58 research outputs found

    Physics Informed Recurrent Neural Networks for Seismic Response Evaluation of Nonlinear Systems

    Full text link
    Dynamic response evaluation in structural engineering is the process of determining the response of a structure, such as member forces, node displacements, etc when subjected to dynamic loads such as earthquakes, wind, or impact. This is an important aspect of structural analysis, as it enables engineers to assess structural performance under extreme loading conditions and make informed decisions about the design and safety of the structure. Conventional methods for dynamic response evaluation involve numerical simulations using finite element analysis (FEA), where the structure is modeled using finite elements, and the equations of motion are solved numerically. Although effective, this approach can be computationally intensive and may not be suitable for real-time applications. To address these limitations, recent advancements in machine learning, specifically artificial neural networks, have been applied to dynamic response evaluation in structural engineering. These techniques leverage large data sets and sophisticated algorithms to learn the complex relationship between inputs and outputs, making them ideal for such problems. In this paper, a novel approach is proposed for evaluating the dynamic response of multi-degree-of-freedom (MDOF) systems using physics-informed recurrent neural networks. The focus of this paper is to evaluate the seismic (earthquake) response of nonlinear structures. The predicted response will be compared to state-of-the-art methods such as FEA to assess the efficacy of the physics-informed RNN model

    Prediction of Nonlinear Drift Demands for Buildings with Recurrent Neural Networks

    Get PDF
    Application of deep learning algorithms to the problems of structural engineering is an emerging research field. Inthis study, a deep learning algorithm, namely recurrent neural network (RNN), is applied to tackle a problemrelated to the assessment of reinforced concrete buildings. Inter-storey drift ratio profile of a structure is a quiteimportant parameter while conducting assessment procedures. In general, procedures require a series of timeconsuming nonlinear dynamic analysis. In this study, an extensive RNN is trained to tackle these problems andprovide a simple tool for assessment. Aim of the study is to predict the non-linear drift demand along the heightof a structure by employing RNN for a given stiffness profile along the height, strength reduction coefficient, massdensity on a floor, number of storeys. In order to train the network, a large number of nonlinear time historyanalyses are conducted for synthetically created building models. It is shown that RNN is able to accurately predictnonlinear drift demand profile of a structure along height without conducting tedious time history analyses.Therefore, the trained RNN can serve as a drift demand estimation tool, significantly shortening the assessmentprocedure

    Nonlinear proper orthogonal decomposition for convection-dominated flows

    Get PDF
    Autoencoder techniques find increasingly common use in reduced order modeling as a means to create a latent space. This reduced order representation offers a modular data-driven modeling approach for nonlinear dynamical systems when integrated with a time series predictive model. In this Letter, we put forth a nonlinear proper orthogonal decomposition (POD) framework, which is an end-to-end Galerkin-free model combining autoencoders with long short-term memory networks for dynamics. By eliminating the projection error due to the truncation of Galerkin models, a key enabler of the proposed nonintrusive approach is the kinematic construction of a nonlinear mapping between the full-rank expansion of the POD coefficients and the latent space where the dynamics evolve. We test our framework for model reduction of a convection-dominated system, which is generally challenging for reduced order models. Our approach not only improves the accuracy, but also significantly reduces the computational cost of training and testing. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number DE-SC0019290. O.S. gratefully acknowledges the Early Career Research Program (ECRP) support of the U.S. Department of Energy. O.S. also gratefully acknowledges the financial support of the National Science Foundation under Award No. DMS-2012255. T.I. acknowledges support through National Science Foundation Grant No. DMS-2012253.acceptedVersio

    Physics-informed Deep Super-resolution for Spatiotemporal Data

    Full text link
    High-fidelity simulation of complex physical systems is exorbitantly expensive and inaccessible across spatiotemporal scales. Recently, there has been an increasing interest in leveraging deep learning to augment scientific data based on the coarse-grained simulations, which is of cheap computational expense and retains satisfactory solution accuracy. However, the major existing work focuses on data-driven approaches which rely on rich training datasets and lack sufficient physical constraints. To this end, we propose a novel and efficient spatiotemporal super-resolution framework via physics-informed learning, inspired by the independence between temporal and spatial derivatives in partial differential equations (PDEs). The general principle is to leverage the temporal interpolation for flow estimation, and then introduce convolutional-recurrent neural networks for learning temporal refinement. Furthermore, we employ the stacked residual blocks with wide activation and sub-pixel layers with pixelshuffle for spatial reconstruction, where feature extraction is conducted in a low-resolution latent space. Moreover, we consider hard imposition of boundary conditions in the network to improve reconstruction accuracy. Results demonstrate the superior effectiveness and efficiency of the proposed method compared with baseline algorithms through extensive numerical experiments
    corecore