-shaped velocity profile (Krebs 1999, Cirsea and Levin 2000, McCrea and 

Eng 2005, Rohrer et al. 2002, Dipietro et al. 2009, Trombly 1992, Kamper et al. 2002). In 
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order to investigate the relationship between sequential tasks, we modeled submovements 

using the velocity trace and then integrated the modeled velocity profiles to estimate 

expected changes in joint angle due to each submovement. We began with the assumption 

that peaks in the velocity profile are related to the number of submovements. Since these 

inflections can be very subtle, we used an approach similar to that of Fishbach and 

colleagues (2005) that exploits the relationship between velocity and its second 

derivative, jerk, which has a pair of zero crossings associated with each velocity peak, 

however subtle. The number of pairs of zero crossings in the jerk trace was used as a first 

estimate of number of submovements (NSM). We then used a constrained non-linear 

optimization algorithm (fmincon, MATLAB, MathWorks, Natick, MA) to characterize 

the means, amplitudes, and standard deviations of a set of NSM Gaussians in order to 

minimize the sum of squared error between the model (sum of NSM characterized 

Gaussians) and the velocity profile derived from the measured position. Goodness of fit 

was evaluated based on variance accounted for (Eq. 1, Scheidt et al. 2001).  

-./ = 1 − 3')()%567+'(5)

3')(7'*')
,    [Eq. 1] 

The output was visually verified and NSM was manually adjusted and the optimization 

model was run again if the model accounted for less than 95% of variance in the velocity 

trace. Across all trials, the average variance accounted for by the model was 98.8%.  

The first submovement can be assumed to be feedforward because it was executed 

before any knowledge of outcome could be obtained, thus we focused further analyses on 

the first submovement to examine the impact of sequential-task planning on the 

performance of the basic point-to-point elbow flexion task. Specifically, the amplitude of 

the first Gaussian was the peak velocity of the first submovement (vpk, Fig 4.3, top 
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panels). The integral of the first Gaussian was used to reconstruct change in joint angle 

due to the initial submovement (i.e. the distance of the first submovement, DSM1; Fig 4.3, 

top panels), which was combined with the elbow angle at the start of movement to 

calculate the error at the end of the first movement unit (eSM1).  

 

Figure 4.3: Submovement modeling of flexion task, one NI flexion (A), and one SP flexion (B) expanding on 
the transition window from start of movement (vertical green line) to movement end (vertical red line). 
Vertical gray line depicts location of velocity peak of first modeled submovement. Top: lower and upper 
horizontal black dashed line indicate qhome and qgoal, respectively. Dashed horizontal red line indicates 80% 
distance threshold required for task completion. Solid black curve depicts measured handle position, light 
gray dashed curve indicates final position estimated from first modeled submovement (note: this curve 
largely overlaps the measured data in A), solid gray (overlapping black) line indicates complete modeled 
handle position as sum of all integrated, modeled submovement velocity profiles. Bottom panels show 
measured and modeled velocity traces. Solid black is velocity trace derived from measured handle position, 
dashed gray curve is modeled velocity profile for first submovement, solid gray curve is shown for 
subsequent submovements.  

 
Coordination measures 
 
 
 We calculated two measures to examine the influence of sequential-task execution 

on stabilization and movement control actions. To quantify changes in stabilization 

control actions related to upcoming movement, we calculated the change between hold 
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variability during last 500 ms of perturbation (95*':6(6;%) in the simple stabilize task and 

during stabilize tasks which were followed immediately by a point-to-point elbow 

flexion. Specifically, we calculated Δ95*':6(6;% by taking the average of 95*':6(6;% in the 

isolated stabilization task (S) and subtracting from it the average 95*':6(6;% for stabilize 

tasks followed immediately by a point-tο-point elbow flexion movement (S-FLX and S-

REV) as shown in equation 2,  

Δσ5*':6(6;% 	= 	95*':6(6;%
? −	

@ABCDEFEGH
I,KLM N	@ABCDEFEGH

I,OPQ

R
		. [Eq. 2] 

Similarly, to quantify changes in point-to-point movement control actions due to the 

presence of prior limb stabilization, we calculated the difference in number of 

submovements to complete the targeted elbow flexion task. Specifically, we calculated 

DNSM by taking the average NSM in the isolated elbow flexion task (FLX) and subtracting 

from it the average NSM for elbow flexion tasks immediately preceded by stabilizations 

(S-FLX and S-REV) as shown in equation 3,   

ΔN?T 	= 	U?T
VWX −	

YIZ
I,KLMN	YIZ

I,OPQ

R
	 . [Eq. 3] 

 
 
EMG: 
 
 
 Digitized EMG signals were notch-filtered at 60, 120, and 180 Hz ± 10 Hz (zero-

lag, 3rd order Butterworth), zero-meaned, rectified, and low-pass filtered at 20 Hz (zero-

lag, 2nd order Butterworth). EMG signals from MVE trials were processed as above and 

then subjected to a 100 ms moving average filter, after which the maximal value for each 

muscle was determined. Then for each muscle and each trial, the EMG signal was 

normalized to (i.e., divided by) the maximal value obtained from that muscle from MVE 
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testing. We selected a single flexor and extensor by computing signal-to-noise ratio 

(SNR) between the maximal contraction condition and the resting baseline condition 

during pre-trial MVE collection (see Table 4.1). We selected the flexor and extensor 

muscle with the greatest SNR for further analysis. The selected muscle varied across 

participants (cf. McCrea et al. 2003, Kautz and Brown 1998, Canning et al. 2000).  

Secondary measures of coordination of agonist/antagonist muscle activation 

magnitude were calculated using primary flexor and extensor EMG activity from each 

trial. Co-activation (CoA, Fig. 4.2C, D), is a measure the amount of instantaneous EMG 

activity that is equal and opposite in the agonist/antagonist muscle pair, defined in 

equation 4,  

CoA(t) = min(flexor(t), extensor(t)).    [Eq. 4] 

While CoA can be task-appropriate when increased limb impedance is desirable (e.g., 

stabilizing the arm against a perturbation), CoA measured during movement can be taken 

as a measure of the “wasted activation” (cf. Thoroughman and Shadmehr 2000) as the 

muscle activity does not contribute to motion of the limb segment. Difference activation 

(DiffA, Fig. 4.2C, D), quantifies the instantaneous phasic activation in the 

agonist/antagonist pair, defined in equation 5,  

DiffA(t) = flexor(t) – extensor(t).    [Eq. 5] 

Net phasic muscle activation is required to move the limb segment in either flexion 

(positive DiffA) or extension (negative DiffA).  

We used CoA and DiffA to quantify the temporal coordination between antagonist 

muscles spanning the elbow joint. Specifically, we averaged these measures for three, 50 

ms epochs to investigate muscle coordination during stabilization, during a resting period 
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prior to movement, and during the first feedforward flexion movement. The first epoch 

evaluated was the final 50 ms of perturbation in the stabilize tasks (CoAstabilize, Figure 

4.2C, D blue bars). The second epoch began when the arm was at rest 200 ms prior to the 

start of the first submovement (CoAprior, green bar, Figure 4.2 C, D). The final epoch was 

immediately prior to the acceleration peak associated with the first submovement (CoApk 

and DiffApk, magenta bar, Fig. 4.2C, D).  

Statistical Hypothesis Testing  
 
 

The current study had two specific objectives. The first was to quantify the extent 

to which stroke impairs control and coordination of limb position and movement. The 

second objective was to test the hypothesis that deficits of coordination between the 

control of limb position and limb movement correlate significantly with motor 

impairment and deficits of motor function after stroke.  

Due to the broad range of impairment within our small cohort of stroke 

participants, and the ensuing high performance variability, we used a non-parametric 

approach for our primary statistical analyses: first, we applied a rank-transform (RT Type 

1; Conover and Iman 1981) in which each data point for a given variable was ranked 

from smallest to largest across all instances across all participants with the mean rank 

being assigned in the case of ties. Ranks were then standardized by the number of 

instances to limit the distribution to strictly between 0 and 1. Finally, the standardized 

ranks were subjected to an inverse normal transform (Leupsen 2016; Idf.Normal 

function; IBM SPSS Statistics 24). This process is described in equation 6:  

[U\ = ]^_ `6 a + 1 ,     [Eq. 6] 
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where Ri is the rank of a given instance of the dependent variable, n is the number of 

instances, and ]^_ is the inverse normal transformation. These transformations enabled 

us to run parametric statistical tests on the ranked and transformed data (cf., Laczko et al. 

2017). The INT-RT1 approach takes advantage of both between and within block 

information, resulting in a distribution-free test that compares favorably with Fischer’s 

randomization test and the Friedman test in terms of power and robustness (Leupsen 

2016, Conover and Iman 1981). It has also been demonstrated to be acceptable for 

assessing interactions (Conover and Iman 1981). ANOVA was used on the INT-RT1 

variables as described below. Participant was included as a random factor in all ANOVA 

models. Post hoc tests were performed where indicated by ANOVA. Bonferroni t-tests 

were used for main group effects to test each group against all other groups. Dunnett t-

tests used for main trial type effects to test composite conditions against the control 

conditions of FLX or S.   

To address the first objective, we planned to first use INT-RT1 independent 

samples t-tests to examine group differences {NI, SP} in performance variables 

{sstabilize}, and {eprior, eend, NSM, ET, vpk, DSM1, eSM1} from the single-task S and FLX trial 

types, respectively. We next used correlation analysis to quantify the relationship between 

stroke-related motor impairments {FMM, tmax, MAS}, mild cognitive impairments 

{MoCA}, and somatosensory impairments {FMP, FMLT, AMDT}and performance 

measures specific to stabilization control {sstabilize} and flexion movement control {NSM, 

ET, vpk, DSM1} in SP. Upon finding extensive correlation between somatosensory 

impairment measures in SP and all of the selected position and movement control action 
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measures tested (see Results), we split the SP group into SP+ (intact proprioception, FMP 

score of 6/6) and SP- (impaired proprioception, FMP score <6).  

We then continued with planned INT-RT1 ANOVA to quantify the extent to which 

somatosensory deficits after stroke affect coordination of sequential position and 

movement control actions. Specifically, our first ANOVA model tested for main effects of 

group {NI, SP+, SP-} and trial type {S, S- FLX, S-REV} on one stabilization 

performance variable {sstabilize}. A second ANOVA model tested for main effects of 

participant group {NI, SP+, SP-} and trial type {FLX, REV, FLX -S, S- FLX, S-REV} on 

each of four performance variables related to targeted elbow flexion: {NSM, ET, vpk, 

DSM1}. We were specifically interested in the extent to which impairments in 

proprioception might explain deficits observed in coordination of elbow stabilization and 

targeted elbow flexion.  

We next planned to use INT-RT1 ANOVA to quantify the relationship between 

neuromuscular coordination and performance during the stabilization and targeted elbow 

flexion tasks by analyzing measures of flexor/extensor coordination (CoA and DiffA) 

during stabilization, during a rest period prior to movement, and during elbow flexion. 

Specifically, we tested for main and interaction effects of group {NI, SP+, SP-} and trial 

type {S, S-FLX, S-REV} on one stabilization performance variable {CoAstabilize}. We 

then planned to use INT-RT1 ANOVA to examine main and interaction effects of 

participant group {NI, SP+, SP-} and trial type {FLX, REV, FLX-S, S-FLX, S-REV} on 

each of three performance variables related to flexion of the arm: {CoAprior, CoApk, 

DiffApk}. We were particularly interested in the extent to which measured varied across 
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participant group and trial type, and the extent to which they might explain results 

observed in kinematic performance variables.  

To address our final objective, we used forward regression analysis to test the 

hypothesis that deficits in control of limb position and limb movement correlate 

significantly with motor impairment and deficits of motor function after stroke. This 

analysis was restricted to SP data only as NI participants are, by definition, normative. 

We began by calculating the correlations of all of the outcome measures from the FLX 

and S conditions of the experiment {sstabilize, ET, NSM, vpk, DSM1} and the clinical 

measures described above {tmax, MAS, MoCA, FMP, FMLT, AMDT}. We then performed 

a forward regression using a subset of these variables to prevent overburdening the model 

with correlated measures, which would decrease detection power of the model (Cohen 

and Cohen 1983). Specifically, we used {tmax, MAS, MoCA, FMP, FMLT, AMDT vpk, and 

sstabilize} to evaluate the extent to which stroke-related deficits of coordination between 

the control of limb position and movement account for variance in impairment, as 

quantified by FMM, and deficits of motor function, as quantified by CAHAI.  

 All statistical testing was performed in the SPSS computing environment (SPSS 

ver. 24, IBM Corp). Effects were considered significant using a familywise error rate of a 

= 0.05. Values reported are (Mean ± SD).  

RESULTS 
 
 

This study had two specific objectives: The first was to quantify stroke-related 

changes in control and coordination of limb position stabilization and limb movement. 

The second objective was to test the hypothesis that deficits of coordination between the 
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control of limb position stabilization and limb movement correlate significantly with 

motor impairment and deficits of motor function after stroke. We tested participants’ 

ability to execute and coordinate two types of control actions: point-to-point elbow 

movements and stabilizing the elbow against a perturbation. These two control actions 

were combined to create six task types each consisting of between one and three control 

actions designed to test how participants coordinate sequential position stabilization and 

movement control actions in the upper extremity.  

All participants were attentive and followed task instructions during the 

experimental sessions. Although performance varied considerably within the SP group, 

all participants were able to successfully perform all six task conditions. A trial was 

considered “good” if the participant complied with specific task instructions (i.e., flexed, 

stabilized, or extended the elbow when cued) and was able to complete the series of 

stabilization and movement actions required within the time window of 17 seconds after 

trial start. For these reasons, we excluded 4.4% of trials across all SP and 2.4% of trials 

across all NI. Compared with NI performance, SP had greater variability during 

stabilization, took longer to complete the flexion task, and were more likely to make 

multiple submovements with slower peak velocity (Fig. 4.4).  
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Figure 4.4: Kinematics for Stabilize and Flex in one NI (09) and one SP (114). In all panels, gray traces 
are individual trial data and black traces are averaged across trials. In each panel, the top plot is position 
(!), in C and D, the lower plot is velocity (!). All values are normalized to %∆goal. In A and B, thick 
vertical line is 10% (position). In C and D, thick vertical line represents 20% (position), 200%/sec 
(velocity). Gray horizontal bar represents goal target for stabilization or flex with the specific target shown 
as a black horizontal dashed line in the center. The horizontal red dashed line shows the 80% to target 
value. The black dashed line (without shaded bar) shows 0%. A: Shows stabilization (S) trials for NI09. B: 
Shows stabilization (S) trials for SP114. C: Shows flex (FLX) trials for NI09. D. Shows flex (FLX) trials for 
SP114.  

 
Impact of stroke on stabilization and movement control in isolation 
 
 
 Consistent with our first objective, we wished to quantify the extent to which 

stroke-dependent deficits of neuromuscular coordination degrade ability to stabilize and 

move the arm about the elbow. We therefore compared performance in the S and FLX 

tasks across SP and NI using INT-RT1 independent samples t-tests on each of the 

kinematic performance variables: {sstabilize, eprior, ET, NSM, vpk, DSM1, eSM1, and eend}. In 
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the stabilization task, we found that compared with NI, SP had greater variability in joint 

angle when stabilizing the elbow against perturbation (sstabilize; SP: 5.85 ± 3.50 %goal; NI: 

1.89 ± 0.36 %goal; t(19) = -3.534, p = 0.002; Fig. 4.5 A). During the point-to-point 

movement FLX task, compared with NI, SP demonstrated static flexion bias prior to 

movement (eprior; SP: 16.88 ± 9.11 %goal; NI: 0.28 ± 1.19 %goal; t(19) = -4.906, p < 

0.0005; Fig. 4.5B). Additionally, SP required more time to complete the flexion task than 

did NI (ET; SP: 1295 ± 705 ms; NI: 426 ± 156 ms; t(19) = -4.913, p < 0.0005; Fig. 4.5C). 

SP also made more submovements during the targeted elbow flexion task than did NI 

(NSM; SP: 2.52 ± 1.46 SM; NI: 1.12 ± 0.18 SM; t(19) = -3.586, p = 0.002; Fig. 4.5D). 

Consistent with longer execution times and greater number of submovements, SP also 

had lower peak velocity during the first submovement than did NI (vpk; SP: 166 ± 87 

%goal/sec; NI: 465 ± 135 %goal/sec; t(19) = 6.106, p <0.0005; Fig. 4.5E). Unsurprisingly, 

the slower first submovement made by SP also covered less distance than the first 

submovement made by NI (DSM1; SP: 53.87 ± 29.23 %goal; NI: 98.61 ± 7.29 %goal; t(19) 

=4.402 , p < 0.0005; Fig. 4.5F). SP also had correspondingly greater undershoot error at 

the end of the first submovement compared with NI (eSM1; SP: -28.78 ± 26.21 %goal; NI: -

2.68 ± 5.47 %goal; t(19) = 2.560, p = 0.019; Fig. 4.5G). Despite the differences prior to 

and during movement, we observed no difference in error at the end of the flexion task 

between SP and NI (eend; SP: 3.94 ± 9.70 %goal; NI: -0.53 ± 4.35 %goal; t(19) = -1.090, p = 

0.289; Fig. 4.5H). These results indicate that while participants from both groups were 

ultimately able to successfully complete the flexion and stabilization tasks, there were 

marked differences in how the task was completed between groups, as well as high 

variability within the SP group.  
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Figure 4.5: Kinematic performance of NI and SP during S and FLX tasks. White bars indicate NI, gray 
bars indicate SP. Error bars denote ± 1 S.E.M. A: standard deviation of position during stabilize in % goal 
(sstabilize); B: Error during rest prior to movement in %goal (eprior); C: Execution time for flexion task in ms 
(ET); D: Number of submovements required to complete flexion task (NSM); E: Peak velocity of first 
submovement in % goal/sec (vpk); F: Error at end of first submovement in % goal (eSM1); G: Error at end of 
flexion task in % goal (eend).  
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Relationship of specific, stroke related deficits on stabilization and movement control 
 
 
 Given the high levels of variability observed in how SP completed the S and FLX 

tasks, we next sought to quantify the extent to which specific stroke-related motor, 

cognitive, and sensory impairments impacted performance measures of stabilization and 

movement. Specifically, we used correlation analysis to quantify the relationship between 

measures of motor impairment {FMM, tmax, MAS}, mild cognitive impairment {MoCA}, 

and somatosensory impairment {FMP, FMLT, AMDT} and the experimental outcome 

measures of position {sstabilize} and movement {ET, NSM, vpk, and DSM1} control actions. 

For the stabilization measure, values were included from {S, S-FLX, and S-REV}; values 

from FLX-S were excluded as the stabilization in this condition was performed at a 

different handle location, which could impact performance (Levin 2000). For the 

movement measures, values were included from all conditions with a flexion component: 

{FLX, REV, S-FLX, S-REV, and FLX-S}. Results are reported in Table 4.2.  
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Table 4.2: Correlations between impairment measures and outcome measures.  

 
CAHAI FMM tmax MAS MoCA FMP FMLT AMDT sstabil ET NSM vpk DSM1 

 CAHAI 1             

 FMM .812*** 1            

 tmax .681*** .618*** 1           

 MAS -.234 -.568*** -.158 1          

 MoCA .235 -.138 .376** .111 1         

 FMP .455*** .053 .273* .204 .556*** 1        

 FMLT .473*** .091 .471*** .041 .559*** .791*** 1       

 AMDT -.468*** -.066 -.398** -.093 -.874*** -.667*** -.550*** 1      

 sstabilize -.414* -.106 -.216 -.136 -.575** -.567** -.303 .597*** 1     

 ET .103 .052 .212 .028 .099 .440** .621*** -.150 .296 1    

 NSM .121 .015 .200 .024 .132 .498*** .682*** -.215 .209 .971*** 1   

 vpk -.097 -.016 -.291* -.010 -.085 -.336* -.693*** -.037 -.247 -.743*** -.739*** 1  

 DSM1 -.260 -.023 -.441** -.097 -.222 -.489*** -.809*** .240 -.167 -.722*** -.780*** .874*** 1 
Correlation significance: * (0.05 level); ** (0.01 level); *** (0.001 level).CAHAI, 13-item Chedoke Arm 
and Hand Activities Inventory;  FMM, motor portion of upper extremity Fugl-Meyer Assessment (FMA); 
tmax, average maximal elbow torque  MAS,  Modified Ashworth Scale of muscle tone; MoCA, Montreal 
Cognitive Assessment; FMP, proprioception portion of FMA; FMLT, light-touch portion of FMA; AMDT, 
arm movement detection test; sstabil, standard deviation of arm position during stabilization; ET, execution 
time of flexion movement; NSM, number of submovements to complete flexion movement; vpk, peak velocity 
of first submovement; DSM1, distance of first submovement.  
 
 
 Maximal torque production at the elbow was the only motor impairment measure 

that that correlated significantly with any of the motor outcome measures, specifically vpk 

(r = -0.291, p = 0.040) and DSM1 (r = -0.441, p = 0.001). Mild cognitive impairment was 

found to correlate significantly with sstabilize (r = -0.575, p = 0.001). Every outcome 

measure of position and movement control actions was correlated with multiple measures 

of somatosensory impairment: FMP was significantly correlated with all stabilization and 

movement measures tested {sstabilize, ET, NSM, vpk, and DSM1}, |r| ≥ 0.336, p ≤ 0.017 in all 

cases. FMLT was significantly correlated with all movement measures tested (ET, NSM, 
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vpk, and DSM1), |r| ≥ 0.621, p < 0.0005 in all cases. AMDT was significantly correlated 

with the tested measure of stabilization control, sstabilize, r = 0.597, p < 0.0005.  

 Given the strong relationship between measures of somatosensory impairment 

and all of the positional and movement control action measures, we used FMP to split the 

SP group into those with “intact” (SP+, participants scoring 6/6 on FMP) and “impaired” 

proprioception (SP-, participants scoring ≤ 5 on FMP). We chose FMP rather than FMLT or 

AMDT as it correlated with all of the control action performance measures.  

Impact of stroke-related deficits on coordination of sequential tasks 
 
 
 To further investigate our first objective, we wished to quantify the extent to 

which stroke-related impairments impacted coordination of positional stabilization 

control actions and movement control actions in sequential tasks consisting of elbow 

stabilizations and movements (i.e., targeted elbow flexions). We began by using INT-RT1 

ANOVA to examine the main and interaction effects of participant group {NI, SP+, SP-} 

and task type {S, S-FLX, S-REV} on sstabilize, a measure of positional stabilization 

control. We found a main effect of group [F(2,18) = 13.343, p < 0.0005], and of task type 

[F(2,36) = 22.254, p < 0.0005]. Among the groups, NI had less variability during 

stabilization than either SP group (p < 0.0005 in both cases, Fig. 4.6) and SP+ had less 

variability during stabilization than did SP- (p < 0.0005). Among trial types, there was 

greater variability in stabilization prior to point-to-point flexion (S_FLX, S_REV) than 

there was during stabilization alone (1-sided Dunnett with the S condition as control: p < 

0.0005 in both cases). Taken together, these results indicate that impairments of 

proprioception degrade ability to stabilize the limb. Also, participants in all groups were 
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less able to stabilize the arm when planning an upcoming movement vs. when they had 

no immediate tasks to perform.  

 

 

Figure 4.6: Impact of planned movement on stabilization. White bars represent NI, light gray bars 
represent SP+, dark gray bars indicate SP-.  Error bars indicate± 1 S.E.M.  

 
 
 We next used INT-RT1 ANOVA to test for main and interaction effects of 

participant group {NI, SP+, SP-} and task type {FLX, S-FLX, S-REV, FLX-S, REV} on 

the performance measures sensitive to movement control (i.e., ET, NSM, vpk, and DSM1). 

We observed a significant main effect of participant group in ET [F(2,18) = 14.150, p < 

0.0005 in all cases, Fig. 4.7A], with NI completing the flexion movement in less time 

than the SP-, who required less time than the SP+. For NSM, we observed significant main 

effects of participant group [F(2,18) = 15.372, p < 0.0005 across all groups, Fig. 4.7B], as 

well as a significant main effect of trial type [F(4,72) = 3.775, p = 0.008] with the number 
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of submovements used to complete the flexion task greater in S-FLX compared to FLX 

(p = 0.013, 1-sided Dunnett). We observed a significant main effect of participant group 

on vpk [F(2,18) = 16.495, p < 0.0005 in all cases, Fig. 4.7C]. We also observed a main effect 

of participant group on the DSM1 [F(2,18) = 14.328, p < 0.0005 in all cases, Fig. 4.7D]. 

Taken together, these results indicate that while performances in all SP were degraded 

compared to NI, the survivors of stroke with intact proprioception group showed greater 

impairment in executing movement control actions than did the survivors of stroke with 

impaired proprioception.  
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Figure 4.7: Coordination of sequential stabilize-movement actions on elbow flexion. White bars indicate 
NI, light gray bars indicate SP+, dark gray bars indicate SP-. Error bars indicate ± 1 S.E.M. A: Execution 
time (ET; ms); B. Number of submovements required to complete flexion task (NSM); C: Peak velocity of 
submovement (vpk; % goal/sec); D: Distance of first submovement (ΔSM1; % goal).  

 
Given that some participants in the SP group had shortened targets (qgoal) 

compared to the standard 30º elbow flexion (see Table 4.1), we were concerned that the 

normalized speed and distance could be artificially inflated in these SP compared to those 

participants using the standard qgoal. We checked our analyses of peak velocity and 

distance of first movement unit using raw values (º elbow flexion) to confirm that these 
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with those of the normalized values for both vpk and DSM1 [F(2,18) ≥ 21.395, p < 0.0005 in 

all cases]. Similar analyses were not run for ET and NSM as both values are non-

normalized. While both ET and NSM could conceivably be decreased due to the shorter 

movement distance, we do not have empirical data to test this hypothesis.  

Coordination of multiple control actions 
 
 
 To quantify the influence of executing sequential control actions on position and 

movement control, we used Kruskal-Wallis non-parametric testing of coordination 

measures {Dsstabilize, DNSM} across each permutation of groups {NI, SP+, SP-}. Recall 

that Dsstabilize is the difference between the average stabilization performances in the S 

condition vs. the two tasks with subsequent movement (i.e., S-FLX and S-REV), and 

DNSM is the difference in the average number of submovements in the FLX task with the 

average number of submovements in the two tasks with preceding stabilizations (i.e., S-

RCH and S-REV).  We selected Kruskal-Wallis testing instead of INT-RT1 ANOVA for 

these analyses because the coordination measures were calculated from kinematic trial 

data averaged across each participant instead of from ranks of every trial performed by 

every participant. For Dsstabilize, we observed a significant effect of group between NI and 

both SP groups (H2 ≥ 5.343, p ≤ 0.021), but not between SP groups (H2 = 1.1316, p = 

0.286; mean ranks: NI: 6.91, SP+: 14, SP-: 17.75). For DNSM, we did not observe 

significant differences across groups (H2 ≤ 2.063, p ≥ 0.151; mean ranks: NI: 8.82, SP+: 

13.83, SP-: 12.75). While the trends observed in Fig. 4.8 are qualitatively similar to the 

prior observation that intact proprioception after stroke allows better performance during 
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stabilization and worse performance during movement, the results did not reach statistical 

significance with this cohort of SP.  

 

Figure 4.8: Coordination of sequential position-movement control actions. A: Change in position 
variability between stabilization (S) and stabilize/move tasks (S-FLX, S-REV). B: Change in number of 
submovements used to complete movement task between flexion task (FLX) and flexion tasks preceded by 
stabilization (S-FLX, S-REV).  

 
Agonist/antagonist muscle coordination at the elbow during sequential stabilization and 
flexion tasks 
 
 
 We wished first to confirm that all participants were able to modulate their muscle 

activity above the resting level measured during “relax” portions of the MVE calibration 

procedures (RLX). Thus, we used INT-RT1 ANOVA to examine the main and interaction 

effects of participant group {NI, SP+, SP-} and task type {RLX, S, S-FLX, S-REV} on 

the amount of CoA present during RLX and {CoAstabilize}. We observed a main effect of 

trial type (F(4,68) = 25.571, p < 0.0005) with greater levels of CoA during stabilization 

than relaxation (p < 0.0005 in all cases, 1-sided Dunnett; Fig. 4.9A). This main effect was 

driven entirely by differences between relaxation and active stabilization in the NI group, 

as evidenced by a significant group by type interaction (F(8,68) = 5.806, p < 0.0005). In 

the NI group, all stabilization conditions {S, S-FLX, S-REV} were significantly different 

%
 g

oa
l

0

8
∆σstabilize

N

1.4
∆NSM

0

NI

SP+

SP-



 

 

150 

from RLX (p < 0.0005 in all cases, 1-sided Dunnett). In both the SP+ and SP- groups, 

however, there were no significant differences between any of the active stabilization 

conditions and the relax condition (p > 0.217 in all cases, 1-sided Dunnett). Thus, while 

NI had significantly less CoA when relaxing than when actively stabilizing the arm 

against a perturbation, SP – regardless of proprioceptive status – had elevated CoA when 

relaxing to the extent that it was not significantly different from CoA measured when 

actively stabilizing the arm.  

 

Figure 4.9: Coordination of selected elbow flexor and extensor during stabilization, rest before flexion, and 
flexion. White bars indicate NI, light gray bars indicate SP+; dark gray bars indicate SP-. Error bars 
indicate ± 1 S.E.M. A: Co-Activation during pre-trial relax and stabilization against perturbation; B: Co-
Activation during rest prior to flexion; C: Co-Activation during flexion; D: Difference activation during 
flexion.  
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 We next wished to quantify the extent to which prior perturbation impacted the 

amount of CoA observed prior to point-to-point movement and the impact of stroke on 

this measure. Thus, we used INT-RT1 ANOVA to examine main and interaction effects of 

participant group {NI, SP+, SP-} and task type {FLX, S-FLX, S-REV, FLX-S, REV} on 

the amount of CoA observed when the hand was at rest prior to movement {CoAprior}. We 

observed a main effect of participant group [F(2,17) = 7.345, p = 0.005; Fig. 4.8B] and of 

task type [F(4,68) = 19.792, p < 0.0005], and an interaction effect between group and task 

type [F(8,68) = 7.467, p < 0.0005].  

We next completed follow-on 1-sided Dunnett t-tests to examine the hypothesis 

that CoAprior would be elevated after stabilization compared to after rest. Specifically, we 

compared CoAprior in {S-FLX, S-REV, FLX-S, REV} to that observed in point-to-point 

flexion {FLX} in individual groups {NI, SP+, SP-}. Results of this comparison indicate 

that the observed main effect of task type is due to differences in the NI group. In the NI 

group, participants had lower levels of CoA prior to flexion tasks preceded by rest 

compared to flexion tasks preceded by active stabilization (NI: COA elevated after 

stabilization compared to FLX: p < 0.0005 in both cases, 1-sided Dunnett; CoA same 

after pre-flex relax across FLX, FLX-S, REV, p ≥ 0.978 in both cases). SP of both groups, 

however, had consistent levels of CoAprior in all task types, regardless of whether they 

were stabilizing against a perturbation or relaxing prior to the flexion task (p ≥ 0.091 in 

all cases, 1-sided Dunnett). This indicates that while NI participants were able to reduce 

activation in both the selected elbow flexor and extensor when stabilization was not 

required of them, SP continued to maintain elevated elbow flexor and extensor activation 

regardless of prior perturbation or relaxation.  
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 We next sought to determine the extent to which participants could coordinate the 

amount of flexor and extensor muscle activity during flexion. Thus, we used INT-RT1 

ANOVA to examine main and interaction effects of participant group {NI, SP+, SP-} and 

task type {FLX, S-FLX, S-REV, FLX-S, REV} on a measure of CoA {CoAApk} and 

phasic muscle activation {DiffAApk}. We observed no main effect of participant group 

[F(2,17) = 0.015, p = 0.986, Fig. 4.8C] or task type [F(4,68) = 1.743, p = 0.151] on CoAApk, 

nor did we observe an interaction effect [F(8,68) = 0.884, p = 0.534]. For DiffAApk, we 

observed no main effect of group [F(2,17) = 2.335, p = 0.127], consistent with all groups 

being able to modulate phasic muscle activity to complete a volitional flexion task. We 

also did not observe a significant interaction effect of participant group and task type 

[F(8,68) = 1.377, p = 0.222]. We did observe a significant main effect of task type [F(4,88) = 

7.763, p < 0.0005; Fig. 4.8D] on DiffAApk. Specifically, presence of a prior stabilization 

was found to increase the amount of DiffAApk (FLX ≠ S_FLX, S_REV; p ≤ 0.001; p ≥ 

0.845 in all remaining cases), indicating that presence of prior stabilization was 

associated with increased phasic muscle activity compared to movements made without 

prior stabilization. This is consistent with using more phasic muscle activation to 

compensate for increased arm impedance due to stabilization-related CoA.  

Relating task performance to clinical function 
 
 
 We used separate forward linear regression analyses to test the hypothesis that 

deficits of coordination between the control of limb position and limb movement 

correlate significantly with motor impairment and deficits of motor function after stroke 

as quantified by CAHAI and FMM scores. For both analyses (function and impairment) 

we used the results of the preceding correlation (Table 4.2) to identify which performance 
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variables to include as potential contributors to function and impairment. These included 

sstabilize from the S condition to account for stabilization control and vpk from the FLX 

condition to account for movement control. We justify the choice of a single measure for 

movement control because ET, NSM, DNSM, and vpk are all highly correlated with one 

another (r ≥ 0.722, p < 0.0005, n = 50 in all cases). We also included as potential model 

variables measures of strength (tmax), spasticity (MAS), mild cognitive impairment 

(MoCA), and sensation (AMDT). The only significant relationship observed was tmax and 

CAHAI [standardized b = 0.681, t = 2.633, p = 0.03]. Likely due to the small and 

variable group, none of the measures were found to be significantly correlated to FMM. 

The only variable approaching statistical significance in the FMM regression model was 

weakness (tmax; standardized b = 0.618, t = 2.223, p = 0.057).  

DISCUSSION 
 
 

Addressing our first experimental objective to quantify the extent to which stroke 

impairs control and coordination of limb position and movement, survivors of stroke 

showed impaired ability to stabilize the more-impacted arm against mechanical 

perturbation of the elbow joint, and made slow, segmented movements compared with 

neurologically intact controls in a series of tasks consisting of combinations of targeted 

elbow flexion movements and stabilization of the elbow against a moderate mechanical 

perturbation. The extent of these deficits was impacted by the presence of proprioceptive 

impairment: Within the group of stroke survivors, those with intact proprioception were 

better able to stabilize the arm against a perturbation, but moved more slowly and 

required more submovements to complete targeted elbow flexions; those with impaired 
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proprioception had greater variability when attempting to stabilize the elbow, but moved 

more quickly and required fewer submovements to complete targeted elbow flexions. In 

compound tasks requiring sequential combinations of elbow movement and stabilization, 

we observed that participants in all groups had greater variability during stabilization 

tasks immediately prior to a targeted movement (compared with stabilization alone; 

participants were reminded of the upcoming task prior to the start of each trial), though 

survivors of stroke had a significantly greater increase in variability than did 

neurologically intact controls suggesting greater co-articulation of control actions after 

stroke. We did not observe a similar co-articulation effect on the number of 

submovements in targeted flexion tasks (i.e., the number of submovements to complete a 

targeted movement after stabilization was not significantly different from the number of 

submovements required to complete the task in isolation). It is not clear from this 

experiment if this observation is related to the nature of control (i.e., stabilization vs. 

movement) or the order of execution (anticipation of the next action or carryover from 

the prior action). Additionally, we observed that survivors of stroke never fully relaxed 

the muscles of the arm, while neurologically intact controls relaxed the muscles between 

trials and showed different levels of background activity based on very recent history 

(i.e., greater CoA immediately after stabilization, less CoA after resting), survivors of 

stroke showed consistent levels of CoA regardless of their immediate history.  

Analyses addressing our second experimental objective found that within our 

cohort of stoke survivors, only a measure of elbow joint weakness contributed 

significantly to scores on the Chedoke Arm and Hand Activities Inventory. While 

weakness was the most important factor in accounting for variability in Fugl-Meyer 
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scores of motor impairment in the more-impacted arm, it did not achieve statistical 

significance. These results confirm and extend prior findings that arm positional 

stabilization control actions and movement control actions can be differentially impacted 

by stroke (Scheidt and Stoeckmann 2007); whereas deficits of arm proprioception 

compromise stabilization of the arm, the presence of clinically-intact proprioception may 

actually interfere with control of movement after stroke.  

Non-task-relevant residual muscle elevation observed in SP may contribute to slowness 
of movement 
 
 
 Whereas neurologically intact controls reduced CoA when resting before 

movements without prior stabilization, survivors of stroke maintained the same elevated 

CoA prior to flexion for all trial types. In addition, both stroke survivor groups 

demonstrated a flexion bias in resting arm position prior to movement without visual 

feedback of hand position (FLX, REV, FLX_S conditions, Fig. 4.9B). Together, these 

behaviors can be explained by the SP groups’ flexors retaining residual activity and the 

extensors activating to balance the flexors to keep the arm still. This is consistent with 

our prior findings with the same group of stroke survivors performing an isometric torque 

tracking task at the elbow. Specifically, while SP were able to modulate difference 

activity to create isometric flexion and extension torques, when SP attempted to perform 

an extension torque from rest, activation in the flexors increased requiring even greater 

levels of activation in the extensors to complete the task (see Chapter 3).  

Similar deficits in selectively activating individual muscles was observed by 

Kamper and Rymer (2001) who examined isometric torque production, isokinetic 

extension, and unloaded extension of the metacarpophalangeal (MCP) joints of the more-
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impacted limb. Kamper and Rymer observed impairments in selective activation of the 

extensors and inappropriate coupling of flexors and extensors. A later experiment by 

Kamper and colleagues (2003) in which survivors of stroke performed voluntary and 

mechanically imposed extension at the more-impacted MCP joints both before and after a 

nerve block was administered to the more-impacted finger flexors led to the observation 

that over the course of successive voluntary extension movements of the MCP joint, 

flexor activity increased with successive trials. In addition, flexor activity was observed 

to continue after voluntarily extending at the MCP joint, leading to production of a 

constant, steady-state torque after movement termination. Canning and colleagues asked 

survivors of stroke to perform an elbow flexion/extension tracking task with the arm 

supported against gravity to measure elbow flexor/extensor coordination while 

minimizing force requirements for successful task performance (2000). They found that 

excessive muscle activation and the inability to appropriately coordinate flexors and 

extensors were the critical factors in separating those who performed well and those who 

performed poorly on this tracking task (Canning et al. 2000).   

Force exerted due to even low levels of residual activation in the elbow extensors 

would act as a brake on the elbow flexion movement. Increased activation of the elbow 

flexors would be required to overcome these opposing forces. All participants were able 

to modulate phasic muscle activity (DiffA) during the movement, which is necessary for 

movement (Fig. 4.9D). Furthermore, all groups increased the amount of positive DiffA 

(i.e., increased flexor activity relative to amount of concurrent extensor activity) in 

flexion movements occurring after stabilization compared with the flexion task alone. 

The increase in DiffA after limb stabilization is likely compensatory behavior due to 
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increased limb impedance (i.e., increased resistance due to extensor forces) from CoA 

(Scheidt et al., 2011).  

Increased CoA of elbow flexors and extensors could lead to slowness of 

movement. In order to produce elbow flexion, the forces exerted by the shortening elbow 

flexors must exceed the forces exerted by the lengthening elbow extensors. The length-

tension and joint angle-torque production characteristics of muscle do not favor the elbow 

flexors in this scenario: the maximal possible force the shortening flexors can create 

decreases as the arm flexes and the muscle shortens, while the maximal possible force of 

the lengthening extensors simultaneously increases (cf. Gray et al. 2012). Additionally, 

the force-velocity characteristics of muscle require slow movement when attempting to 

overcome large forces. When shortening, the force production capacity of muscle 

decreases as velocity of the movement increases; when muscle is lengthening, the force 

production capacity increases as the velocity increases (Lieber 2002). If the elbow 

extensor is tonically active, it can generally create greater and greater forces as it is 

stretched, while the elbow flexors produce lesser and lesser forces as they are shortened. 

Slowing the velocity of the elbow flexion would be a viable strategy to increase the force 

production capacity of the elbow flexors while reducing the force production capacity of 

the elbow extensors.  

 
Role of proprioception in control of movement and stabilization  
 
 
 As previously described, movement and stabilization of the arm are guided by 

distinct control actions (Humphrey and Reed 1983, Sainburg et al. 1999, Scheidt and 

Ghez 2007). Sainburg and colleagues propose a three-stage control system in which 
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simple movements of the arm consist of these control actions implemented in an 

overlapping sequence (Sainburg et al. 1999). In this paradigm, movement is initiated by a 

feedforward, anticipatory control action. During movement, an online controller is 

responsible for error correction. Finally, a positional control action is responsible for 

terminating movement and stabilizing the limb (Sainburg et al. 1999).  

Later studies of trajectory and positional control actions indicate that these two 

control actions are controlled by distinct neural circuits. Scheidt and Ghez (2007) 

designed experiments to isolate anticipatory and positional control actions by requesting 

participants move quickly enough that online error correction would not ocurr in a given 

movement. They further isolated movement control actions by creating “slicing” tasks of 

two sequential, targeted point-to-point movements in which the participant reached for 

the target and immediately reversed direction after transiently acquiring the target. Using 

this methodology, they gave participants rotated visual feedback of the final hand 

position in reaching (anticipatory/positional) or the reversal point in slicing 

(anticipatory/anticipatory/positional) tasks. Learned visuomotor rotation of the first 

movement target did not generalize between the two tasks, suggesting that positional 

control actions and movement control actions are controlled by different mechanisms 

(Scheidt and Ghez, 2007). A further study by Ghez and colleagues (2007) supported this 

finding and established that final hand position in the reach task was calculated in a head- 

or shoulder-centered coordinate frame, while the movement task was calculated in a 

hand-centered coordinate frame. Together, this evidence supports the existence of distinct 

neural control of movement and stabilizing the limb.  
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Impact of proprioceptive impairment on stabilization 
 
 

The results of this study demonstrate differentially impacted movement and 

positional control after stroke, and find that proprioceptive impairments largely explain 

these impacts. Across several multi-joint, point-to-point reaching experiments of right-

handed, neurologically-intact participants, Sainburg and colleagues have developed a 

theory that lateral differences in the brain have optimized the dominant (right hand) and 

non-dominant (left hand) upper extremity for executing dynamic and positional control 

actions, respectively (Sainburg 2002; Bagesteiro and Sainburg 2002, 2003; Sainburg and 

Schaefer 2004), though there is no proposed mechanism for this difference. In this 

framework, the left hemisphere of the brain (and right hand) is better at controlling 

movement, while the right hemisphere (and left hand) is better at controlling position.  

Schaefer and colleagues tested properties of movement and stabilization in the 

less-impacted arm to test the hypothesis of laterality in these control mechanisms. 

Survivors of stroke performed multi-joint, point-to-point reaching experiments using the 

less-impacted arm. These studies found that stroke differentially impairs visuomotor 

adaptation of these control actions (Schaefer et al. 2009) and online error corrections in 

point-to-point reaching tasks (Schaefer et al. 2011). The observed impairments depended 

on which hemisphere was predominantly affected by stroke: Those with injury to the 

right hemisphere (which controls the left arm and hand) showed impairments in control 

of position, while those with injury to the left hemisphere (which controls the right arm 

and hand) showed impairments in control of movement regardless of whether the right or 

left hand was tested. These results are consistent with the dominant/non-dominant brain 
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laterality (as tested in exclusively right-handed populations) as well as differential impact 

of stroke on position /movement control actions.  

Mani and colleagues (2013) tested the laterality hypothesis in the more-impacted 

arm of stroke survivors. In another multi-joint, point-to-point reaching experiment, a 

similar result was found. Damage to the left hemisphere was associated with degradation 

of movement control, and damage to the right hemisphere was associated with 

degradation of movement termination (Mani et al. 2013).  

Results of the current study suggest that the differences observed in impairments 

of movement and stabilization after stroke can also be related to proprioception in 

addition to laterality. Reported lesion side, consistent with clinical presentation of motor 

symptoms, was evenly split within both proprioception groups (SP+: 3 right-, 3 left-

hemisphere stroke; SP-: 2 right-, 2 left-hemisphere stroke, Table 4.1). A larger sample 

would be required to confirm this supposition.  

We cannot evaluate potential effects of proprioceptive deficits in Schaefer and 

colleagues’ (2009, 2011) or Mani and colleagues’ (2013) work, as no measure of 

proprioceptive impairment was reported in the studies. However, Kenzie and colleagues 

(2016) reported that out of 142 sub-acute ischemic stroke survivors, 76% of those with 

right-hemisphere lesions showed deficits in proprioception, while only 37% of those with 

left-hemisphere lesions showed similar deficits. If right-hemisphere lesions are more 

likely to cause proprioceptive deficits, and the right hemisphere is associated with 

position control (Sainburg 2002; Bagesteiro and Sainburg 2002, 2003; Sainburg and 

Schaefer 2004), the observed deficits in position control after right-hemisphere damage 

(Schaefer et al. 2009, Schaefer et al. 2011, Mani et al. 2013) are consistent with our 
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present observation that stroke-related deficits in proprioception are related to degraded 

control of limb position when stabilizing against a perturbation. Stroke-related deficits in 

position control at the end of reaching movements were also found in survivors of stroke 

with impaired proprioception (Scheidt and Stoeckmann 2007). Thus, impairment of 

proprioception likely contributes to degraded control of limb position after stroke.  

 
Impact of proprioceptive impairment on movement  
 
 

In an intact sensorimotor system, short movements can be made with a single 

submovement while long-duration movements are generally composed of a series of 

proprioception-driven corrective submovements. Submovements are generally 

characterized by multiphasic peaks in a velocity trace rather than a single, bell-shaped 

curve (Fishbach et al. 2006, Cirstea and Levin 2000, etc.). These phasic peaks are the 

result of feedback control interrupting an ongoing movement (Keller et al. 1996, Xu-

Wilson et al. 2011) in order to correct for position errors (Vince 1948, Schaefer et al. 

2009). The fact that targeted point-to-point reaching movements are computed in a hand-

centered, rather than eye-centered, coordinate frame (Ghez et al. 2007) suggests that the 

feedback mechanism may be intrinsic to the limb, i.e., proprioception, rather than visual 

feedback. In neurologically-intact participants performing continuous tracking, these 

interruptions happen approximately every 400 to 500 ms (Craik 1947), which is 

consistent with observed performance in this experiment (Fig. 4.7A, B). However, in 

patients without proprioception due to large-fiber sensory neuropathy, single-peak, bell-

shaped velocity profiles have been recorded over time courses of 1000 ms or more 

(Gordon et al. 1995).  
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Interestingly, we see that survivors of stroke with intact proprioception took 

longer to complete the flexion movement, required more submovements, had lower peak 

velocity during their first submovement, and greater target undershoot error at the end of 

the first submovement than did SP with impaired proprioception. These submovement, 

feedback interruptions do not appear in NI participants, who can appropriately coordinate 

multiple control actions and quickly execute the targeted point-to-point movement. It is 

possible that the smaller number of submovements observed in stroke survivors with 

impaired proprioception is due to either the motor system disregarding proprioceptive 

information that is known to be unreliable, or a simple lack of the proprioceptive signal 

that would interrupt a movement. For stroke survivors with intact proprioceptive signals, 

however, increases in the number of submovements may indicate a problem with 

effectively integrating proprioceptive information during the movement, or due to 

increased opportunity for corrective submovements due to longer movement durations.  

Some support for the supposition that better integration of sensory and motor 

signals decreases the number of submovements required to make a targeted point-to-point 

movement comes from Rohrer and colleagues (2002, 2004), who used the number and 

amplitude of submovements made during multi-joint reaching tasks using more-impacted 

arms of acute- and chronic-stage stroke survivors as a means of tracking recovery. Rohrer 

and colleagues observed that as patients progress through stroke recovery (as quantified 

by time elapsed since stroke and improvement of FMM scores, which indicates 

improvement in integrated control and coordination of limb segments), the number of 

submovements required to complete a point-to-point reaching task declines, and the 

individual submovements tend to have greater overlap (Rohrer et al. 2002, Rohrer et al. 
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2004). It is possible that as neural and motor recovery progresses after stroke, stroke 

survivors may become better able to integrate incoming sensory signals into their motor 

plan and execution. Unfortunately, Rohrer and colleagues did not report proprioceptive 

status of the participants in their studies (2002, 2004), so we cannot know if improved 

performance (measured by decreases in number of submovements) was more common in 

those with impaired proprioception.  

Coordination of control actions after stroke: SP, NI showed similar patterns of co-
articulation in sequential control actions 
 
 

Co-articulation is a phenomenon first described in studies of the production of 

language (see Thomassen and Schomaker 1986 for a review). It describes the 

phenomenon wherein two actions influence one another in either an anticipatory (where 

one action changes to accommodate an upcoming action), or carryover (where one action 

is changed due to the prior action) manner. The model of co-articulation depends on the 

assumption that speech consists of discrete phonological units and that the properties of a 

given unit will vary based on the properties of adjacent units (Kuhnert and Nolan 1999). 

A similar phenomenon has been observed in handwriting, where it has been observed that 

hand position and velocity during letter formation are both affected by adjacent letters, 

with larger impacts resulting from anticipation than carryover (Thomassen and 

Schomaker 1986). Sosnik and colleagues (2004) examined co-articulation in targeted, 

multi-joint point-to-point reaching movements in which participants repeatedly traced a 

circuit between four targets. They found that with practice, participants created a new 

curved path that, while longer than the sum of path-lengths between the targets, allowed 



 

 

164 

participants to complete the task more quickly without sacrificing accuracy of target 

acquisition.  

In the current results, we observed a significant anticipatory main effect of 

upcoming movement on stabilization variability (Fig. 4.6). We also observed a significant 

carryover main effect of prior stabilization on number of submovements needed to 

complete the flexion task (Fig. 4.7B). These interactions were observed in all groups, 

despite the broad range of impairment in the SP group. These findings indicate that there 

is co-articulation between position and movement control actions in all of the participants 

who performed this experiment. We further quantified the impact of anticipated 

movement on stabilization variability using Dsstabilize, the difference in position variability 

during stabilization against perturbation with and without a planned movement following. 

We observed that SP showed a greater increase in Dsstabilize than did NI (Fig. 4.8A). This 

indicates that stroke amplified the anticipatory co-articulation effect of upcoming 

movement on stabilization variability. We further quantified the impact of carryover of 

stabilization on a flexion movement using the variable DNSM, the difference in the 

number of submovements required to complete the flexion task with and without a prior 

stabilization (Fig. 4.8B). No significant difference was observed in DNSM between 

groups, indicating that stroke did not impact carryover co-articulation of flexion 

movement and prior stabilization.  

In addition to the kinematic coupling of stabilization and movement, we also 

observed a carryover impact of stabilization on muscle activity. Specifically, stabilization 

prior to flexion was associated with greater levels of positive difference activity (net 

flexor activity) during the following flexion movement (Fig. 4.9D). This was likely to 
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compensate for increased limb impedance due to residual co-activity observed after the 

stabilization had ended. Interestingly, this indicates that despite observed differences in 

residual muscle activation prior to movement (Fig. 4.9B), SP and NI demonstrate similar 

coordination of phasic muscle control.  

Limitations of study 
 
 

Our study design was limited to examining flexion and stabilization about the 

elbow. This choice was made to attempt to isolate the coordination of position and 

movement control actions with as little interference as possible from the coordination of 

multi-joint planning and execution. This may, however, limit the study’s direct 

applicability to whole-limb or bimanual tasks, as evidenced by the inability of the 

experiment outcome measures to account for variability in measured bimanual function 

and impairment in the more-impacted limb as a whole (CAHAI and FMM scores, 

respectively).   

Additionally, we had originally planned to examine the extent to which terminal 

condition of the flexion movement (e.g., reverse to extend, stop moving, stabilize against 

a perturbation) impacted performance on the movement itself. We chose not to complete 

these analyses given the large number of submovements used by SP to complete the 

flexion task making it impossible to confidently relate the first flexion submovement to 

the anticipated termination state of the flexion task as a whole. Thus, we restricted our 

analyses to our baseline control actions (S and FLX) and conditions with initial 

stabilization and the flexion movement immediately following (S-FLX, S-REV).  
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Conclusions  
 
 

The present study supports previous findings that stroke differentially impairs 

control of targeted point-to-point movement and stabilization of the arm. Additionally, 

this study supports the supposition that survivors of stroke may have greater impairments 

in the control of limb stabilization, while survivors of stroke with intact proprioception 

may have greater deficits in moving the limb. This study also supports the presence of 

both anticipatory and carryover co-articulation of sequential stabilization and movement 

motor commands. Furthermore, we observed that survivors of stroke were unable to 

reduce the amount of co-activation present in elbow flexor/extensor pairs even when 

there was no functional reason for activity, whereas neurologically intact controls relaxed 

the elbow muscles when they were not required for movement or stabilization of the arm. 

Finally, weakness was found to relate to decreased motor function and increased motor 

impairment as measured by clinical evaluations.   
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CHAPTER 5: CONTRIBUTIONS OF COORDINATION TO FUNCTIONAL 

OUTCOMES AFTER STROKE 
 

 
Weakness is known to contribute to motor impairment and decreased motor 

function after stroke. However, we suspect that the ability to coordinate the magnitude 

and timing of activation in opposing muscles, and the ability to coordinate sequential 

stabilization and movement control actions, also contribute to functional outcomes. In 

this study, we quantified the extent to which broad measures of function and impairment 

of the more-impacted arm after stroke were explained by specific stroke-related deficits. 

These measures include deficits of motor control, somatosensation, cognition, 

coordination of agonist/antagonist muscle pairs, and coordination of sequential 

stabilization and movement control actions. We found that after stroke, weakness 

accounted for a significant amount of variability in upper extremity motor function as 

quantified by the Chedoke Arm and Hand Activity Inventory. We further found that the 

rate at which participants could reduce measured torque after creating elbow flexion 

torque, as well as their ability to reduce the amount of muscle activation present after 

torque production, accounted for a significant amount of variance in upper extremity 

motor impairments as quantified by the upper extremity motor portion of the Fugl-Meyer 

Assessment. These results suggest that coordination of the magnitude of activation in 

agonist/antagonist muscle pairs – and not just pure strength – is an important factor in 

motor impairment and function after stroke.  
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Introduction 
 
 

Reaching is an important functional behavior as it allows one to interact with the 

environment. Successful point-to-point reaching requires sufficient strength to move the 

arm as well as adequate coordination to orchestrate multiple joints in time and space. 

Underlying strength and joint-level coordination is the ability to coordinate 

agonist/antagonist muscle pairs, and the ability to successfully coordinate sequential 

stabilization and movement control actions. Approximately half of stroke survivors 

experience persistent motor deficits (Roger et al. 2012) which can include limitations in 

point-to-point reaching.  Deficits in point-to-point reaching can negatively impact quality 

of life and the ability to perform activities of daily living. 

 Limitations in torque production after stroke include weakness and slowness in 

development and termination of torques about a joint in the more-impacted arm (McCrea 

et al. 2003, Canning et al. 2000). This slowness is related to delays in initiating and 

terminating muscle contractions in the more-impacted arm (Chae et al. 2002). The results 

of the Chapter 3 study support the negative impact of weakness on function that has been 

previously reported (Chae et al. 2002, Harris and Eng 2007, Kamper et al. 2006). These 

findings also suggest that the ability to coordinate activation in agonist/antagonist muscle 

pairs is an important contributor to function, above and beyond simple weakness. 

In Chapter 3, survivors of stroke (SP) and neurologically intact (NI) participants 

created and ceased cued flexion and extension torques at the elbow using either the more-

impacted arm (SP) or the dominant arm (NI). We found that compared with NI, SP were 

weaker, took longer to create and cease torque production, and were more variable in 

achieving and holding a targeted torque. We also observed that both SP and NI could 
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modulate their muscle activity to some extent to produce torques, but SP consistently had 

higher levels of co-activation than did NI. Forward regression analysis of the SP data 

indicated that weakness, the maximal rate at which participants could reduce torque, and 

the ability to coordinate agonist/antagonist muscle activity when reducing torques 

accounted for significant amounts of variability in motor function after stroke as 

measured by the Chedoke Arm and Hand Activities Inventory.  

Targeted, point-to point reaching movements consist of a series of sequential, 

partially-overlapping control actions (Feldman 1980a, b, Humphry and Reed 1983). 

These actions include a feedforward control action for initiating movement, a 

proprioception-dominant online movement correction control action, and a separate, 

positional control action that stabilizes the arm at the end of movement (Sainburg et al. 

1999, Scheidt and Ghez 2007, Ghez et al. 2007). There is mounting evidence that these 

control actions are differentially impaired by stroke. Some groups have observed that 

stroke laterality accounts for these differences (Schaefer et al. 2009, Mani et al. 2013), 

while others have observed that proprioceptive deficits may account for observed 

differences (Scheidt and Stoeckmann 2007).  

In Chapter 4, SP and NI performed a series of one-joint elbow tasks that 

combined stabilization against a perturbation and targeted, point-to-point movement of 

the elbow in different variations to examine impact of stroke on performance of 

individual control actions and the coordination of sequential control actions. We found 

that performance in stabilization and movement control actions was impaired in SP 

compared to NI. However, within the SP group, our result supports the view that 

proprioceptive impairments after stroke were associated with differential impairment of 
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limb stabilization and limb movement. Specifically, participants with impaired 

proprioception had higher variability when stabilizing, but less movement segmentation 

than SP with intact proprioception. A recent finding from Kinzie and colleagues (2016) 

suggests that proprioception may be lateralized in the brain. The laterality reported in this 

study suggests that proprioceptive impairments are consistent with the lateral explanation 

of differential control action impairment. When forward multiple regression was applied 

to performance and coordination measures of sequential control actions and 

agonist/antagonist muscle pairs, the only variable found to significantly correlate with 

function was weakness. This suggests that the one-joint elbow task may be limited in its 

applicability to functional behaviors.   

 In this chapter, we review behavioral and electromyographic performance of nine 

survivors of stroke who performed a series of isometric torque generation and cessation 

tasks (Chapter 3), as well as a series of stabilization and movement tasks (Chapter 4), and 

a series of clinical and research evaluations of function and impairments. Our final 

objective was to quantify the extent to which broad measures of function and impairment 

in the more-impacted arm after stroke are related to specific, stroke-related deficits. To 

achieve this objective, we use correlation analyses and multiple forward regression 

analyses to relate individual impairments, performance and agonist/antagonist muscle 

coordination during torque production, and performance and agonist/antagonist muscle 

coordination of movement and stabilization actions with broad measures of upper 

extremity motor function and impairment. 
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Background 
 
 
Participant Characteristics 
 
 

Of the participants who performed the experiments in Chapters 3 and 4, nine 

survivors of stroke were included in these analyses. None of the included participants 

were receiving botulinum toxin injections at the time of the study. S103, S108, and S112 

were receiving botulinum toxin injections and thus were excluded (see Appendix 1).  

Additionally, S111 was excluded due to missing data caused by failure of a ground 

electrode that corrupted the electromyographic (EMG) signals during the Aim 2 

experiment (see Chapter 4).  

Upper extremity motor function was assessed using the 13-item Chedoke Arm 

and Hand Activities Inventory which tests participants on a series of bimanual activities 

of daily living. Performance in each task is scored on a scale of 1 to 7 with a score of 1 

indicating that the participant could not perform the task and a score of 7 indicating that 

the more-impacted arm participated fully and efficiently in the bimanual task. Overall 

scores for CAHAI can range from 13 to 91 (see Table 5.1). Upper extremity motor 

impairment was assessed using the Fugl-Meyer Assessment of Sensorimotor Recovery 

After Stroke (FMA, Fugl-Meyer et al. 1975). The upper-extremity motor portion of the 

FMA (FMM) tests the more-impacted arm for reflex activity, volitional movement (within 

motor synergy patterns, in mixed motor synergy patterns, and out of motor synergy 

patterns), wrist function, finger function, and intersegmental coordination. The FMM is 

rated on a scale of 0 to 66. A score of 0 indicates a complete lack of reflexes and 
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volitional movement in the more-impacted arm whereas a score of 66 indicates intact 

reflexes, arm, and grasp movements.   
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Table 5.1: Participant characteristics. 

ID Age Sex Test 
Hand 

Dom. 
Hand 

!"#$ 
(Nm) 

FMM CAHAI FMP MAS  MoCA Years 
since 

stroke 

Lesion 
Type 

Lesion Location 

101‡ 57 M L R 17.3 27 18 1 1.5 27 12 I R: Midbrain 

102‡ 59 M R R 27.9 20 24 6 4 26† 7 I L: MCA, BG, Insular 
Cortex 

104‡ 52 M R R 8.8 21 23 6 3.5 23† 13 ** L: ** 
106‡ 64 F R R 12.5 45 32 2 2 14† 24 ** L: ** 
107‡ 61 M R R 13.0 27 15 1 2.5 10† 12 I L: MCA Distribution 
110 62 M L R 25.6 41 63 6 4.5 23 7 I R: BG & Caudate 
113 63 F L R 24.8 37 52 3 3.5 22 10 ** R: ** 

114 64 M L R 35.8 66 90 6 0 24 7 I 
R: Multi-focus 

Periventricular White 
Matter 

115 70 F L L 16.6 32 30 6 1.5 22 13 H R: ** 
ID: Participant identification number, ‡: expressive aphasia, Dom: dominant hand. R: Right, L: Left. !"#$: average maximal torque production. FMM: Upper 
extremity motor portion of Fugl-Meyer Assessment, CAHAI: Chedoke Arm and Hand Activities Inventory, FMP: Proprioception subsection of upper extremity 
sensory Fugl-Meyer Assessment, MAS: Modified Ashworth Scale, MoCA: Montreal Cognitive Assessment. MCA: Middle cerebral artery, BG: Basal ganglia;  
** Data not available. 
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Clinical and Research Measures of specific, stroke-related impairments 
 
 

Three measures were used to evaluate somatosensation: we administered the 

sensory portion of the FMA which includes a coarse test of proprioceptive acuity (FMP) 

and light touch (FMLT, Fugl-Meyer et al. 1975), as well as a robotic measure of 

kinesthetic detection threshold (AMDT, Mrotek et al. 2017). The FMP, also referred to as 

the clinical “up or down?” test (DeGowin et al., 1987; Epstein et al., 2008), was used to 

assess overall proprioceptive discrimination at the thumb, wrist, and elbow joints. 

Proprioception at each joint was graded 2 (intact), 1 (impaired), or 0 (absent). Scores 

were summed across joints to give a total of 6 possible points. The light touch portion of 

the FMA (FMLT) was also assessed. Sensation of light touch was judged to be intact (2), 

impaired (1), or absent (0) giving a possible of 4 points for FMLT. An additional 

laboratory test of proprioceptive integrity (AMDT) was also administered. In this 

laboratory test, the participant’s hand is attached to a 2-degree-of-freedom, planar robot 

and view of the hand is obstructed. Ten perturbation trials (5 ascending, 0 to 2 N; 5 

descending, 2 to 0 N) are conducted. The participant reports whether they perceive that 

the hand is being perturbed, and the experimenter slowly adjusts the level of perturbation 

until the perception state changes from “no” to “yes” (ascending), or “yes” to “no” 

(descending). Scores reported from this measure are a statistical likelihood that the 

participant has intact proprioception based on comparison with a set of neurologically-

intact controls. This measure has been described previously (Mrotek at al. 2017). 

Strength at the elbow (!"#$) was tested using an isometric maximal average 

elbow torque production task. Participants performed two maximal flexion and two 

maximal extension repetitions with the arm attached to a rigid handle and the elbow 
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centered over a multi-axial load cell (model 75E20A4-I125-AF, JR3, Woodland, CA). 

The task was repeated with the arm in three positions, thus there were a total of 6 

maximal flexion and 6 maximal extension torque values. The average maximal torque 

value (tmax) was calculated by averaging across these values.  

Muscle tone of elbow flexors and extensors was evaluated using the Modified 

Ashworth Scale (MAS, Bohannon and Smith 1987). This scale grades flexor and extensor 

muscle tone about a joint on a scale of 0 to 4 where a score of 0 indicates that there is no 

increase in tone compared to the less-affected side, and a score of 4 indicates muscle tone 

so severe as to render the tested joint rigid. MAS scores for elbow flexors and extensors 

were averaged to obtain an overall estimate of muscle tone at the elbow. 

We screened for mild cognitive impairment using the Montreal Cognitive 

Assessment (MoCA). This measure is designed to test visuospatial/executive function, 

naming, attention, language, abstraction, delayed recall, and orientation (MoCA, 

Nasreddine 2005). Scores for the MoCA range from 0 to 30 with scores ≥26 considered 

normal. Due to the verbal nature of many responses, MoCA scores can be confounded by 

aphasia (participants with aphasia are noted in Table 5.1 by the ‡).  

 
Post-stroke Coordination of Agonist/Antagonist Muscle Pairs in Isometric Torque 
Production 
 
 
 On the second day of experimentation (Chapter 3), participants performed 

isometric step-torque tracking tasks with the arm affixed to a rigid handle and the elbow 

centered over a multi-axial load cell (Fig. 5.1A, model 75E20A4-I125-AF, JR3, 

Woodland, CA). Participants viewed a screen with a target trace and a measured torque 

trace scrolling from right to left at a rate of 2.5 cm per second (Fig. 5.1B). Participants 
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created or reduced elbow flexion and extension torques with the arm attached to a fixed 

handle to track the torque target. In one condition, the target alternated between 

relaxation and 20% !"#$ in the flexion direction (Fig. 5.1C). In a second condition, 

participants tracked targets alternating between relaxation and 20% !"#$ in the extension 

direction (Fig. 5.1D). Thus, there were four transition conditions: producing flexion 

torque after relaxing (FR), ceasing flexion torque production (RF), producing extension 

torque (ER), and ceasing extension torque production (RE). Participants performed 2, 60-

second trials of 20 transition and hold periods of each task type (10 in each direction) in 

three different joint angles (65º, 90º, and 105º elbow flexion). The inter-cue interval was 

pseudorandomly distributed such that transition times (2.9 ± 0.75 s; mean ± 1SD) were 

unpredictable, but identical across participants. Participants were instructed to “Match the 

elbow torque cursor to the target trace as quickly and accurately as possible.”  

 

 

Figure 5.1: Experiment for measuring agonist/antagonist muscle coordination during an isometric step-
torque tracking task. A: Participant setup. B: Monitor with torque step-tracking target and real-time elbow 
flexion/extension torque feedback. C: Flex/relax cue time series. D. Extend/relax cue time series. C-D 
alternate between 0% and 20% of average maximal torque. Note: This figure derived from Figure 3.1.  
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Electromyographic signals (EMG) were recorded from elbow flexors (short and 

long head of the biceps brachii, brachioradialis) and extensors (long and lateral heads of 

triceps brachii). EMG signals were zero-meaned, notch filtered at 60, 120, and 180 Hz to 

remove line nose, rectified, and normalized to maximal voluntary isometric contractions 

(MVICs). Prior to normalization, MVIC traces were processed as above, and then 

subjected to a 100 ms sliding average filter before determining the maximal value. One 

primary flexor and one primary extensor were selected as the muscle that most highly 

correlated with torque production during a maximal voluntary exertion task (see Chapter 

3 for further detail).  

Measures of the coordination of agonist/antagonist muscle activation magnitude 

were calculated between the selected flexor and extensor. Specifically, we estimated the 

amount of normalized EMG that was equal-and-opposite in the antagonist muscle pair 

using a measure of instantaneous muscle co-activation (CoA, Equation 5.1):  

&'((*) = min	[1234'5 * , 34*378'5(*)].  [Eq. 5.1] 

The CoA measure quantifies the smallest amount of activity present in the muscle pair. 

We also calculated a measure of instantaneous net muscle activation called difference 

activity (DiffA, Equation 5.2)  

:;11( * = 1234'5 * − 	34*378'5(*).   [Eq. 5.2] 

DiffA(t) quantifies the instantaneous amount of phasic activation in the antagonist muscle 

pair beyond the level of shared activation in CoA. We used these two performance 

measures to quantify the instantaneous coordination between antagonist muscles 

spanning the elbow joint. Two, 50-ms time windows were of interest for the current 

analyses. Specifically, phasic muscle activation immediately prior to peak rate of change 
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of torque (DiffATpeak), and co-activation and phasic activation starting 150 ms after 

torque transition ended (CoATend, DiffATend, see Chapter 3 Methods for specifics on 

defining transitions).  

 Two specific measures of stroke-related deficit were defined to describe 

performance during isometric torque production/cessation transitions. The first was the 

peak rate of change of torque (!=>#?, see Fig. 5.2A). Recalling Chapter 3, neurologically-

intact participants tended to relax from torque production more quickly than they 

produced torques (cf. Fig. 3.6A). Here, however, SP tended to have similar or slower 

transition speeds when attempting to relax from torque production (RF, RE) as when 

producing torque (FR, ER). This is most marked in the difference between the rates 

observed producing (FR) and reducing (RF) flexion torque: Indeed, S114 is the only 

participant in this cohort who was able to relax more quickly than produce torque.  

 

 

Figure 5.2: Behavior and muscle activity during isometric elbow flexion and extension torque production. 
Transition types include flexion after relaxation (FR), extension after relaxation (ER), relaxing after flexion 
(RF) and relaxing after extension (RE). Black circles indicate mean, error bars denote ± 1 S.E.M. Colored 
lines connect transition-type averages for each participant. A: Peak rate of change of torque. B: DiffA 
(muscle activation above the level of co-activation) during transition. Note that positive values of DiffA 
indicate predominant flexor activity, while negative values indicate predominant extensor activity.  
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The second measure used to describe performance during transitions was DiffA at 

!=>#? (Fig. 5.2B). DiffA is a measure of muscle activation above and beyond the 

minimum amount of activity present in both muscles of the agonist/antagonist pair. When 

the flexor is more active than the extensor, DiffA is positive; when the extensor is more 

active than the flexor, DiffA is negative. All participants in this cohort had predominant 

flexor activity when producing flexion torque (FR), but three of the participants still had 

predominant flexor activity when producing extension torque (ER). When reducing 

flexion torques (RF), participants tended to have less net flexor activity than when 

producing torque (FR). When reducing extension torques (RE), however, participants 

tended to have greater levels of extensor activity (i.e., more negative DiffA value) than 

when producing extension torques (ER). This may suggest that survivors of stroke are 

slow to activate and deactivate muscles at the elbow, especially the extensors.  

 We next examined two specific measures of stroke-related deficits of elbow 

agonist/antagonist coordination 150 ms after the end of transition. The first measure was 

CoA, the minimum amount of activity present in both muscles within the time window of 

interest (Fig. 5.3A). Of note, participants tended to have the greatest levels of CoA when 

reducing extension torque, indicating that both the flexor and extensor were active (up to 

10% MVIC for S104) after reducing extension torque (RE). This high amount of muscle 

activation is also clearly visible in DiffA after the end of transition (Fig. 5.3B): When 

relaxing from extension torque production (RE), the majority of participants show high 

levels of extensor activity above and beyond the baseline CoA (which indicates the 

minimum amount of muscle activation present in the flexor/extensor pair) that is 
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subtracted from the measure. Indeed, S101 has nearly 30% MVIC activation of the 

extensor when reducing extensor torque.  

 

 

Figure 5.3: Agonist/antagonist muscle coordination 150 ms after end of transition. Transition types include 
flexion after relaxation (FR), extension after relaxation (ER), relaxing after flexion (RF) and relaxing after 
extension (RE). Black circles indicate mean, error bars denote ± 1 S.E.M. Colored lines connect transition-
type averages for each participant. A: CoA after transition completion. B: DiffA after transition 
completion. Note that positive values of DiffA indicate predominant flexor activity, while negative values 
indicate predominant extensor activity 

 
Post-stroke Coordination of Sequential Movement and Stabilization Control Actions 
 
 

On the third day of experimentation, participants performed one-joint elbow tasks 

that combined stabilization and point-to-point elbow flexion and extension movements. 

The more affected hand was fixed, palm down, to a rigid handle (Fig. 5.4A). The elbow 

was aligned with the center of rotation of a motor that could apply force to the handle and 

resolve handle position (D061A DC, Kollmorgen, Radford, VA), and a multi-axis load 

cell to measure forces and torques applied to the handle (67M25A-I40-A-200N12; JR3, 

Woodland, CA). View of the arm was obstructed with an opaque screen. Participants 

viewed a computer monitor (Fig. 5.4B) that displayed visual cues and performance 

feedback related to each trial type as described below. Here, we evaluate performance in 
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four of the tasks performed: Stabilizing against a perturbation (S, Fig. 5.4C), a targeted, 

point-to-point elbow flexion movement (FLX, Fig. 5.4D), and a combination of 

stabilization against a perturbation and flexion, stabilize, flex (S-FLX, Fig. 5.4E), and a 

sequential combination of stabilize, flex, extend (i.e., a reversal; S-REV, Fig. 5.4F; see 

Chapter 4 Methods for specific details on task and calculation of outcome measures). 

 

  
Figure 5.4: Experimental setup and tasks. A: Participant setup (opaque screen not shown); B: Participant 
viewed task instructions, target locations, and performance feedback on a visual display; C-F: Cartoon 
depictions trajectories of task types over time, C: Stabilze (S); D: Flex (FLX); E: Stabilize, flex (S-FLX); F: 
Stabilize, flex, extend (S-REV). Note: This figure derived from Figure 4.1.  

 
Surface electromyograms (EMG) were recorded from elbow flexors and 

extensors, as previously described above. One flexor and one extensor were chosen for 

analysis. The muscle chosen for each group was the one with the highest signal-to-noise 

ratio of the processed EMG from the MVIC and relax trials. EMG processing and 

calculation of instantaneous measures of agonist/antagonist coordination were identical to 

those described above. 
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 From this study, we focused on specific measures of agonist/antagonist 

coordination in muscle and coordination of sequential control actions. The measures of 

muscle agonist/antagonist coordination included co-activity during the last 50 ms of 

stabilization (CoAS) and difference activity during FLX, just prior to peak acceleration of 

the first flexion submovement, (DiffAApk). We also used two measures of coordination 

between sequential stabilization and movement control actions. The first of these 

measures, ΔσBC#DEFEG>, characterizes anticipatory co-articulation of anticipated flexion on 

stabilization; this measure was calculated as the difference in the amount of variability 

observed during stabilization against a perturbation when a movement was anticipated, 

and when one was not. The second measure, ΔNIJ, characterizes carryover co-

articulation of prior stabilization on the flexion movement action; this measure was 

calculated as the difference between the number of submovements required to complete 

the flexion task after stabilization, and the number of submovements required to complete 

the flexion task alone.  

Two of these measures relate to stabilization of the elbow against a perturbation: 

ΔσBC#DEFEG> and CoAS (Fig. 5.5, left and right, respectively). Interestingly the four 

participants with the least amount of anticipatory co-articulation (S114, S104, S102, 

S101) also had the lowest levels of CoA during stabilization (S).  
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Figure 5.5: Stabilization about the more-impacted elbow. Left: Change in position variability between 
stabilize condition alone (S) and in conditions with upcoming movement (S-FLX, S-REV). Right: Co-
activity during the last 50 ms of stabilization (S).  

 
 The other two specific measures from this experiment relate to movement of the 

arm. The first measure, ΔNIJ (Fig. 5.6, left), quantifies anticipatory co-articulation, in 

this case the impact of prior stabilization on the number of submovements required to 

successfully complete a point-to-point elbow flexion task. While many of the participants 

in this analysis showed modest anticipatory co-articulation, S114, S110, and S115 all 

demonstrated a markedly larger increase in the number of submovements required to 

complete the task after having previously stabilized the arm against a perturbation. The 

second movement measure was DiffAApk (Fig. 5.6, right), which quantifies the net muscle 

activation (above the shared CoA baseline) with positive values indicating predominant 

flexor activation and negative values indicating predominant extensor activation. While 

most of the participants demonstrated positive DiffA values, which would be expected 

during a flexion movement, S104, S102 and S110 all demonstrated negative DiffA values 
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indicating that they had predominant extensor activation despite the fact that they were 

flexing the elbow.  

 

 

Figure 5.6: Movement of the more-impacted elbow. Left: Change in the number of submovements required 
to complete targeted point-to-point flexion between isolated flexion task (FLX) and compound tasks with 
prior stabilization (S-FLX, S-REV). Right: Difference activity at the first acceleration peak of elbow flexion 
(FLX). Note that positive DiffA values indicate predominant flexor activity and that negative DiffA values 
indicate predominant extensor activity.  

 
Methods 
 
 

We used a combination of correlation and multiple forward regression analyses in 

order to quantify the extent to which broad measures of function and impairment in the 

more-impacted arm after stroke are impacted by specific, stroke-related deficits. We first 

used correlation analysis to quantify relationships between upper extremity measures of 
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function and impairment after stroke, measures of specific deficits, coordination of 

agonist/antagonist muscle pairs, and coordination (or co-articulation) between sequential 

control actions. To this end, we correlated {CAHAI, FMM} with specific deficit 

measures {FMP, FMLT AMDT, !"#$, MAS, MoCA}, as well as the speed of isometric 

torque transitions {!=>#?}, three measures of isometric muscle coordination {DiffATpeak, 

CoATend, DiffATend}, two measures of coordination of sequential control actions 

{Dsstabilize, DNSM}, one measure of muscular coordination during stabilization (S) 

{CoAS}, and a final measure of muscular coordination during targeted elbow flexion 

(FLX) movement {DiffAApk}. Isometric measures included values for each of the four 

transition types {FR, RF, ER, RE}. 

Next, we sought to quantify the extent to which specific deficits of sensation, 

strength, muscle tone, cognition, speed, coordination of agonist/antagonist muscle pairs, 

and coordination of sequential stabilization and movement control actions could account 

for differences in upper extremity motor function (measured by CAHAI) and impairment 

(FMM). We performed two forward regression analyses to model {CAHAI, FMM}, using 

specific deficit measures from clinical and research evaluations: {FMP, FMLT AMDT, 

!"#$, MAS, MoCA, !=>#?, DiffATpeak, CoATend, DiffATend, CoAS, DiffAApk, Dsstabilize, 

DNSM}. Multiple forward regression analysis allows these specific deficit measures to 

compete with one another to create a model that explains the variance observed in 

CAHAI and FMM scores amongst the population of SP. Additionally, multiple forward 

regression quantifies the extent to which each independent variable explains differences 

in the dependent variable, allowing us to achieve our objective.  
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Results 
  
 

In this study, we first used correlation analysis to quantify the relationships 

among a plurality of measures of specific impairments and coordination after stroke. We 

then used forward regression to quantify the extent to which these specific impairments 

accounted for variability in measures of overall function and impairment in the more-

impacted upper extremity after stroke as measured by a clinical test of bimanual tasks of 

daily living (CAHAI) and a clinical test of motor impairment (FMM). These analyses 

allowed us to quantify the extent to which variations in broad measures of function and 

impairment in the more-impacted arm after stroke are accounted for by specific, stroke-

related deficits.  

First, we applied correlation analysis to relationships between the selected overall 

{CAHAI, FMM}, physical {tmax, MAS,	!=>#?}, somatosensory {FMP, FMLT, AMDT}, 

and cognitive {MoCA}impairments, measures of muscle agonist/antagonist coordination 

{DiffATpeak, CoATend, DiffATend, CoAS, DiffAApk}, and coordination (co-articulation) of 

stabilization and movement control actions {Dsstabilize, DNSM}, (see Table 5.2). Given the 

limitation of the objective, to evaluate the extent to which specific measures account for 

variability in CAHAI and FMM, discussion of correlation results will be limited to 

significant correlations including either of these two broad measures of function.  CAHAI 

and FMM were significantly correlated with one another (r = 0.877, p = 0.002, n = 9) 

indicating that function and impairment are significantly interrelated. CAHAI was also 

significantly correlated with tmax (r = 0.784, p = 0.012, n = 9), !=>#? when reducing 

isometric flexion torque (r = 0.755, p = 0.019, n = 9), DiffATpeak when reducing isometric 

extension torque (r = 0.683, p = 0.042, n = 9), and DiffATend when reducing isometric 
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extension torque (r = 0.748, p = 0.020, n = 9). These results indicate that motor function 

is positively correlated to strength, the ability to quickly cease torque production, and the 

ability to quickly reduce muscle activity. FMM was also significantly correlated with  

!=>#? when reducing isometric flexion torque (r = 0.802, p = 0.009, n = 9). Thus, motor 

impairment was significantly correlated with the ability to quickly cease torque 

production.  
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Table 5.2: Correlations of upper extremity measures, specific impairment measures, muscle agonist/antagonist coordination measures, and measures of 
coordination of sequential control actions. 
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CAHAI 1                            

FMM .88** 1                           

FMP .45 .14 1                          

FMLT .47 .20 .77* 1                         

  AMDT -.46 -.11 -.66 -.54 1                        

!"#$ .78* .58 .42 .68* -.50 1                       

MAS -.25 -.57 .19 .01 -.08 -.13 1                      

MoCA .22 -.09 .53 .53 -.87** .50 .09 1                     

!%&#'  (FR) .13 .12 -.05 -.41 .10 -.01 .08 -.31 1                    

!%&#'  (ER) -.33 -.17 -.34 -.64 .42 -.73* -.04 -.70* .48 1                   

!%&#'  (RF) .76* .80** .30 .14 -.19 .54 -.52 .06 .47 -.10 1                  

!%&#'  (RE) .52 .58 -.22 -.46 -.17 .13 -.25 -.11 .55 .31 .58 1                 

DiffA at !%&#'  (FR) -.50 -.16 -.42 -.39 .81** -.65 -.05 -.82** -.07 .49 -.39 -.29 1                

DiffA at !%&#'  (ER) .41 .35 -.22 .11 .23 .38 .26 -.34 -.05 -.14 -.05 .15 .10 1               

DiffA at !%&#'  (RF) -.43 -.22 -.41 -.38 .67* -.71* .10 -.79* -.19 .64 -.52 -.19 .85** .26 1              

DiffA at !%&#'  (RE) .68* .42 .39 .34 -.31 .48 .46 .02 .14 -.14 .19 .31 -.24 .72* -.03 1             

CoA after 

Transition (FR) 

.26 .22 .38 .33 -.08 .13 .34 -.06 -.24 -.25 -.15 -.17 .32 .38 .24 .58 1            

CoA after 

Transition (ER) 

-.46 -.55 .20 .12 .28 -.45 .67* -.24 -.32 .11 -.67 -.66 .52 .16 .60 .16 .54 1           
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CoA after 

Transition (RF) 

.09 .17 .02 .00 .22 -.16 .32 -.32 -.33 -.03 -.30 -.08 .53 .49 .55 .49 .89** .59 1          

CoA after 

Transition (RE) 

-.60 -.62 -.09 -.49 .35 -.81** .46 -.44 .32 .77* -.39 -.11 .40 -.28 .56 -.14 -.15 .55 .02 1         

DiffA after 

Transition (FR) 

-.55 -.19 -.53 -.45 .78* -.69* -.11 -.79* -.12 .51 -.46 -.26 .98** .08 .86** -.31 .24 .45 .49 .37 1        

DiffA after 

Transition (ER) 

.38 .29 -.13 .18 .21 .33 .32 -.33 -.14 -.10 -.11 .06 .11 .98** .34 .74* .40 .24 .52 -.18 .08 1       

DiffA after 

Transition (RF) 

-.39 -.18 -.37 -.38 .64 -.73* .09 -.76* -.21 .64 -.47 -.15 .82** .22 .99** -.01 .25 .60 .58 .57 .83** .31 1      

DiffA after 

Transition (RE) 

.75* .48 .50 .45 -.42 .60 .37 .14 .18 -.25 .29 .30 -.30 .62 -.19 .96** .64 .07 .45 -.28 -.38 .61 -.19 1     

ΔN*+ .38 .29 .59 .81** -.28 .35 -.17 .12 -.48 -.26 -.00 -.41 .08 .18 .13 .32 .53 .26 .32 -.33 .05 .27 .11 .39 1    

DiffA at APK -.04 .13 -.40 -.37 -.04 .03 -.60 .00 .47 .24 .33 .46 -.18 -.34 -.33 -.49 -.66 -.81** -.69* -.18 -.08 -.47 -.38 -.40 -.38 1   

Δσ-.#/0102& -.36 -.15 -.50 -.23 .79* -.41 .05 -.84** -.06 .47 -.44 -.29 .82** .49 .85** -.01 .15 .45 .38 .31 .82** .51 .78* -.13 .16 -.16 1  

CoA during 

Stabilization  

.09 .08 .07 .00 -.11 -.20 .09 -.30 .11 .46 -.24 .17 .34 .24 .47 .40 .49 .22 .45 .18 .38 .26 .43 .42 .44 -.02 .38 1 

 

CAHAI: 13-item Chedoke Arm and Hand Activity Inventory; FMM: Upper extremity portion of the Fugl-Meyer Assessment (FMA); FMP: Proprioception 
portion of FMA; FMLT: Light touch portion of FMA; AMDT: Arm Movement Detection Test; MAS: Modified Ashworth Scale: MoCA: Montreal Cognitive 
Assessment; FR: Flex from Relax; ER: Extend from Relax; RF: Relax from Flex; RE: Relax from Extend: PkTqRate: rate of peak change of torque over time; 
DiffA: Difference Activity; CoA: Co-activity; SM: submovement, APK: peak acceleration. *: significant at p = 0.05; ** significant at p = 0.01 
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We next used multiple forward regression analyses to quantify the extent to which 

variation in CAHAI can be explained by our clinical and research measures, {FMP, 

FMLT, AMDT, !"#$, MAS, MoCA, !%&#', DiffATpeak, CoATend, DiffATend, CoAS, 

DiffAApk, Δσ*+#,-.-/&, ΔN12}. Weakness (!"#$) accounted for 56% of variance in CAHAI 

scores [F(1,7) = 11.195, p = 0.012, Fig. 5.3]. Participants with lower maximal torques, i.e., 

weaker participants, tended to have lower functional scores. Finally, we used forward 

regression analyses to quantify the extent to which FMM could be modeled by our clinical 

and research measures, {FMP, FMLT, AMDT, !"#$, MAS, MoCA, !%&#', DiffATpeak, 

CoATend, DiffATend, CoAS, DiffAApk, Δσ*+#,-.-/&, ΔN12}. The maximal transition rate 

(!%&#') when reducing isometric flexion torque production accounted for 59% of 

variability in FMM while the amount of residual muscle activity at the end of this 

transition (CoATend) accounted for a further 17% of variability [F(2,6) = 13.986, p = 0.006, 

Fig. 5.3]. Participants who were able to more quickly cease torque and reduce minimal 

levels of muscle activation when relaxing after torque production tended to have less 

impairment.  
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Figure 5.7: Left: Actual vs. model CAHAI (top) and FMM (bottom) scores. Solid line is regression model, 
dashed lines are 95% confidence intervals. Right: percent of variance in CAHAI and FMM scores by model 
variables. Red bar indicates weakness (!"#$), dark blue bar indicates maximal transition rate (!%&#') 
when reducing isometric flexion torque production, teal bar indicates the amount of residual muscle 
activity at the end of reducing isometric flexion torque (CoATend).  

 
Discussion 
 
 

In this study, we used correlation and forward multiple regression analyses to 

quantify the extent to which broad measures of function (CAHAI) and impairment (FMM) 

of the more-impacted arm after stroke were explained by specific stroke-related deficits 

including clinical and research measures of physical, somatosensory, and cognitive 

impairments, as well as measures of coordination of sequential stabilization and 
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movement control actions, and coordination of agonist/antagonist muscle pairs. We found 

that the overall measures of post-stroke function (CAHAI) and impairment (FMM) were 

significantly correlated with one another. We furthermore observed that upper extremity 

function (CAHAI) was significantly correlated with weakness and three measures related 

to the ability to relax the muscles or reduce isometric torque production (DiffA during 

and after relaxing from extension torque production; τ4567 when relaxing from flexion 

torque production). FMM was significantly correlated with the rate of torque reduction 

(τ4567 when relaxing from flexion torque production).  Forward multiple regression 

analysis of CAHAI found that of the impairments tested as potential contributing factors, 

only weakness (!"#$) was found to explain significant amounts of variance in CAHAI 

scores amongst the participant group. Forward multiple regression analysis of FMM found 

that two measures relating to reducing isometric torque production and relaxing muscles 

after isometric torque production (τ4567 when relaxing from flexion torque production, 

CoA after relaxing from flexion torque production) explained significant amounts of 

variance amongst the participants. Thus, we found that weakness, impairment of the 

ability to quickly reduce torque production, and impairment of the ability to de-activate 

muscles quickly contribute to broad impairment and loss of function in the more-

impacted upper extremity after stroke.  

 
Neural and muscular causes contributing to impairment in reducing muscle activity, rate 
of reducing torque  
 
 

In normal human motor control, the corticospinal tract is thought to be the 

primary control center for upper extremity movement. Stroke can damage portions of the 

corticospinal tract. Experiments in non-human primates indicate that when the 
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corticospinal tract is obliterated, the reticulospinal tract becomes responsible for what 

upper extremity motor control is recovered (Baker 2011, Zaaimi et al. 2012). 

Reticulospinal control of upper extremity movement is consistent with the current 

observations of residual muscle co-activation and slowness in reducing torques.  

The differences in the time courses of neurotransmitters in the corticospinal and 

reticulospinal tracts may explain in part the slowness in reducing muscle activity often 

observed after stroke. Whereas the corticospinal tract uses glutamate as its primary 

neurotransmitter (Al Masri 2011), the reticulospinal tract uses monoamine 

neurotransmitters (Lundy-Eckman 2007). Glutamate is a fast-acting neurotransmitter: it 

can be released into a synapse, act on its target, and be deactivated in the synapse on sub-

millisecond time scales (Danbolt 2001). Thus, under corticospinal drive, an excitatory 

signal to an alpha motoneuron would be short-lived. Monoamines, however, are slow-

acting neurotransmitters that have synaptic actions lasting from tens of milliseconds to 

many minutes (Lundy-Eckman 2007). Thus, under reticulospinal drive, an excitatory 

signal to an alpha motoneuron could persist for many minutes.  

In addition to having lingering excitatory effects, the reticulospinal tract also does 

not make direct synapses with inhibitory interneurons in the spinal cord as the 

corticospinal tract does (Lundberg and Voorhoeve 1962). Through these connections, the 

corticospinal tract can selectively inhibit alpha motoneurons in non-task-essential 

muscles, e.g., when the objective is to make an elbow flexion torque, the corticospinal 

tract can selectively inhibit activity in alpha motoneurons that innervate elbow extensors. 

The reticulospinal tract does not have this selectivity (Matsuyama et al. 1997, Peterson et 

al. 1975). Thus, under reticulospinal drive there may simultaneously exist a lack of 
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targeted inhibition as well as the presence of persistent excitatory neurotransmitters. This 

combination could lead to elevated levels of co-activation observed after stroke.  

 
Factors contributing to weakness after stroke 
 
 

Weakness is consistently found to correlate significantly with function and 

impairment after stroke (Ada et al. 2006, Kamper et al. 2006, Harris and Eng 2007, 

Chapter 3, Chapter 4), however, producing torque about a joint (a common measure of 

strength) requires that muscle activity be coordinated in time and magnitude. Trombly 

and colleagues (1992) observed that, after stroke, participants used a greater percentage 

of their maximal muscle activation to complete a targeted reaching task with the more-

affected arm than with the less-affected arm. Wagner and colleagues (2007) noted a 

similar phenomenon in a study comparing targeted reaching in the more-affected arm of 

SP in the acute phase (less than two weeks since stroke) and the subacute phase 

(approximately four months after stroke) of recovery. They found that in the early testing, 

SP used a large percentage of their available range of muscle activation to complete the 

targeted reaching task. The amount of activation tended to decrease as recovery 

progressed from acute to sub-acute, but the amount of activation used was still greatly 

elevated compared with NI controls suggesting that there was less “wasted” activity after 

recovery, but that control and execution of motor tasks did not return to “normal” at a 

muscular level.  

Some amount of co-activation observed after stroke may be a strategic 

compensation for impairment in quickly reducing muscle activity in task-agonist 

muscles. If one cannot quickly reduce activity in a contracting, torque-producing muscle 
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(see Fig. 5.2A), one method for reducing torque about a joint would be to activate the 

opposing muscle, i.e., co-activate (See Fig. 5.3A). The force applied by the task-

antagonist muscle would reduce the torque measured at that joint. Indeed, when 

attempting to relax from isometric extension torque production (Fig. 5.3), participants in 

this study showed high levels of co-activation as well as residual extensor activation. 

Given that net torque is the sum of all torques applied at the joint, this strategy will 

reduce torque about the joint, but it is inefficient and can contribute to measured 

weakness.   

In addition to this potentially-compensatory control strategy, descending drive 

from the reticulospinal tract is only 20% as strong as descending drive from the 

corticospinal tract (Riddle et al. 2009), and thus it is more difficult to recruit the large 

numbers of motor units required to produce large forces. Additionally, these neural 

changes can lead to remodeling at the muscular level that can also impair force 

production. Post-stroke muscular changes that negatively impact isometric force 

production capacity (and therefore increase weakness) include decreases in anatomical 

cross-sectional area of the more-impacted arm (Berenpas et al. 2016, Ryan et al. 2002), 

decreases in lean muscle mass on the more-impacted side (English et al. 2010), and 

decreases in the number of contractile elements in the more-impacted muscles after 

stroke (Hafer-Macko et al. 2008). Thus, weakness observed after stroke is likely the 

combined product of changes in neural control and muscular remodeling.  

 
  



 

 

196 

Better understanding of causes of impairment and lost function is important for designing 
interventions  
 
 

This work relates an array of measures of specific impairments to broad clinical 

measures that are often used to track and quantify motor recovery after stroke. The 

finding that weakness contributes to motor impairment and decreased motor function 

after stroke (Ada et al. 2006, Kamper et al. 2006, Harris and Eng 2007) is not novel. 

However, this work adds to understanding of the underlying causes of weakness, and 

suggests that weakness is, in part, a product of deficits of coordinated neuromotor control 

in addition to being the product of decreased force production capacity of muscles 

themselves.  

Knowledge of the characteristics underlying broad measures of motor deficits is 

useful for research and design of clinical interventions. Better understanding of the 

underlying factors contributing to motor impairment and lost motor function after stroke 

is necessary to create targeted, hypothesis-driven intervention protocols. A challenge 

such as reducing muscle activation, given the neural contributions to increased 

excitability of alpha motoneurons, may require pharmaceutical intervention with anti-

spasticity agents which may reduce persistent muscle tone (Olvey et al. 2010, Pandyan et 

al. 2002). If such an intervention is not feasible, knowledge of the phenomena underlying 

observed motor deficits may also be used to help therapists set appropriate expectations 

and design compensatory strategies that may help survivors of stroke to achieve their 

movement objectives to the extent possible. For instance, if one wishes to release grasp of 

an object, but cannot quickly relax the flexors or activate the extensors (and indeed, may 

experience increased flexion when attempting to volitionally extend the fingers, cf. 
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Kamper et al. 2003), one strategy might be to stabilize the object against a stable surface 

and allow the muscles to relax over the course of several seconds before attempting to 

remove the hand.  

This study is limited in the number of participants (n = 9), which decreases 

detection power of the statistical tests. The fact that there is good agreement across the 

findings of this study and that of Chapter 3 (which had more participants) does support 

the validity of the results in this small sample.  

 
Conclusion 
 
  

The present study provides an analysis of the extent to which specific, stroke 

related deficits contribute to broad measures of impairment and function in the more-

impacted upper extremity. We found that significant variance in CAHAI scores was 

accounted for by weakness, and that significant variance in FMM scores was accounted 

for by the maximal rate at which survivors of stroke could reduce torque and the amount 

of co-activation present after attempting to relax from torque production. We interpret 

this to mean that while weakness is an important contributor to loss of function after 

stroke, we must also consider the underlying causes of weakness, including deficits in 

control and muscle mechanical function. Knowledge of the mechanisms underlying 

observed clinical deficits is necessary to design better interventions to treat motor-

limitations post stroke.  
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CHAPTER 6: CONCLUSIONS, LIMITATION, AND FUTURE DIRECTIONS 
 
 
Conclusions 
 
 

We used measures of elbow torque, muscle activity, and kinematics in survivors 

of stroke (SP) compared to neurologically-intact (NI) controls to quantify deficits in three 

areas: torque production, agonist/antagonist muscle coordination, and control and 

sequential coordination of stabilization and movement control actions at the elbow. In 

chapter 3, we found that in comparison to NI, SP showed deficits in coordinating the 

timing and magnitude of elbow flexor and extensor activation while creating and ceasing 

flexion and extension torques. Upper extremity impairment was found to be significantly 

correlated with weakness, and upper extremity function was found to be significantly 

related to weakness and coordination deficits measured when relaxing immediately after 

sustained torque production. These findings suggest that coordination of 

agonist/antagonist muscle pairs may contribute significantly – above and beyond the 

impact of simple measured weakness – to deficits of function after stroke. In chapter 4, 

we found that SP showed deficits in control and sequential coordination of stabilization 

and movement control actions compared to NI. In addition, we found that differential 

deficits in control of stabilization and movement within the SP group were well explained 

by impairments in proprioception. Specifically, SP with intact proprioception were able 

to stabilize the elbow against a perturbation with less variability in position than those SP 

whose proprioception was measured to be impaired. However, SP with intact 

proprioception actually performed worse during movement than SP with impaired 

proprioception: those with intact proprioception required more submovements to 
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complete a targeted elbow flexion task than did SP with impaired proprioception. These 

findings suggest that stroke-related deficits in proprioception impair stabilization control, 

but may – counterintuitively – facilitate smoother movements after stroke. Additionally, 

in Chapter 4, we observed that SP were unable to reduce the amount of co-activation 

about the elbow even when there was no functional reason to have elevated co-activation, 

unlike NI who decreased elbow co-activation when they were not required to stabilize the 

elbow. Forward multiple regression analyses using measures of impaired control of 

movement and stabilization actions in SP and clinical measures of specific impairments 

as potential model variables found that only weakness accounted for significant 

variability in upper extremity motor function, and came the closest to explaining 

significant variability in upper extremity impairment. This suggests that stroke-related 

impairments in specific control actions (i.e., movement and stabilization) are not as 

important to explaining broad deficits as are measures of simple physical deficit, such as 

weakness.  In chapter 5, we found that significant variance in scores of function were 

explained by weakness, and that significant variance in scores of impairment were 

accounted for by the rate at which SP could reduce torque production and the amount of 

co-activation that was present at the end of torque-reduction transitions.  

Across the three studies we found consistent indications that weakness is an 

important factor contributing to loss of upper extremity motor function and upper 

extremity motor impairment after stroke. Additionally, stroke-related impairments in 

coordinating activity in agonist/antagonist muscle pairs – especially when relaxing from 

torque production – was a consistent finding across all three chapters. In Chapter 3, the 

amount of net muscle activity remaining after reducing torque was included as a 
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significant factor in the model of function and in Chapter 5, we observed that the amount 

of co-activation present after reducing torque was included as a significant factor in the 

model of impairment. While measures of agonist/antagonist coordination were not 

included in the models of function and impairment in Chapter 4, we did observe elevated 

residual co-activation when it was not necessary (i.e., prior to flexion movements in 

which the participant had been relaxing prior to movement). We conclude dis-

coordinated activation of agonist/antagonist muscle pairs, including residual activation, 

are important contributors to observed weakness, slowness, and difficulty in reducing 

torques observed after stroke.  

Furthermore, the results show that proprioception is a key factor underlying 

observed differential impacts of stroke on stabilization and movement control actions 

(Chapter 4). Prior explanations of these differential deficits have found that laterality (i.e., 

whether the right or left arm was more-impacted by stroke) coincided with the type of 

deficit observed: those who were more-impacted in the right arm showed greater deficits 

during movement control, while those who were more-impacted in the left arm showed 

greater deficits during stabilization control (Schaefer et al. 2009, Schaefer et al. 2011, 

Mani et al. 2013). Recent findings by Kinzie and colleagues (2016) indicate that 

proprioceptive deficits after stroke are lateralized in a manner consistent with the findings 

of Schaefer, Mani and colleagues.  

 The findings from these three studies have broad scientific and clinical impact. 

First, the finding of persistent, non-task relevant residual co-activation (Chapters 4 and 5) 

demonstrate that one barrier to restoration of motor function after stroke is lost ability to 

fully relax muscles after use. Even low levels of persistent muscle activation can have 
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insidious impacts in motor control, including increased sensitivity of stretch reflexes and 

increased mechanical resistance about the joint, even in those with intact descending 

motor control (Burne et al 2005). However, in those with impairments in descending 

control, including weak descending drive, increased stretch reflex activity and joint 

impedance would be more difficult to cope with. Lost descending control from the 

corticospinal tract control is likely subsumed by the reticulospinal system (Baker 2011, 

Zaaimi et al. 2012). The reticulospinal tract has much less fractionation and flexibility 

than does the corticospinal tract, which makes it less able to compensate for these 

positive symptoms of disordered motor control (Matsuyama et al. 1997, Peterson et al. 

1975). Additionally, the reticulospinal tract likely contributes to the higher levels of 

persistent muscle activation in that it both has decreased ability to drive inhibition of 

alpha motoneurons in the spinal cord (Lundberg and Voorhoeve 1962) and it uses slow-

acting excitatory neurotransmitters that can linger in the synapse for minutes (Lundy-

Eckman 2007). Finally, these studies indicate that stroke may be a good model for 

studying the impact of proprioception on individual movement control actions.  

 
Limitations 

 
 
Stroke can cause a broad range of deficits in movement (Bobath 1990, Ghika 

2005), somatosensation (Brain 1956), and specific components of proprioception (Kinzie 

et al. 2016). The wide variability of motor and sensory impairments may limit 

applicability of our findings. In addition, these studies are also limited in that they 

examine muscle activity, torque production, and movement only at the elbow. While this 

choice was made to allow us to get closer to the mechanisms underlying coordination of 
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agonist/antagonist muscle pairs and sequential stabilization and movement control 

actions after stroke, the extent to which our findings apply to multi-joint movements 

remains an open question.  

Limitations were introduced in our electromyography (EMG) signals when the 

data were normalized to maximal isometric volitional contractions (MVICs). First, given 

that SP have reduced descending drive (cf. Riddle et al. 2009), it is possible that the 

maximal volitional contraction does not completely reflect the maximal possible 

contraction that the muscle can achieve. Furthermore, values were normalized to the 

measured MVIC value for each participant in order to compare across participants and 

across groups. While this was necessary to achieve our experimental objectives, it is 

likely that NI participants have higher levels of raw MVIC than do SP. Thus, when the 

processed EMG values are divided by smaller numbers (likely in the SP group), a given 

raw value would account for a larger percentage of the maximal range than the same raw 

value divided by a larger number (such as in the NI group).  

Furthermore, the amount of EMG activity recorded is a good indicator of the 

amount of activity in that muscle, but not the amount of force being produced by that 

muscle (Lieber 2002). Assuming the amount of observed activity in a muscle is held 

constant, the amount of force produced by the muscle would be smaller if the muscle was 

held in a shortened position, or if it was actively shortening in a concentric contraction. 

Conversely, the same amount of measured activation would be associated with greater 

levels of force production if the muscle is held in a lengthened position, or is actively 

lengthening in an eccentric contraction. Given the mechanics of the elbow 

agonist/antagonist muscle pairs, when one muscle is shortened or shortening, the 
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opposing muscle is lengthened or lengthening. Thus, while the experimental measures of 

CoA and DiffA used throughout these studies can effectively relate the amount of 

normalized muscle activity in a given time window, they cannot accurately reflect the 

forces being created by those muscles.  

 
Future Directions 
 
 
Reducing persistent muscle activity may improve function after stroke 
 
 

Consistent with our observations of persistent, low-level muscle activation in the 

survivors of stroke, several other research groups have observed elevated muscle activity 

in surface EMG (Burn et al. 2005) and intramuscular recordings of EMG (Chang et al. 

2013, Mottram et al. 2009, Mottram et al. 2010) in the more-impacted muscles of 

survivors of stroke. Currently, treatments that can effectively reduce muscle tone include 

targeted botulinum toxin injections, and oral or intrathecal baclofen (Olvey et al. 2010, 

Pandyan et al. 2002). While these treatments can be effective for reducing overall muscle 

tone in spastic muscle, they can be expensive, invasive, and may not work for everyone 

(cf. Yoon et al. 2017).  

One potential, non-invasive approach to reduction of muscle tone and 

preservation of force production after stroke may be dietary supplementation of taurine. 

Taurine has been demonstrated to improve calcium sequestration in neurons (Foos and 

Wu 2002) and in skeletal muscle (Dutka et al. 2014, Goodman et al. 2009). Indeed, when 

neurons are subjected to persistent excitation (such as prolonged glutamate exposure), 

their ability to regulate intracellular calcium transport can be impaired which can lead to 

excitotoxicity (Foos and Wu 2002). While alpha motoneurons are not experiencing 
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persistent glutamate excitation, they are likely under prolonged excitatory effects of 

monoamine neurotransmitters (Lundy-Eckman 2007). Improved ability to sequester 

calcium in the endoplasmic reticulum could potentially allow these motoneurons to de-

activate more quickly or effectively. Additionally, studies in human skeletal muscle fiber 

preparations have demonstrated that increased levels of intramuscular taurine increase the 

rate of calcium accumulation in the sarcoplasmic reticulum, but not the total quantity of 

calcium sequestered (Dutka et al. 2014). Thus, the muscle can de-activate more quickly 

when greater levels of taurine are present. Finally, Goodman and colleagues (2009) used 

a rat model to demonstrate that dietary taurine supplementation increased intramuscular 

taurine concentrations. This led to increased force production in the muscles during 

isometric twitch stimulation and tetanic force production, as well as retained force 

capacity after repeated stimulation compared with controls who were not given taurine 

supplementation. Faster, more complete de-activation of motoneurons and muscles, as 

well as increased and preserved force capacity would be beneficial to survivors of stroke.  

 
Use computational modeling to tease apart neural and muscular contributions to motor 
dysfunction after stroke  
 
 

The neural system and muscles are intimately linked, and both can remodel based 

on changes in one other. Thus, it is difficult to quantify the extent to which deficits in 

movement are caused by lost descending neural control and the extent to which these 

deficits are explained by physical changes in the mechanical and contractile properties of 

muscle. Computational modeling could be used to tease apart the contributions of neural 

deficits and those of remodeled muscle tissues to the abnormal movements observed after 

stroke. The datasets gathered in Aim 2 of this Dissertation include electromyographic and 



 

 

205 

kinematic data of survivors of stroke performing movement and stabilization tasks about 

a single joint. These data could be used to create computational neuro-musculo-skeletal 

models (c.f. Zajac and Winters 1990) that can help disambiguate questions of the extent 

to which motor deficits after stroke are due to changes in descending control and the 

extent to which they are the result of the mechanical constraints of remodeled muscle and 

connective tissues. 

 
Rehabilitation methodologies designed to strengthen and refine reticulospinal control 
may improve outcomes after stroke 
 
 

More severely impaired survivors of stroke have likely lost more corticospinal 

control than those who are less impaired. This lost control is supplanted by the 

reticulospinal tract, which has important limitations when compared with corticospinal 

control of movement including weaker, more diffuse connections to alpha motoneurons 

(Matsuyama et al. 1997, Peterson et al. 1975), lack of connections with inhibitory 

interneurons, and use of slow-acting neurotransmitters rather than fast-acting 

neurotransmitters (Lundy-Eckman 2007). The extent to which motor function can 

potentially be restored by the reticulospinal system and the amount and types of training 

required to do so remains an open question. Experiments in non-human primate models 

indicate that in the absence of corticospinal control, reticulospinal connections can be 

strengthened with use (Zaaimi et al. 2012). Thus, it may be useful to observe animal 

models to gain an understanding of the limitations of control of the reticulospinal system. 

For example, when Zaaimi and colleagues severed one side of the corticospinal tract in 

non-human primates, the animals could no longer extend the fingers of the more-
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impacted forepaw, but could use the more-impacted forepaw to climb bars in the cage 

(2012).  

 Currently, there is at least one rehabilitation protocol, Arm BASIS training, 

designed to restore movement in the more-impacted limb of severely-impacted stroke 

survivors (Platz et al. 2005). In this protocol, a clinician assists the patient in moving 

individual joints in the more-impacted arm throughout the volitional range of motion. 

During the first phase, the therapist supports the arm against gravity, and during the 

second phase the patient learns to make the same series of isolated movements while also 

compensating for gravity. During the third phase of training, patients are taught to 

combine the individual degrees of freedom into multi-joint movements. Arm BASIS 

training has been found to enhance selective motor control in the more-impacted arm of 

severely-impaired survivors of stroke (Platz et al. 2005). Given the protocol and the 

target population for this therapy, it appears that Arm BASIS training is directed at 

improving reticulospinal control of arm movement. Also, given the highly intensive 

nature of Arm BASIS training, this intervention protocol could potentially benefit from 

translation to a robotic therapy so that severely impaired patients can receive increased 

dosages without having to utilize as much therapist time.  

 
Examine role of proprioception on segmentation of multi-joint movements 
 
 
 Increased movement segmentation, also called submovements, in multi-joint 

movements after stroke has been noted extensively in the literature (Krebbs et al. 1999, 

Cirstea and Levin 2000, McCrea et al. 2005, Rohrer et al. 2002, Rohrer et al. 2004, 

Dipietro et al. 2009). However, we are not aware of any study explicitly examining 
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impact of stroke-related proprioceptive deficits on segmentation of multi-joint 

movements after stroke. In Chapter 4, impairments in proprioception after stroke were 

associated with degradation of stabilization control, but less segmented movement 

control. Thus, the presence or absence of proprioceptive deficits can explain differential 

impairment in limb stabilization and movement control actions in a single joint, at least in 

part. However, deficits observed in the one-joint stabilization and point-to-point elbow 

flexion task do not necessarily relate directly to measures of function or impairment after 

stroke. We believe this may be due to the fact that the types of actions tested in our 

selected measures of function and impairment, which require coordination of multiple 

limb segments in order to complete, are dissimilar from single-joint tasks such as the one 

tested in Chapter 4 which only tests the arm about a single degree-of-freedom. 

Furthermore, proprioception itself is made up of a multitude of signals encoding position 

and movement by sensors located in the skin, muscles and joints (Proske and Gandevia 

2012). The clinical measure of proprioception used here is a coarse evaluation of 

proprioceptive acuity (DeGowin et al. 1987, Epstein et al, 2008). Future experiments 

designed to specifically quantify the role of proprioception in differential impairment of 

stabilization and movement control actions could use more explicit, ratiometric measures 

of different components of proprioception (Hillier et al. 2015), in addition to the 

ratiometric measure of kinesthesia used here. These limitations motivate a study to 

quantify the impact of specific components of proprioceptive impairments on movement 

segmentation in multi-joint reaching.  
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APPENDIX A: EFFECT OF BOTULINUM TOXIN ON MOVEMENT 
 
 
Introduction  
 
 

This Appendix describes the rationale for excluding survivors of stroke who had 

received Botox (BTX) injections in upper extremity muscles from the analyses of 

Chapter 4 (Aim 2).  Although these individuals were originally included in the 

experiments of Chapter 3 (Aim 1), we shall show through kinematic analyses that stroke 

survivors who had received Botox (the BTX group) injections performed the elbow 

flexion task in a manner that was markedly different from the performances of stroke 

survivors not receiving anti-spasticity treatment (the SP group).  

 
Approach and Results 
 
 

 To consider whether or not the performance of BTX participants was consistent 

with performance of the SP group, we first considered the percentage of good trials 

performed by each group:  

NI:  97.6% good trials 

SP:  95.6% good trials 

BTX:  72.7% good trials 

Participants in the BTX group have a notably smaller percentage of good trials than NI 

and SP groups.  

Next, we normalized each participant's reach kinematics to their individual target 

distance (i.e., each participant's elbow displacement time series were divided by their 

individual target distance). This allowed all participants to be judged against their own 
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performance capability. Then, we performed rank-transformation and inverse normal 

transforms on the target-normalized kinematic data; this approach, which reflects the 

final form of the data analyses reported in Chapters 3 and 4, facilitates robust tests of 

whether or not the groups are similar in kinematic performance.  

For the following comparisons, we chose to combine variables across different 

trial types to focus more broadly on performance amongst groups. Error bars indicate 

95% confidence intervals on the mean of the RT-INT transformed data. 

Fig A1 compares RT-INT execution times. Compared with the SP and NI groups, 

the BTX group takes significantly longer to complete the flexion movement. 

 

 

Figure A1: Group mean and standard error of INT-RT1 transformed time to complete flexion movement. 
NI: neurologically intact control, SP: survivors of stroke not receiving botulinum toxin injections; BTX: 
survivors of stroke receiving botulinum toxin injections 

 
Figure A2 compares RT-INT submovement counts. Compared with the SP and NI 

groups, the BTX group require significantly more submovements. 
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Figure A2: Group mean and standard error of INT-RT1 transformed number of submovements required to 
complete flexion task. NI: neurologically intact control, SP: survivors of stroke not receiving botulinum 
toxin injections; BTX: survivors of stroke receiving botulinum toxin injections 

 
Figure A3 compares RT-INT movement speed. The BTX group made movements 

that were considerably slower than those made by the SP and NI groups. 

 

 

Figure A3: Group mean and standard error of INT-RT1 transformed position error prior to movement. . 
NI: neurologically intact control, SP: survivors of stroke not receiving botulinum toxin injections; BTX: 
surviviors of stroke receiving botulinum toxin injections 
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Figure A4 compares RT-INT extents of first submovements. The BTX group 

made significantly shorter first submovements than did the SP and NI groups. 

 

 

Figure A4: Group mean and standard error of INT-RT1 normalized distance of first flexion submovement 
during flexion task. NI: neurologically intact control, SP: survivors of stroke not receiving botulinum toxin 
injections; BTX: survivors of stroke receiving botulinum toxin injections 

 
Figure A5 compares RT-INT target capture errors at the end of first 

submovements. The BTX group's first submovements exhibited significantly greater 

undershoot error at the end of the first submovement than did the SP and NI groups. 
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Figure A5: Group mean and standard error of INT-RT1 transformed normalized movement error at end of 
first flexion submovement. NI: neurologically intact control, SP: survivors of stroke not receiving 
botulinum toxin injections; BTX: survivors of stroke receiving botulinum toxin injections 

 
Conclusion  
 
 

The BTX participants differed significantly from the SP group in nearly every 

kinematic performance measure during reaching. I conclude therefore that the two 

subgroups of stroke survivors represent distinct populations when it comes to the 

kinematics of reaching, and that it does not make sense to combine the two stroke 

survivor groups in the analyses of movement control of Aim 2 (Chapter 4). Combining 

the two groups would introduce unwanted variability, which would reduce the statistical 

power of the Aim 2 study (Chapter 4) by "swamping out" meaningful stroke-dependent 

differences in sensorimotor control of limb movement and holding still. 
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