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ABSTRACT

From multiscale modeling to metamodeling of
geomechanics problems

Kun Wang

In numerical simulations of geomechanics problems, a grand challenge consists of over-

coming the difficulties in making accurate and robust predictions by revealing the true

mechanisms in particle interactions, fluid flow inside pore spaces, and hydromechanical

coupling effect between the solid and fluid constituents, from microscale to mesoscale, and

to macroscale. While simulation tools incorporating subscale physics can provide detailed

insights and accurate material properties to macroscale simulations via computational ho-

mogenizations, these numerical simulations are often too computational demanding to

be directly used across multiple scales. Recent breakthroughs of Artificial Intelligence (AI)

via machine learning have great potential to overcome these barriers, as evidenced by their

great success in many applications such as image recognition, natural language processing,

and strategy exploration in games. The AI can achieve super-human performance level in

a large number of applications, and accomplish tasks that were thought to be not feasible

due to the limitations of human and previous computer algorithms. Yet, machine learning

approaches can also suffer from overfitting, lack of interpretability, and lack of reliability.

Thus the application of machine learning into generation of accurate and reliable surro-

gate constitutive models for geomaterials with multiscale and multiphysics is not trivial.

For this purpose, we propose to establish an integrated modeling process for automatic

designing, training, validating, and falsifying of constitutive models, or ”metamodeling”.

This dissertation focuses on our efforts in laying down step-by-step the necessary theoret-

ical and technical foundations for the multiscale metamodeling framework.

The first step is to develop multiscale hydromechanical homogenization frameworks

for both bulk granular materials and granular interfaces, with their behaviors homoge-



nized from subscale microstructural simulations. For efficient simulations of field-scale

geomechanics problems across more than two scales, we develop a hybrid data-driven

method designed to capture the multiscale hydro-mechanical coupling effect of porous

media with pores of various different sizes. By using sub-scale simulations to generate

database to train material models, an offline homogenization procedure is used to replace

the up-scaling procedure to generate path-dependent cohesive laws for localized physical

discontinuities at both grain and specimen scales.

To enable AI in taking over the trial-and-error tasks in the constitutive modeling pro-

cess, we introduce a novel “metamodeling” framework that employs both graph theory

and deep reinforcement learning (DRL) to generate accurate, physics compatible and in-

terpretable surrogate machine learning models. The process of writing constitutive models

is simplified as a sequence of forming graph edges with the goal of maximizing the model

score (a function of accuracy, robustness and forward prediction quality). By using neu-

ral networks to estimate policies and state values, the computer agent is able to efficiently

self-improve the constitutive models generated through self-playing.

To overcome the obstacle of limited information in geomechanics, we improve the ef-

ficiency in utilization of experimental data by a multi-agent cooperative metamodeling

framework to provide guidance on database generation and constitutive modeling at the

same time. The modeler agent in the framework focuses on evaluating all modeling op-

tions (from domain experts’ knowledge or machine learning) in a directed multigraph of

elasto-plasticity theory, and finding the optimal path that links the source of the directed

graph (e.g., strain history) to the target (e.g., stress). Meanwhile, the data agent focuses on

collecting data from real or virtual experiments, interacts with the modeler agent sequen-

tially and generates the database for model calibration to optimize the prediction accuracy.

Finally, we design a non-cooperative meta-modeling framework that focuses on automat-

ically developing strategies that simultaneously generate experimental data to calibrate

model parameters and explore weakness of a known constitutive model until the strengths

and weaknesses of the constitutive law on the application range can be identified through

competition. These tasks are enabled by a zero-sum reward system of the metamodeling

game and robust adversarial reinforcement learning techniques.
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Chapter 1

Introduction

Many engineering applications and geological processes involve localized failures in geo-

materials across multiple length scales (from millimeters to kilometers). For example, the

overall structural response of macroscale failures, such as hydraulic fracturing, fault reacti-

vation, and damage from underground explosions, depends on the underlying microscale

failures such as micro-slip-planes, microfractured damage zones, microvoid collapse, and

grain crushing. Understanding the multiscale hydro-mechanical responses of these fail-

ures is of ultimate importance for applications such as geological CO2 storage, nuclear

waste disposal, and earthquake rupture dynamics. Advanced high-fidelity experimental

and mesoscale modeling techniques can provide a large amount of microstructural infor-

mation. However, extracting the insightful and interpretable information from this ‘big

data’ to efficiently describe the underlying (grain-scale) mechanisms of larger-scale fail-

ures is difficult due to the complexity of hydro-mechanical coupling and microfracture

induced anisotropy. Hence the demand for modeling approaches that can efficiently ex-

tract and interpret information from the collected data. Novel machine learning techniques

such as reinforcement learning and convolutional neural networks have found great suc-
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cess across multiple disciplines such as image recognition, natural language processing,

and strategy exploration in games, but are just now being explored by the computational

geomechanics community. The data-driven computational geomechanics requires over-

coming the major obstacles of overfitting, lack of interpretability, and lack of reliability

in machine learning. This dissertation focuses on our efforts in laying down step-by-step

the necessary theoretical and technical foundations for developing an innovative frame-

work of designing and validating accurate surrogate constitutive models for multiscale

and multiphysics of geomaterials, which is named ”metamodeling”.

The first step consists of establishing multiscale homogenization frameworks for porous

media. We develop multiscale multiphysics finite element modeling frameworks for both

bulk granular materials (Chapter 2) and granular interfaces (Chapter 3), with their hy-

dromechanical behaviors homogenized from subscale microstructural simulations. This

approach allows one to bypass the need of deriving multi-physical phenomenological laws

for complex loading paths and enables the capturing of the evolving anisotropy of the con-

tact fabrics of grains and the permeabilities of macro-pores and micro-pores.

For efficient simulations of field-scale geomechanics problems across more than two

scales, we develop a hybrid data-driven method designed to capture the multiscale hydro-

mechanical coupling effect of porous media with pores of various different sizes (Chapter

4). At each scale, data-driven models generated from supervised machine learning are

hybridized with classical constitutive laws in a directed graph that represents the numer-

ical models. By using sub-scale simulations to generate database to train material mod-

els, an offline homogenization procedure is used to replace the up-scaling procedure to

generate cohesive laws for localized physical discontinuities at both grain and specimen

scales. Through a proper homogenization procedure that preserves spatial length scales,
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the proposed method enables field-scale simulations to gather insights from meso-scale

and grain-scale micro-structural attributes. This method is proven to be much more com-

putationally efficient than the classical DEM-FEM approach while at the same time more

robust and flexible than the classical surrogate modeling approach.

For automatic generation of optimal surrogate models of geomaterials based on col-

lected data, we introduce a novel “meta-modeling” framework that employs both graph

theory and deep reinforcement learning (DRL) to generate constitutive models (Chapter

5). The constitutive models are conceptualized as information flow in directed graphs.

The process of writing constitutive models is simplified as a sequence of forming graph

edges with the goal of maximizing the model score (a function of accuracy, robustness and

forward prediction quality). Thus meta-modeling can be formulated as a Markov decision

process with well-defined states, actions, rules, and rewards. By using neural networks

to estimate policies and state values, the computer agent is able to efficiently self-improve

the constitutive models generated through self-playing, in the same way AlphaGo Zero

(the algorithm that outplayed the world champion in the game of Go) improves its game-

play. Our numerical examples show that this automated meta-modeling framework not

only produces models which outperform existing cohesive models on benchmark trac-

tion–separation data, but is also capable of detecting hidden mechanisms among micro-

structural features and incorporating them in constitutive models to improve the forward

prediction accuracy.

To overcome the obstacle of limited information in geomechanics, a multi-agent coop-

erative metamodeling framework is designed to provide guidance on database generation

and constitutive modeling at the same time (Chapter 6). The modeler agent in the frame-

work focuses on evaluating all modeling options (from domain experts’ knowledge or
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machine learning) in a directed multigraph of elasto-plasticity theory, and finding the op-

timal path that links the source of the directed graph (e.g., strain history) to the target (e.g.,

stress). Meanwhile, the data agent, who focuses on collecting data from real or virtual

experiments, interacts with the modeler agent sequentially and generate the database for

model calibration to optimize the prediction accuracy. This treatment enables us to emu-

late an idealized scientific collaboration between experimentalists and modelers to derive,

implement, calibrate and validate a constitutive model for the complex responses of geo-

materials.

Finally, to automatically assess the strength, weakness, and robustness of geomechan-

ics models, we design a non-cooperative meta-modeling framework that focuses on devel-

oping strategies that simultaneously generate experimental data to calibrate model param-

eters and explore weakness of a known constitutive model until the strengths and weak-

nesses of the constitutive law on the application range can be identified through competi-

tion (Chapter 7). These tasks are enabled by the recent development of robust adversarial

reinforcement learning techniques.

As for notations and symbols, bold-faced letters denote tensors; the symbol ’·’ denotes

a single contraction of adjacent indices of two tensors (e.g. a · b = aibi or c · d = cijdjk );

the symbol ‘:’ denotes a double contraction of adjacent indices of tensor of rank two or

higher ( e.g. C : εe = Cijklε
e
kl ); the symbol ‘⊗’ denotes a juxtaposition of two vectors (e.g.

a⊗ b = aibj) or two symmetric second order tensors (e.g. (α⊗ β)ijkl = αijβkl). Moreover,

(α ⊕ β)ijkl = αjl βik and (α 	 β)ijkl = αil β jk. We also define identity tensors (I)ij = δij,

(I4)ijkl = δikδjl , and (I4
sym)ijkl =

1
2 (δikδjl + δilδkj), where δij is the Kronecker delta. As for

sign conventions, unless specified otherwise, we consider the direction of the tensile stress

and dilative pressure as positive.
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Chapter 2

Multiscale discrete-continuum

coupling for saturated porous media

This chapter is reproduced from the published paper: K. Wang, W.C. Sun, A semi-implicit

discrete-continuum coupling method for porous media based on the effective stress prin-

ciple at finite strain, Computer Methods in Applied Mechanics and Engineering, 304(1):546-583,

2016.

2.1 Introduction

A two-phase fluid-infiltrating porous solid is made of a solid matrix and a pore space satu-

rated by fluid. When subjected to external loading, the mechanical responses of the porous

solid strongly depend on whether and how pore fluid diffuse inside the pore space. The

classical approach to model the fluid-solid interaction in a porous solid is to consider it

as a mixture continuum in the macroscopic scale. At each continuum material point, a

fraction of volume is occupied by one or multiple types of fluid, while the rest of volume

is occupied by the solid constituent. A governing equation can then be derived from bal-
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ance principles of the mixture [223, 19, 232, 31]. One key ingredient for the success of this

continuum approach is the effective stress principle, which postulates that the external

loading imposed on porous solid is partially carried by the solid skeleton and partially

supported by the fluid [224, 19, 183]. By assuming that the total stress is a linear combina-

tion of the effective stress of the solid skeleton and the pore pressure of interstitial fluid,

analytical and numerical solutions can be sought once a proper set of constitutive laws is

identified to relate effective stress with strain and internal variables, and Darcy’s veloc-

ity with pore pressure can be identified even though effective stress cannot be measured

directly [223, 258, 138]. In recent years, the advancement of computational resources has

led to the development of numerous finite element models that employ the effective stress

principle [176, 199, 25, 6]. Nevertheless, modeling the complex path-dependent responses

for geomaterials remains a big challenge [52]. This difficulty is partly due to the need to

incorporate a large amount of internal variables and material parameters, which makes

the calibration more difficult. Another difficulty is due to the weak underpinning of the

phenomenological approach to replicate anisotropy caused by changes of micro-structures

and fabric [124].

A conceptually simple but computational expensive remedy to resolve this issue is to

explicitly model the microscopic fluid-solid interaction. In fact, this approach has been

widely used to study sedimentation problems. Previous work, such as [91, 137, 82, 92,

184, 17], has obtained various degree of successes in simulating fluidized granular beds by

establishing information exchange mechanism among discrete element model and fluid

solvers. For a subset of two-phase problems in which the length scale of interest is larger

than the grain diameter and the fluid flow is laminar, the pore-scale interstitial fluid motion

is often not resolved but instead modeled via a locally averaged Navier-Stokes equations
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(LANS) that couples with DEM via a parametric drag force [50, 184]. By assuming that

a weak separation of scale is valid, this meso-scale approach essentially couples the large

scale Navier-Stokes fluid motion with grain-scale DEM model that captures the granular

flow nature via interface force. While this method is found to be very efficient for mixing

problem, coupling the macroscopic flow at meso-scale via force-based interaction is not

without limitations. First, the simulated hydro-mechanical coupling effect is highly sensi-

tive to the fluid drag force model chosen to replicate the particle-fluid interaction. This can

lead to complications for calibration and material identification, as the expressions of these

fluid drag forces are often empirically correlated by the local porosity, Reynolds number

and other factors such as the diameter of the particles, [268]. Furthermore, the meso-scale

fluid-particle simulations still require significant computational resources when a large

number of particles are involved.

The purpose of this study is to propose a new multiscale hydro-mechanical model that

(1) provides the physical underpinning from discrete element simulations, (2) resolves the

problems associated with the phenomenological nature of drag force, and (3) improves

the efficiency of large-scale problems. Our target is a sub-class of problems in which the

solid skeleton is composed of particulate assemblies in solid state (rather than granular

flow) and the porous space is fully saturated with a single type of pore fluid in laminar

regime. As in the previous work for particle-fluid system [50, 184], we also adopt the

assumption that a weak separation of scale exists between the motion of solid particles

and that of the pore fluid. Our major departure is the way we employ this weak separation

of the pore fluid to establish hydro-mechanical coupling across length scales. Instead of

using the phenomenological drag force model to establish coupling, we use the effective

stress principle to partition the macroscopic total stress as the sum of effective stress, which
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comes from microscopic DEM simulation, and the fluid contribution, which comes from

the Biot’s coefficient inferred from DEM assemblies and the pore pressure updated from a

total Lagrangian poromechanics finite element solver.

The coupled transient problem requires a time integration scheme to advance numer-

ical solution from known solid displacement un and pore-fluid pressure p f
n at time tn to

unknowns un+1 and p f
n+1 at the next time step tn+1 = tn + ∆t. Explicit integration scheme

has been employed in multiscale dynamic analysis of soils [159]. This method is simple

in the sense that it advances solutions without solving system of equations. However, it

often requires small time steps in order to achieve numerical stability, and when coupling

with DEM solver, the condition is even more stringent. Another approach, the implicit

scheme, has the possibility of attaining unconditional stability, but the linearization of vari-

ational equations, equation solving and iterations require much computational cost per

time step. To make a trade-off, [99] and [177] suggest the usage of an implicit-explicit pre-

dictor/multicorrector scheme in nonlinear hydro-mechanical transient problem. Our main

contribution in this study is the extension of this method to multiscale coupling problems.

We suggest a distinct treatment of the elastic and plastic component of material stiffness

homogenized from DEM microstructures. Accordingly, an information exchange scheme

is established between the FEM and DEM solvers.

The rest of this chapter is organized as follows. In section 2, we first describe the

homogenization theory for saturated porous media serving as the framework for micro-

macro transitions. Then, the discrete-continuum coupling model in the finite deformation

range is presented in Section 3. The details of the multiscale semi-implicit method are

provided in Section 4, with an emphasis placed on how the material properties homog-

enized from DEM are employed in the semi-implicit FEM-mixed-DEM solution scheme.
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Selected problems in geomechanics are simulated via the proposed method to study its

performance and their results are presented in Section 5. Finally, concluding remarks are

given in Section 6.

2.2 Homogenization theory for porous media

In this section, we describe the homogenization theory we adopt to establish the DEM-

mixed-FEM coupling model for fully saturated porous media. Previous work for dry

granular materials, such as [143, 144, 88], has demonstrated that a hierarchical discrete-

continuum coupling model can be established by using grain-scale simulations to provide

Gauss point stress update for finite element simulations in a fully implicit scheme. Nev-

ertheless, the extension of this idea for partially or fully saturated porous media has not

been explored, to the best knowledge of the authors.

In this work, we hypothesize that the pore-fluid flow inside the pores is in the laminar

regime and is dominated by viscous forces such that Darcy’s law is valid at the represen-

tative elementary volume level [210, 209, 214]. Provided that this assumption is valid, we

define the pore pressure field only at the macroscopic level and neglect local fluctuation of

the pore pressure at the pore- and grain-scale.

On the other hand, we abandon the usage of macroscopic constitutive law to repli-

cate the constitutive responses of the solid constituent. Instead, we apply the effective

stress principle [223, 87, 86] and thus allow the change of the macroscopic effective stress

as a direct consequence of the compression, deformation and shear resistance of the solid

constituent inferred from grain-scale simulations. As a result, the effective stress can be ob-

tained from homogenizing the forces and branch vectors of the force network formed by

the solid particles or aggregates, while the total stress becomes a partition of the homog-
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enized effective stress from the microscopic granular assemblies, and the pore pressure

from the macroscopic mixture continuum.

2.2.1 Dual-scale effective stress principle

In this study, we make assumptions that (1) a separation of scale exists and that (2) a repre-

sentative volume element (RVE) can be clearly defined. Strictly speaking, the assumption

(2) is true if the unit cell has a periodic microstructure or when the volume is sufficiently

large such that it possesses statistically homogeneous and ergodic properties [80].

With the aforementioned assumptions in mind, we consider a homogenized macro-

scopic solid skeleton continuum Bs ⊂ R3 whose displacement field is C0 continuous. Each

position of the macroscopic solid body in the reference configuration, i.e., X = Xs ∈ Bs
0,

is associated with a micro-structure of the RVE size. Let us denote the trajectories of the

macroscopic solid skeleton and the fluid constituent in the saturated two-phase porous

medium from the reference configuration to the current solid configuration as,

x = ϕs(X, t) ; x = ϕf (X f , t) (2.1)

Unless the porous medium is locally undrained, the solid and fluid constituents are not

bundled to move along the same trajectory, i.e., ϕs(·, t) 6= ϕf (·, t). If we choose to follow

the macroscopic solid skeleton trajectory to formulate the macroscopic balance principles,

then the control volumes are attached to solid skeleton only, and the pore fluid motion

is described by relative movement between the fluid constituent and the solid matrix, as

shown in Fig. 2.1. The deformation gradient of the macroscopic solid constituent F can

therefore be written as,

F =
∂ϕ(Xs, t)

∂Xs =
∂ϕ(X, t)

∂X
=

∂x
∂X

(2.2)
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in which we omit the superscript s when quantities are referred to solid phase. Now, fol-

Figure 2.1: Trajectories of the solid and fluid constituents ϕs = ϕ and ϕf . The motion ϕ

conserves all the mass of the solid constituent, while the fluid may enter or leave the body

of the solid constituent. Figure reproduced from [215]

.

lowing [143], we associate each point in the current configuration x with an aggregate of

N particles inside the representative volume V . Furthermore, we introduce a local coordi-

nate system for the RVE in which the position vector y ∈ R3 becomes 0 at the geometric

centroid of the RVE. The locations of the centroids of the N particles expressed using the

local coordinate system read, i.e.,

yp ∈ V , p = 1, 2, ...N. (2.3)

where yp is the local position vector of the center of the p-th particle in the microstructure

and x + yp is the same position expressed in the macroscopic current coordinate system.

Particles inside the RVE may make contacts to each other. The local position vector of each

contact between each particle-pair yc can be written as,

yc ∈ V , c = 1, 2, ...Nc. (2.4)
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Both the positions of the particles yp and that of the contacts yc are governed by contact

law and the equilibrium equations. Previous works, such as [50, 73, 184], have found

success in explicitly modeling the pore-scale grain-fluid interaction. Nevertheless, such

grain-fluid interaction simulations do impose a very high computational demand due to

the fact that the fluid flow typically requires at least an order more of degree of freedoms

to resolve the flow in the void space among particles. However, for seepage flow that is

within the laminar regime where Darcy’s law applies, the new insight obtained from the

costly simulations will be limited. As a result, this discrete-continuum coupling model

does not explicitly model the pore-scale solid-fluid interaction. Instead, we rely on the

hypothesis that effective stress principle is valid for the specific boundary value problems

we considered. In particular, we make the following assumptions:

• The void space is always fully saturated with one type of fluid and there is no capil-

lary effect that leads to apparent cohesion of the solid skeleton.

• The flow in the void space remains Darcian at the macroscopic level.

• All particles in the granular assemblies are in contact with the neighboring particles.

• Fluidization, suffusion and erosion do not occur.

• Grain crushing does not occur.

• There is no mass exchange between the fluid and solid constituents.

As a result, we may express the total macroscopic Cauchy stress as a function of ho-

mogenized Cauchy effective stress inferred from DEM and the macroscopic pore pressure

obtained from the mixed finite element, i.e.

σ(x, t) =< σ′(x, t) >RVE −B(x, t)p f (x, t)I (2.5)
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where

< σ′(x, t) >RVE=
1

2VRVE

Nc

∑
c
( f c ⊗ lc + lc ⊗ f c) (2.6)

f c is the contact force and lc is the branch vector, the vector that connects the centroids

of two grains forming the contact [46, 11, 214], at the grain contact x + yc ∈ R3. VRVE is

the volume of the RVE and Nc is the total number of particles in the RVE. Meanwhile, the

Biot’s coefficient B reads,

B(x, t) = 1− KDEM
T (x, t)

Ks
(2.7)

with KDEM
T (x, t) and Ks being the effective tangential bulk modulus of the solid matrix in-

ferred from DEM, and the bulk modulus of the solid grain respectively [156, 199]. Notice

that, in the geotechnical engineering and geomechanics literature, such as [153, 114], it is

common to impose incompressible volumetric constraint on dry DEM assembly to simu-

late undrained condition at meso-scale. This treatment can be considered as a special case

of (2.7) when the bulk modulus of the solid grain is significantly higher than that of the

skeleton such that the Biot’s coefficient is approximately equal to one.

2.2.2 Micro-macro-transition for solid skeleton

In this study, we consider the class of two-phase porous media of which the solid skeleton

is composed of particles. These particles can be cohesion-less or cohesive, but the assem-

blies they formed are assumed to be of particulate nature and hence suitable for DEM

simulations. [49].

In our implementation, the DEM simulations are conducted via YADE (Yet Another

Dynamic Engine [202]), an open source code base for discontinua. These grain-scale DEM

simulations are used as a replacement to the macroscopic constitutive laws that relate

strain measure with effective stress measure for each RVE associated with a Gauss point
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in the macroscopic mixed finite element. In particular, a velocity gradient is prescribed

to move the frame of the unit cell and the DEM will seek for the static equilibrium state

via dynamics relaxation method. After static equilibrium is achieved, the internal forces

and branch vectors are used to compute the homogenized effective Cauchy stress via the

micro-macro transition theory [143, 144, 252].

The Hill-Mandel micro-heterogeneity condition demands that the power at the micro-

scopic scale must be equal to the the rate of work done measured by the macroscopic

effective stress and strain rate measures. For the solid constituent of the two-phase porous

media, this condition can be expressed in terms of any power-conjugate effective stress and

strain rate pair , such as (P′, Ḟ) and (S′, Ė) and (σ′, D) [25, 6]. For instance, the condition

can be written in terms of the effective stress and rate of deformation of the solid skeleton,

i.e.,

< σ′ >RVE : < D >RVE=< σ′ : D >RVE (2.8)

where D is the rate of deformation, i.e., the symmetric part of the velocity gradient tensor,

< D >RVE=
1
2
(< L >RVE + < LT >RVE) ; L = ∇x v (2.9)

and < σ′ >RVE is defined previously in (2.6). Previous studies, such as, [143, 252, 144, 68],

have established that the linear deformation, periodic, and uniform traction are three

boundary conditions that satisfy the Hill-Mandel micro-heterogeneity condition. In our

implementation, we apply the periodic boundary condition to obtain the effective stress

measure, because the periodic boundary condition may yield responses that are softer than

those obtained from the linear deformation BC but stiffer than those obtained from the uni-

form traction BC. In particular, the periodic boundary condition enforces two constraints:
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(1) the periodicity of the deformation, i.e.,

[[yb]] =< F >RVE [[Yb]] and [[Rb]] = 0 (2.10)

where [[·]] denotes the jump across boundaries, yb and Yb represent the position vectors

of the particles at the boundary of the reference and current configurations, Rb ∈ SO(3)

represents the rotation tensor of particles at the boundary, and (2) the anti-periodicity of

the force f b and moment on the boundary of the RVE, i.e.,

[[ f b]] = 0 and [[(yc − yb)× f b]] = 0 (2.11)

In YADE, the DEM code we employed for grain-scale simulations, the deformation of an

RVE is driven by a periodic cell box in which the macroscopic velocity gradient of the unit

cell < L >RVE can both be measured and prescribed.

2.3 Multiscale DEM-mixed-FEM hydro-mechanical model

The differential equations governing the isothermal saturated porous media in large de-

formation are derived based on the mixture theory, in which solid matrix and pore fluid

are treated together as a multiphase continuum [176, 25, 6, 48, 215, 139]. The solid and

fluid constituents may simultaneously occupy fractions of the volume of the same ma-

terial point. The physical quantities of the mixture, such as density and total stress, are

spatially homogenized from its components. For example, the averaged density of the

fluid saturated soil mixture is defined as:

ρ = ρs + ρ f = (1− φ)ρs + φρ f (2.12)

where ρα is the partial mass density of the α constituent and ρα is the intrinsic mass density

of the α constituent, with φ being the porosity.
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2.3.1 Balance of linear momentum

For the balance of linear momentum law in finite strain, we adopt the total Lagrangian for-

mulation and choose the total second Piola-Kirchhoff stress (PK2) S as the stress measure.

The inertial effect is neglected. The equation takes the form:

∇X ·(FS) + J(ρs + ρ f )g = 0 (2.13)

where the Jacobian J = det(F). The principle of effective stress postulates that the total

Cauchy stress σ can be decomposed into an effective stress due to the solid skeleton defor-

mation and an isotropic pore pressure (p f ) stress. The effective stress principle in terms of

PK2 writes:

S = S′DEM − JF−1BDEM p f IF−T (2.14)

where

S′DEM
= JF−1σ′

DEMF−T = JF−1( 1
VRVE

Nc

∑
i

f ⊗ l
)

F−T (2.15)

Thus the balance of linear momentum becomes:

∇X ·(FS′DEM − JBDEM p f F−T) + J(ρs + ρ f )g = 0 (2.16)

2.3.2 Balance of fluid mass

The simplified u-p formulation in finite strain requires another equation illustrating the

balance of mass for pore fluid constituent:

Dρ f

Dt
= −∇X ·(JF−1[φDEMρ f (v f − v)]) (2.17)

where D[�]
Dt = ˙[�] is the material time derivative with respect to the velocity of solid skeleton

v.
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We make isothermal and barotropic assumptions and suppose that p f << Ks and that

DBDEM

Dt ∼ 0. After simplifications [215], the balance of mass becomes:

BDEM

J
DJ
Dt

+
1

MDEM
Dp f

Dt
+∇X ·( 1

ρ f
(JF−1[φDEMρ f (v f − v)])) = 0 (2.18)

where

MDEM =
KsK f

K f (BDEM − φDEM) + KsφDEM (2.19)

is the Biot’s modulus [156], with K f being the bulk modulus of pore fluid.

In this chapter, Darcy’s constitutive law relating the relative flow and the pore pressure

is employed, neglecting the inertial effect:

Q = KDEM · (−∇X p f + ρ f FT · g) (2.20)

where the pull-back permeability tensor KDEM is defined as

KDEM = JF−1 · kDEM · F-T (2.21)

Assume that the effective permeability tensor kDEM is isotropic, i.e.,

kDEM = kDEMI (2.22)

where kDEM is the scalar effective permeability in unit of m2

Pa·s . It is updated from porosity

of DEM RVEs according to the Kozeny-Carmen equation.

2.3.3 Weak form

To construct the macroscopic hydro-mechanical boundary-value problem, consider a ref-

erence domain B with its boundary ∂B composed of Dirichlet boundaries (solid displace-

ment ∂Bu, pore pressure ∂Bp ) and Von Neumann boundaries (solid traction ∂Bt, fluid flux
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∂Bq ) satisfying 
∂B = ∂Bu ∪ ∂Bt = ∂Bp ∪ ∂Bq

∅ = ∂Bu ∩ ∂Bt = ∂Bp ∩ ∂Bq

(2.23)

The prescribed boundary conditions are

u = u on ∂Bu

P · N = (F · S) · N = t on ∂Bt

p f = p on ∂Bp

−N ·Q = Q on ∂BQ

(2.24)

where N is outward unit normal on undeformed surface ∂B.

For model closure, the initial conditions are imposed as

p f = p f
0 , u = u0 at t = t0 (2.25)

Following the standard procedures of the variational formulation, we obtain finally the

weak form of the balance of linear momentum and mass

G : Vu ×Vp ×Vη → R

G(u, p f , η) =
∫
B
∇X η : (F · S′DEM − JBp f F-T) dV−

∫
B

J(ρ f + ρs)η · gdV

−
∫

∂Bt

η · t dΓ = 0 (2.26)

H : Vu ×Vp ×Vψ → R

H(u, p f , ψ) =
∫
B

ψ
BDEM

J
J̇ dV +

∫
B

ψ
1

MDEM ṗ f dV

−
∫
B
∇X ψ · [KDEM · (−∇X p f + ρ f FT · g)] dV

−
∫

∂BQ

ψQ dΓ = 0 (2.27)
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The first integral of H(u, p f , ψ) can be related to the solid velocity field u̇ using the

equations J̇ = J∇x· u̇ and ∇x· u̇ = ∇X u̇ : F-T [25]:

∫
B

ψ
BDEM

J
J̇ dV =

∫
B

ψBDEM∇x· u̇ dV =
∫
B

ψBDEMF-T : ∇X u̇ dV (2.28)

The displacement and pore pressure trial spaces for the weak form are defined as

Vu = {u : B → R3|u ∈ [H1(B)]3, u|∂Bu = u} (2.29)

Vp = {p f : B → R|p f ∈ H1(B), p f |∂Bp = p} (2.30)

and the corresponding admissible spaces of variations are defined as

Vη = {η : B → R3|η ∈ [H1(B)]3, η|∂Bu = 0} (2.31)

Vψ = {ψ : B → R|ψ ∈ H1(B), ψ|∂Bp = 0} (2.32)

H1 denotes the Sobolev space of degree one, which is the space of square integrable

function whose weak derivative up to order 1 are also square integrable (cf. [98, 32]).

2.3.4 Finite element spatial discretization

The spatially discretized equations can be derived following the standard Galerkin proce-

dure. Shape functions Nu(X) and Np(X) are used for approximation of solid motion u, u̇

and pore pressure p f , ṗ f , respectively:
u = Nuū, u̇ = Nu ˙̄u, η = Nuη̄

p f = Np p̄ f , ṗ f = Np ˙̄p f , ψ = Npψ̄

(2.33)

with ū being the nodal solid displacement vector, p̄ f being the nodal pore pressure vector,

˙̄u, ˙̄p f being their time derivatives, and η̄, ψ̄ being their variations.

The adopted eight-node hexahedral element interpolates the displacement and pore

pressure field with the same order. As a result, this combination does not inherently satisfy
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the inf-sup condition [254, 215, 207]. Therefore a stabilization procedure is necessary. In

this study, the fluid pressure Laplacian scheme is applied. This scheme consists of adding

the following stabilization term to the balance of mass equation (2.27) :∫
B
∇X ψ αstab ∇X ṗ f dV (2.34)

with αstab a scale factor depending on element size and material properties of the porous

media. For detailed formulations, please refer to [233, 215].

We obtain the finite element equations for balance of linear momentum and balance of

mass as:
G(u, p f , η) = 0

H(u, p f , ψ) = 0
=⇒


Fs

int(ū)− Kup p̄ f −G1 = F1
ext

C1 ˙̄u + (C2 + Cstab) ˙̄p f + Kp p̄ f −G2 = F2
ext

(2.35)

with expressions for each term:

Fs
int(ū) =

∫
B
(∇X Nu)

T : (F · S′DEM
)dV

Kup =
∫
B

JBDEM(∇X Nu)
T : F-T · NpdV

C1 =
∫
B

BDEMNT
p F-T : (∇X Nu)dV

C2 =
∫
B

1
MDEM NT

p NpdV

Cstab =
∫
B
(∇X Np)

Tαstab(∇X Np)dV

Kp =
∫
B
(∇X Np)

T(JF−1 · kDEM · F-T)(∇X Np)dV

G1 =
∫
B

J(ρ f + ρs)Nu
TgdV

G2 =
∫
B
(∇X Np)

T(JF−1 · kDEM · F-T)ρ f FT · gdV

F1
ext =

∫
∂Bt

Nu
TtdΓ

F2
ext =

∫
∂BQ

Np
TQdΓ

(2.36)

The non-linear equation system (2.35) can be rewritten in a compact form:

M∗ · v + Fint(d)−G(d) = Fext (2.37)
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where M∗ =

 0 0

C1 (C2 + Cstab)

 , v =

 ˙̄u

˙̄p f

, Fint =

Fs
int(ū)− Kup p̄ f

Kp p̄ f

, d =

 ū

p̄ f

,

G =

G1

G2

 and Fext =

F1
ext

F2
ext

.

2.3.5 Consistent linearization

The semi-implicit solution scheme requires the expression of the tangential stiffness of the

implicit contribution. Thus, we perform the consistent linearization of the weak forms

(2.26) and (2.27) in the reference configuration [29, 189]. For the balance of linear momen-

tum equation, the consistent linearization reads,

δG(u, p f , η) =

η̄TKsδū︷ ︸︸ ︷∫
B
(FT · ∇X η) : (CSE)DEM : δE dV+

η̄TKgeo
S′ δū︷ ︸︸ ︷∫

B
S′DEM : (∇X δu)T · ∇X η dV

−

η̄TKgeo

p f δū︷ ︸︸ ︷∫
B
∇X η : δ(JBDEMF-T)p f dV−

η̄TKupδp̄ f︷ ︸︸ ︷∫
B

JBDEM∇X η : F-Tδp f dV

−

η̄TδG1︷ ︸︸ ︷∫
B

ρ f ∇X · (JF-1 · δu)η · g dV−

η̄TδF1
ext︷ ︸︸ ︷∫

∂Bt

η · δt dΓ = 0

(2.38)

where CSE
I JKL =

∂S′I J
∂EKL

is the material tangential stiffness. δE is the variation of the Green-

Lagrange strain tensor and δE = 1
2 [(∇X δu)TF + FT(∇X δu)]. Kgeo

S′ and Kgeo
p f are the initial

stress and initial pore pressure contributions to the geometrical stiffness. For the balance
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of mass equation, the corresponding linearization term reads,

δH(u, p f , ψ) =

ψ̄TδC1 ˙̄u︷ ︸︸ ︷∫
B

ψδ(BDEMF-T) : ∇X u̇ dV+

ψ̄TC1δ ˙̄u︷ ︸︸ ︷∫
B

ψBDEMF-T : ∇X δu̇ dV

+

ψ̄TδC2 ˙̄p f︷ ︸︸ ︷∫
B

ψδ(
1

MDEM ) ṗ f dV+

ψ̄TC2δ ˙̄p f︷ ︸︸ ︷∫
B

ψ
1

MDEM
˙δp f dV+

ψ̄TCstabδ ˙̄p f︷ ︸︸ ︷∫
B
∇X ψ αstab ∇X δ ṗ f dV

+

ψ̄TKpδp̄ f︷ ︸︸ ︷∫
B
∇X ψ · KDEM · ∇X δp f dV+

ψ̄TKp
1 δū︷ ︸︸ ︷∫

B
∇X ψ · δKDEM · ∇X p f dV

−

ψ̄TδG2︷ ︸︸ ︷∫
B
∇X ψ · δ(KDEM · ρ f FT) · g dV−

ψ̄TδF2
ext︷ ︸︸ ︷∫

∂BQ

ψδQ dΓ = 0

(2.39)

where Kp
1 is the geometrical term related to the permeability k.

The proposed semi-implicit scheme splits G(u, p f , η) and H(u, p f , ψ) into implicitly

treated parts and explicitly treated parts, thus only a subset of the linearization terms in

(2.38) and (2.39) will be used. The implicit-explicit split will be explained in the next sec-

tion.

2.4 Semi-implicit multiscale time integrator

While both implicit and explicit time integrators have been used in DEM-FEM coupling

models for dry granular materials [143, 88, 132], the extension of these algorithms to mul-

tiphysics hydro-mechanical problem is not straightforward. The key difference is that the

pore-fluid diffusion is transient and hence the initial boundary value problem is elliptic.

While it is possible to add the inertial terms and update the macroscopic displacement

and pore pressure explicitly via a dynamics relaxation procedure, this strategy is imprac-

tical due to the small critical time step size of the explicit scheme as pointed out by [177].

Another possible approach is to solve the macroscopic problem in a fully implicit, uncon-
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ditionally stable scheme. The drawback of this approach is that it requires additional CPU

time to compute the elasto-plastic tangential stiffness from DEM. Unlike a conventional

constitutive model (in which an analytical expression of the tangential stiffness is often

available and hence easy to implement), the tangential stiffness inferred from DEM must

be obtained numerically via perturbation methods [88, 33]. For three-dimensional simula-

tions, this means that additional 36 to 81 simulations are required to obtain the tangential

stiffness, depending on which energy-conjugate stress-strain pair is used in the formula-

tion. This is a sizable burden given the fact that a converged update may require tens of

iterations.

To avoid this additional computational cost, we adopt the implicit-explicit predictor-

multicorrector scheme originally proposed in [99] and [177] and apply it to the finite strain

DEM-mixed-FEM model. In [177], the internal force is split into two components, one

treated implicitly and another treated explicitly. We adopt this idea here by treating the

elasto-plastic force from DEM explicitly, and the other internal forces implicitly, in a fash-

ion similar to the unconditionally stable Yanenko operator splitting (i.e. L = Lexp + Limp,

c.f. [262]).

The implicit time integration based on the generalized trapezoidal rule consists of sat-

isfying the equation (2.37) at time tn+1:

M∗n+1 · vn+1 + Fint(dn+1)−G(dn+1) = Fext
n+1 (2.40)

with the solution

dn+1 = d̃ + α∆tvn+1 (2.41)
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where

d̃ = dn + (1− α)∆tvn. (2.42)

The notation is as follows: the subscripts n and n + 1 denote that the variables are eval-

uated at time tn and tn+1, respectively; ∆t is the time step; α is the integration parameter.

The quantity d̃ is referred to as the predicted solution.

Similar to the scheme of [177], the semi-implicit predictor-corrector scheme is per-

formed by evaluating a portion of the left hand side forces of (2.40) explicitly using the

predicted solution d̃ and vn, and treating the remaining portion implicitly with the solu-

tion dn+1 and vn+1 :

FIMP(vn+1, dn+1) + FEXP(vn, d̃) = Fext
n+1 (2.43)

where 
FIMP = {M∗ · v}implicit

n+1 +
{

Fint(dn+1)
}implicit

FEXP = {M∗ · v}explicit
n +

{
Fint(d̃)

}explicit
−G(d̃)

(2.44)

To obtain the macroscopic displacement and pore pressure at time tn+1 from the non-

linear equation system (2.43), Newton-Raphson iteration method is employed. Let us de-

note the corrected solutions as dj
n+1 and vj

n+1, at the time step n + 1 and jth iteration, i.e.,

dj
n+1 = d̃ + α∆tvj

n+1 (2.45)

with v0
n+1 = 0. The relationship of their increments is thus:

∆dj
n+1 = α∆t∆vj

n+1 (2.46)

The equation (2.43) in terms of these iterative solutions is written as:

FIMP(v
j+1
n+1, dj+1

n+1) + FEXP(v
j
n+1, dj

n+1) = Fext
n+1 (2.47)
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The consistent linearization of the implicit part FIMP is required to solve (2.47). The

resulting tangential stiffness matrix depends on what force terms are included in {M∗ ·

v}implicit and
{

Fint
}implicit

.

For the implicit-explicit split of the nonlinear rate of change term M∗ · v, note that, from

(2.38) and (2.39), its variation contains two components:

∂(M∗ · v)
∂v

· δv = (M∗ +
∂M∗

∂v
· v) · δv (2.48)

In the proposed scheme, the rate of change term is split in a way that only M∗ is treated

implicitly:

∂(M∗ · v)
∂v

=
{∂M∗ · v

∂v

}implicit
+
{∂M∗ · v

∂v

}explicit
;


{∂M∗ · v

∂v

}implicit
= M∗{∂M∗ · v

∂v

}explicit
=

∂M∗

∂v
· v
(2.49)

From the above implicit-explicit split, the first order linearization form of FIMP in (2.47)

reads:

FIMP(v
j+1
n+1, dj+1

n+1) ' FIMP(v
j
n+1, dj

n+1) + M∗ · ∆vj+1
n+1 + Kimplicit

T · ∆dj+1
n+1

' FIMP(v
j
n+1, dj

n+1) + [M∗ + α∆tKimplicit
T ]︸ ︷︷ ︸

M∗∗

·∆vj+1
n+1

(2.50)

where

KT
implicit · ∆dj+1

n+1 =
d

dβ

{
Fint(dj

n+1 + β∆dj+1
n+1)

}implicit
|β=0 (2.51)

is the directional derivative of
{

Fint
}implicit

at dj
n+1 in the direction of ∆dj+1

n+1.

For construction of KT
implicit, firstly, a complete linearization of the internal force Fint

results in the following form of tangential stiffness matrix, according to (2.38) and (2.39):

KT =
∂Fint

∂d
=

(K
e − Kep︸ ︷︷ ︸

Ks

+Kgeo) −Kup

Kp
1 Kp

 (2.52)
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where Ke is the elastic contribution and Kep is the non-linear elastic-plastic contribution

to the material tangential stiffness Ks. Kgeo represents the sum of the geometrical stiffness

Kgeo
S′ and Kgeo

p f .

Since computation of the homogenized Ks from DEM RVEs produces considerable

computational cost, in the proposed multiscale solution scheme, we choose to treat Ke

implicitly and Kep explicitly. Ke is thus evaluated at the initial time step using the elastic

properties (bulk modulus KDEM
bulk and shear modulus GDEM

shear ) homogenized from the initial

RVEs. Kup and Kp are included in the implicit part of the tangential stiffness matrix. The

geometrical terms Kgeo and Kp
1 are treated explicitly. With these considerations and (2.52),

the resulting operator split writes:

KT = KT
implicit + KT

explicit

KT
implicit =

∂
{

Fint
}implicit

∂d
=

Ke −Kup

0 Kp


KT

explicit =

−Kep + Kgeo 0

Kp
1 0


(2.53)

From equations (2.44), (2.47), (2.49), (2.50) and (2.53), we obtain equation (2.54), which

represents the iteration equation of the semi-implicit predictor-multicorrector scheme:

M∗∗ · ∆vj+1
n+1 = ∆F j

n+1 = Fext
n+1 −M∗ · vj

n+1 − Fint(dj
n+1)−G(dj

n+1) (2.54)

where the internal force Fint(dj
n+1) has two contributions: the PK2 effective stresses

which are homogenized from DEM RVEs and the macroscopic internal force from FEM,

i.e.,

Fint(dj
n+1) =

 f int(uj
n+1)

0


DEM

+
{

Fint(dj
n+1)

}FEM
(2.55)

φDEM, BDEM, MDEM and kDEM are homogenized at each time step to construct the tangential

matrix M∗∗. The convergence is achieved when ||∆F j
n+1||

||∆F0
n+1||

≤ TOL [177]. In the numerical
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examples TOL is equal to 10−4. To recapitulate and illustrate the multiscale semi-implicit

scheme, we present a flowchart as shown in Fig.2.2.

2.5 Numerical Examples

The objective of this section is to demonstrate the versatility and accuracy of the proposed

method in both the small and finite deformation ranges. The numerical examples in this

section are the representative problems commonly encountered in geotechnical engineer-

ing. The first example is a globally undrained shear test which examines how granular

motion altered by fluid seepage within a soil specimen affects the macroscopic responses.

In the second example, we simulate the responses of a cylindrical DEM-FEM model with

drained condition subjected to triaxial compression loading with both quarter- and full do-

mains and found that the quarter simulation may suppress the non-symmetric bifurcation

mode that leads to shear band. The analysis on fabric tensor also reveals that the fabric and

deviatoric stress tensors are almost co-axial inside the shear band, but they are not co-axial

in the host matrix.

2.5.1 Globally undrained shear test of dense and loose assemblies

For the first example we employ our multiscale scheme to perform shear tests on both

dense and loose granular assemblies. The macroscopic geometry and boundary conditions

are illustrated on a sample discretized by coarse mesh (1×5×5 in X,Y,Z directions) as Fig.

2.3. We also use a medium fine mesh (1×8×8) and a fine mesh (1×10×10) to investigate the

mesh dependency issue of the proposed scheme. All results in this section are computed

from the fine mesh model, if not specified. The nodes on the bottom boundary are fixed

in all directions and those on the upper boundary are translated identically towards the



CHAPTER 2. MULTISCALE DISCRETE-CONTINUUM COUPLING FOR SATURATED
POROUS MEDIA 28

 

Start 

Prepare DEM RVEs 

Get 𝜎0 & initial solid matrix 

properties 

Initialization 

Solver parameters: Δt, α 

𝑑0,𝑣0, 𝜎0 material parameters 

Matrices: 𝐾𝑒 , 𝐾𝑢𝑝, 𝐶1, 𝐶2, 𝐶𝑠𝑡𝑎𝑏 , 𝐾
𝑝 

𝑑 𝑛+1 = 𝑑𝑛 +  1 − 𝛼 Δt𝑣n 

𝑣n+1
0 = 𝑣𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑  

𝑑𝑛+1
0 = 𝑑 𝑛+1 + 𝛼𝛥𝑡𝑣𝑛+1

0  

Predictor 

 

𝑑𝑛+1
𝑗

⇒ 𝐹𝑛+1
𝑗

 

𝐹Δ = 𝐹𝑛+1
𝑗

𝐹𝑛
−1 

∇𝑣 =  𝐹Δ − 𝐼 /Δ𝑡 

Incremental deformation 

Converge? 

𝑣𝑛+1
𝑗+1

= 𝑣𝑛+1
𝑗

+ Δ𝑣𝑗 

𝑑𝑛+1
𝑗+1

= 𝑑 𝑛+1 + 𝛼𝛥𝑡𝑣𝑛+1
𝑗+1

 

Corrector 

Solve 𝑀𝑗Δ𝑣𝑗 = Δ𝐹𝑛+1
𝑗

 

 

Load states of RVEs at time step n 

DEM solver 

Deform RVEs 

Get Cauchy stress 𝜎𝑛+1
𝑗

 

Get RVE properties 

Porosity: 𝜙 

Biot’s coefficient: 𝐵 

Biot’s modulus: 𝑀 

Permeability: 𝑘 

𝐾𝑢𝑝, 𝐶1, 𝐶2, 𝐶𝑠𝑡𝑎𝑏 , 𝐾
𝑝 

Update matrices 

Construct tangent stiffness matrix 𝑀∗∗ 

 

Update forces 

Update internal forces 𝐹𝑖𝑛𝑡 𝑑𝑛+1
𝑗

, 𝑣𝑛+1
𝑗

  

Compute residual force: Δ𝐹𝑛+1
𝑗

= 𝐹𝑛+1
𝑒𝑥𝑡 − 𝐹𝑖𝑛𝑡 

 

FEM solver 

Save states of RVEs at time step n 

 

𝑛 ← 𝑛 + 1  

𝑗 ⟵ 𝑗 + 1 

Yes 

No 

Figure 2.2: Flowchart of the multiscale semi-implicit scheme. Blue blocks represent ini-

tialization steps of the solution scheme ; Green blocks refer to FEM solver steps and red

blocks refer to DEM solver steps; Blue arrows indicate the information flow between the

two solvers.
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positive y axis at a constant rate. They are maintained at a constant vertical stress σz =

100kPa by a horizontal rigid layer (not shown). This constraint is imposed in the model by

the Lagrange multiplier method. The lateral surfaces are constrained by frictionless rigid

walls (not shown). All surfaces are impervious. The gravitational effect is not considered in

this study. For coupled microscopic DEM models, periodic unit cells composed of uniform

spheres are prepared by an isotropic compression engine in YADE up to σiso = 100kPa with

initial porosity of 0.375 and 0.427 for dense and loose assemblies respectively, and then are

assigned identically to all the integration points of the FEM model before shearing.

 

𝟏 𝒄𝒎 

𝟓 𝒄𝒎 

𝟓 𝒄𝒎 

𝒙 

𝒛 

𝒚 

𝝈𝒛 

𝑼𝒚 

Figure 2.3: Geometry and boundary conditions for globally undrained shear test

The finite strain formulation is first adopted to study the hydro-mechanical coupling

effect during the shearing of the dense and loose samples with undrained boundaries.

The material parameters used in the simulations allowing hydraulic diffusion within the

specimen are presented in Table 2.1. They are categorized into micromechanical material
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Parameter Value

Solid grain normal stiffness kn 2.2× 106 N/m

Solid grain tangential stiffness ks 1.9× 106 N/m

Solid grain friction angle β 30◦

Solid grain bulk modulus Ks 0.33 GPa

Porosity φ dense: 0.375, loose: 0.427

Biot’s coefficient B dense: 0.976, loose: 0.983

Biot’s Modulus M dense: 180 Mpa, loose: 168 Mpa

Fluid bulk modulus K f 0.1 GPa

Initial permeability k 1× 10−9 m2/(Pa · s)

Solid density ρs 2700 kg/m3

Fluid density ρ f 1000 kg/m3

Table 2.1: Material parameters in globally undrained shear problem

parameters used in DEM solver, poro and poro-plasticity parameters derived from DEM

RVEs and macroscopic properties set in FEM. Note that the permeability k is updated with

porosity of RVEs using the Kozeny-Carman relation during the simulation. To prevent

local seepage of water within the samples, the permeability k is set to 0 m2/(Pa · s).

Fig. 2.4 represents the global shear stress and volumetric strain behavior of shear

simulations with and without local seepage of water. The strain hardening behavior of

undrained dense granular assemblies (left column) and strain softening behavior of loose

granular assemblies (right column) are recovered [264]. In both assemblies, when local

seepage is prohibited, the shear stress immediately rises when the shearing begins and the

saturated porous media behaves stiffer than the samples with local seepage. Note that the

sudden drop in Fig. 2.4(b) is due to the unstable solid matrix of loosely confined DEM unit

cell. The volumetric strain of the dense sample with seepage monotonically increases. This
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phenomenon is attributed to the rearrangement of solid matrix as the grains tend to rise

over adjacent grains when they are driven by shear forces. In absence of local diffusion,

the dense sample experiences a reduction of volume instead, suggesting that the compres-

sion of overall solid matrix predominates the above phenomenon. As for loose samples,

however, the volumetric behavior is opposite. When local diffusion of water is prohibited,

the pore collapse and densification of local regions within specimen could occur, resulting

in a compression at early stage of shearing before the dilatancy phenomenon. The curve of

no-local-seepage case shows that the dilatancy phenomenon prevails all along the shear-

ing. In all cases, the volume changes are beneath 0.12%, confirming that the samples are

indeed sheared under globally undrained condition.

We examine the mesh dependency by three aforementioned mesh densities adopted

in simulations of dense assembly with local seepage. The effect is presented via plots

of global σyz − γyz and εv − γyz responses as Fig. 2.5. For stress response, discrepancy

between medium and fine meshes is not significant, but coarse mesh apparently yields

stiffer solution after 2% shear strain and the maximum deviation is about 7.6% with respect

to the fine mesh solution. The differences between εv curves are less significant and do

not exceed 4% of the fine mesh solution. Thus, our choice of the fine mesh to conduct

numerical experiments is acceptable.

We next display the difference between finite and small strain multiscale schemes for

simulations of dense granular sample in both local diffusion conditions in Fig. 2.6. Ac-

cording to the global shear responses, the small strain and finite strain yield consistent

solutions within 2% shear strain. Then the discrepancy gradually emerges and the in-

troduction of geometrical non-linearity renders the sample stiffer. Finite strain solutions

exhibit less volume changes in both cases. Moreover, geometrical non-linear term even
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Figure 2.4: Comparison of global shear stress and volumetric strain behavior between

globally undrained dense and loose assemblies with and without local diffusion

alters the dilatancy behavior: the sample is computed to be compressed when no local

seepage of water is allowed, while the small strain solution conserves the dilatant trend.

We also assess the local diffusion effect via color maps of pore pressure developed

during the deformation, as shown in Fig. 2.7. The dense sample with local seepage has
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Figure 2.5: Comparison of global shear stress and global volumetric strain behavior be-

tween coarse mesh (1×5×5), medium mesh (1×8×8), fine mesh (1×10×10), finite strain

formulation

developed negative pore pressure and the pressure distribution is nearly uniform, since

fluid flow could take place inside the specimen to dissipate pressure difference between

neighboring pores. Without local seepage of water, the pore pressure is concentrated to

four corners of the sample, with the upper left and bottom right corners compressed (pos-

itive pressure) and the other two dilated (negative pressure). Furthermore, these corners

have maximum pressure gradient ||∇p f ||.

The multiscale nature of our method offers more insight into the local states of gran-

ular sample. With the granular material behavior homogenized from responses of RVEs,

the grain displacements, the effective stress paths (shear stress q = σ1 − σ3 vs. effective

mean stress p′ = σ1+σ2+σ3
3 ) and the volumetric strain paths (εv vs. p′) in each DEM unit

cell are directly accessible. As an example, the local distribution of q at the end of shear-

ing for globally undrained yet locally diffused dense sample (2.8) shows a concentration
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Figure 2.6: Comparison of global shear stress and global volumetric strain behavior be-

tween small strain and finite strain formulation. Left: globally undrained with local diffu-

sion condition, Right: globally undrained but without local diffusion condition

of shear stress in upper left and bottom right corners, while the corners correspondent to

the other diagonal sustain comparably very little shear stress. The deformed configuration

of spheres in three representative RVEs are colored according to the dimensionless dis-
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(a) (b)

Figure 2.7: Comparison of pore pressure at 10% shear strain between (a) dense sample

with local seepage and (b) dense sample without local seepage

placement magnitude ||u||2
inital size of unit cell compared to initial RVE configuration. We present

stress paths of these three RVEs providing evidence that strain-softening (Fig. 2.9(a)), lim-

ited strain-softening (Fig. 2.9(b)) and strain-hardening (Fig. 2.9(c)) could locally occur in

a dense sample which globally behaves in a strain-hardening manner. A critical state line

q = ηp′ is drawn for three stress paths and the value of slope η is identified as 1.16. η and

the Mohr-Coulomb friction angle β′ is computed to be 29.1◦ by the following relation for

cohesionless soil [258]:

sin β′ =
3η

6 + η
(2.56)

, which is close to the inter-particle friction angle β = 30◦. Paths of εv further demon-

strate that large local volume change up to 5.5% is possible even globally the sample is

only dilated about 0.07%. According to these figures, the small strain and finite strain

shear responses are almost identical. The stress path curves exhibit little difference. How-

ever, geometrical non-linearity has more significant effect on volumetric strain path. A

major remark is that, inside the strain-softening spot as 2.9(d), the small strain solution has

large fluctuation when the mean effective stress is very small, because DEM assemblies
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are highly unstable with nearly zero confining stress. On the contrary, finite strain scheme

avoids this unstable regime and yield smooth solutions.

Figure 2.8: Spatial distribution of shear stress q at 10% shear strain for globally undrained

dense sample allowing seepage within the specimen, attached with displacement magni-

tude of grains in unit cells (normalized by the initial cell size)

Lastly, we investigate the rate-dependent shearing behavior using the proposed cou-

pling scheme. A faster shearing of saturated granular sample influences its mechanical

response mainly by speeding up the solid matrix re-arrangement and also by allowing less

fluid diffusion inside the sample between loading steps. The former effect leads to swelling

of the sample, while the latter renders the specimen more locally undrained. Fig.2.10 illus-

trates the combined effect of these two mechanisms on a dense sample with local seepage.

The evolution of shear stress and volumetric strain with shearing rates of 0.1% and 0.5%

per second are compared. When shearing is completed, shear stress sustained by the sam-

ple increases about 4.6% under higher shearing rate. The rate effect on volumetric strain is

more prominent, by the fact that the sample experiences more volume expansion of about
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Figure 2.9: Shear stress vs. effective mean stress at different locations indexed as Fig. 2.8:

(b) stress path at point 1 (c) stress path at point 2 (d) stress path at point 3; Volumetric

strain vs. effective mean stress at different locations: (e) volume path at point 1 (f) volume

path at point 2 (g) volume path at point 3

13.5% at the end.

2.5.2 Globally drained triaxial compression test

The second example consists of the globally drained triaxial compression test on an isotrop-

ically consolidated cylindrical specimen. This example demonstrates the applicability of

the proposed multiscale finite strain scheme on 3D problems. In this numerical example,

we analyze (1) the difference between quarter-domain and full-domain simulations for ma-
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Figure 2.10: Comparison of global shear stress and global volumetric strain behavior be-

tween low loading rate (0.1% shear strain per second) and high loading rate (0.5% shear

strain per second), finite strain formulation

terial subjected to axial-symmetrical loading, (2) the consequence of the build-up of excess

pore pressure due to a high loading rate and (3) the evolution of the fabric tensor inside

and outside the shear band and the implications on the critical state of the materials. As a

result, water is allowed to flow through the bottom and the top of the specimen. However,

triaxial compression simulation is intentionally not conducted under a fully drained con-

dition at a material point level. Instead, the rate dependence of the constitutive responses

introduced via the hydro-mechanical coupling effect is studied to quantify what is the ac-

ceptable range of the prescribed loading rate that can prevent significant amount of excess

pore pressure.

In addition, microscopic information such as the Biot’s coefficient, Biot’s modulus and

micro-structure fabric are provided to highlight the advantage of the DEM-FEM coupled

model. The convergence profile of this simulation is also presented. In an experimental set-



CHAPTER 2. MULTISCALE DISCRETE-CONTINUUM COUPLING FOR SATURATED
POROUS MEDIA 39

ting, the drained triaxial test is performed on a cylindrical water-saturated soil specimen,

laterally enveloped by rubber membrane and drained through top and bottom surfaces.

One of the idealized 3D numerical model constitutes only a quarter of the cylinder by as-

suming the rotational symmetry. The constant confining pressure is directly applied on the

lateral surface, neglecting the effect of rubber membrane. The quasi-static compression is

achieved by gradually increasing the axial strain εz at the rate of 0.05% per second. The lat-

eral surface is impermeable and a no-flux boundary condition is imposed, while the pore

water pressure on both top and bottom surfaces are constrained to be 0. Another simula-

tion is triaxial compression of the full cylindrical domain. Similar confining pressure and

pore pressure boundary conditions are applied. The middle point of the bottom surface

is fixed to prohibit rigid body translation. The geometry, mesh and boundary conditions

of the quarter-/full-domain simulations are illustrated in Fig. 2.11. The DEM assembly

adopted in these simulations is identical to the dense sample in the previous section. The

fluid bulk modulus in this example is 2.2 GPa.

Fig. 2.12 compares the global shear stress and volumetric strain behavior from quarter-

domain and full domain simulations. The shear stress curve obtained from full-domain

simulation exhibits less peak stress and more significant softening than quarter-domain

simulation. The volumetric strain curves, however, only show notable difference after the

axial strain approaches 7%. This discrepancy may be attributed to the strain localization

in full-domain simulation, as shown by the distribution of deviatoric strain and porosity

in Fig. 2.13. A dilatant shear band is developed inside the cylindrical specimen, while in

the quarter-domain, the deformation is nearly homogeneous. This difference is more pro-

found given the fact that the proposed model also incorporates the geometrical effect at

the finite strain range. Results from this set of simulations show that the quarter-domain
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(a) (b)

Figure 2.11: Geometry, mesh and boundary conditions for globally drained triaxial com-

pression test. (a) Quarter-domain simulation. (b) Full-domain simulation

simulation is insufficient to capture the deformed configuration when bifurcation occurs.

While the assumption of axial-symmetry is valid before the onset of strain localization, en-

forcing axial-symmetry via reduced domain and additional essential boundary condition

may eliminate the bifurcation mode(s) that is not axial-symmetric.

An additional full-domain simulation is performed at a strain rate ten times slower:

ε̇z = 0.005% per second. The global shear stress and volumetric strain behavior are com-

pared for the two loading rates in Fig. 2.14. The specimen under higher strain rate can

sustain higher shear stress, but the strain rate has very little influence on volumetric strain

behavior. The evolution of pore pressure at the center of the cylindrical specimen in two

cases are also shown in Fig. 2.15. At a high strain rate, the pore water does not have time to

fully diffuse through local pores and reach steady state. As a result, excess pore pressure
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Figure 2.12: Global shear stress and volumetric strain behavior in globally drained triaxial

compression test. Comparison of quarter-domain and full-domain simulations

builds up to about 5 kPa while the specimen shrinks. The pressure then decreases and

becomes negative when the specimen dilates. In the low-strain-rate case, the magnitude of

pore pressure is about five times smaller while the trend looks similar of the high-strain-

rate counterpart.

One of the advantages of substituting macroscopic phenomenological constitutive model

with DEM simulations for the poromechanics problem is that the macroscopic poroelas-

ticity properties, such as Biot’s coefficient B, Biot’s modulus M and effective permeability

k could be inferred and updated from DEM at each Gauss point. As a result, the spa-

tial variability of these poro-elasticity parameters triggered by material bifurcation or non-

homogeneous loading can be properly captured. As an example, we monitor the evolution

of these poro-elasticity parameters against axial strain εz for a RVE inside the shear band

(RVE A, shown in Fig. 2.13(c)) and another RVE outside the shear band (RVE B, shown

in Fig. 2.13(c)) in the ε̇z = 0.05%-per-second, full-domain simulation (Fig. 2.16). The
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(a) (b)

(c) (d)

Figure 2.13: Distribution of deviatoric strain and porosity in globally drained triaxial com-

pression test at 9% axial strain. Comparison of quarter-domain and full-domain simula-

tions.

evolution of the Biot’s coefficient B shown in Fig. 2.16)(a) suggests that the effective bulk

modulus of the solid skeleton (KDEM
T ) first increases and then decreases presumably due

to the porosity changes in both RVEs A and B. The Biot’s modulus M, which is related to

the Biot’s coefficient B and porosity φ, exhibits an initial reduction and largely increases

after about εz = 2% for RVE A. For RVE B, M stays at a constant value. The effective
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Figure 2.14: Global shear stress and volumetric strain behavior in globally drained triaxial

compression test. Comparison of two loading rate.
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Figure 2.15: Evolution of pore pressure at the center of the cylindrical specimen during

triaxial compression test subjected to two loading rate.

permeability k also evolves with the porosity according to the Kozeny-Carmen relation.

Another advantage of the multiscale scheme is the accessibility to evolution of micro-

structures during deformations. To demonstrate this, we perform a simple microstructural

analysis in which the Anisotropic Critical State Theory (ACST) introduced by [126, 267,
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Figure 2.16: Evolution of (a) Biot’s coefficient, (b) Biot’s modulus and (c) effective perme-

ability for RVE A (inside shear band, Fig. 2.13(c)) and RVE B (outside shear band, Fig.

2.13(c)).

124] is adopted to analyze the fabric of the fluid-saturated granular assemblies at the finite

strain range. The fabric anisotropy of two RVEs, one taken inside the shear band (RVE A)

and another one in the host matrix (RVE B) are analyzed and compared against each other.

The fabric tensor Gfabric is contact-normal-based and is computed from a DEM RVE via
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[124]

Gfabric ij =
1

Nc
∑

c∈Nc

nc
i nc

j (2.57)

where nc is the unit vector of contact normal and Nc is the number of contacts inside the

RVE. The tensor Ffabric characterizes the fabric anisotropy of the RVE and is written as [267]

Ffabric ij =
15
2
(Gfabric ij −

1
3

δij) (2.58)

where δij is the Kronecker delta. Its norm Ffabric and direction nF are defined by

Ffabric = FfabricnF, Ffabric =
√

Ffabric : Ffabric (2.59)

To analyze whether and how fabric evolves differently inside shear band and the host

matrix, we compute the normalized fabric anisotropy variable (FAV) A = nF : ns (a mea-

sure introduced in [126, 267] that quantifies the relative orientation of the tensor Ffabric

and the deviatoric stress tensor s) for RVE A (inside shear band) and RVE B (outside shear

band). The evolution of deviatoric stress q and porosity against axial strain εz are also mon-

itored to measure how close the materials in the two RVEs reach the critical state according

to the anisotropic critical state theory, i.e.,

η = ηc, e = ec = êc(p) and A = Ac = 1 (2.60)

where η is the ratio between the effective mean pressure p′ and the deviatoric stress q and

e is the void ratio. ηc, ec = êc(p) and Ac = 1 are critical state values of the stress ratio, void

ratio and fabric anisotropy variable (cf. [126, 124]).

The results are summarized in Fig. 2.17. The stress-strain response shown in Fig.

2.17(a) indicates that RVE A becomes unstable after the peak shear stress and experiences

significant dilation until the critical state indicated by the plateau in the porosity curve.

The normalized FAV of RVE A rises to about 0.96 quickly upon subjected to the triaxial



CHAPTER 2. MULTISCALE DISCRETE-CONTINUUM COUPLING FOR SATURATED
POROUS MEDIA 46

loading. Then, normalized FAV stay close to 1, which indicates that the fabric and stress

directions in RVE A is nearly coaxial, as the RVE A approaches the critical state.

On the other hand, RVE B, which lies outside the shear band, experiences slightly more

softening, but the dilatancy is much less than RVE A. The FAV curve of RVE B deviates

from the curve of RVE A after axial strain of 2% and exhibits opposite trend that the fabric

and stress directions loss coaxiality. This observation suggests that the critical states are

not achieved simultaneously within an specimen that forms deformation band.

To demonstrate the performance of the multiscale semi-implicit scheme, the conver-

gence rate of the quarter-domain simulation is illustrated in Fig. 2.18 as an example. At

different strain levels, the convergence curves show linear profiles in the logarithm-scale

plot. The first step converges the fastest since the RVEs are linear elastic at εz = 0.1%.

The number of iterations required for convergence increases to 11 when the global shear

stress reaches the peak (about εz = 2%). In the softening stage, the explicitly treated the

elastic-plastic contribution Kep to the material tangential stiffness becomes more signifi-

cant. Therefore the convergence rate is further reduced and each time step requires about

20 iterations.

2.6 Conclusions

In this work, we present a finite strain dual-scale hydro-mechanical model that couples

grain-scale granular simulations with a macroscopic poro-plasticity model at low Reynolds

number. Using effective stress principle, the macroscopic total stress is partitioned into ef-

fective stress, which is homogenized from grain-scale simulations and macroscopic pore

pressure, which is updated from macroscopic simulation. To improve computational ef-

ficiency, we adopt a semi-implicit predictor-multicorrector scheme that splits the inter-
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Figure 2.17: Evolution of (a) deviatoric stress q (b) porosity (c) A = nF : ns (relative orien-

tation between anisotropic fabric and deviatoric stress directions) during triaxial compres-

sion test (ε̇z = 0.05%/s) for RVE A (inside shear band, Fig. 2.13(c)) and RVE B (outside

shear band, Fig. 2.13(c)).

nal force into macroscopic and microscopic components. By updating the macroscopic

poro-elastic contribution (FEM) implicitly and the microscopic counterpart (DEM) explic-

itly, we establish a multiscale scheme that is unconditionally stable and therefore allows

simulations to advance in time steps large enough for practical applications. Multiscale
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Figure 2.18: Convergence profiles of the triaxial compression test at different axial strain

levels. The relative error is defined as ||∆Fi ||
||∆F(i=0)|| , where ∆Fi is the residual force at the

iteration step i. The convergence is reached when the error falls below 10−4.

simulations at specimen-scale are conducted to showcase the potentials of the proposed

method to solve a wide spectrum of problems across spatial length scales. To the best of

our knowledge, this is the first time a hierarchical multiscale coupling scheme is estab-

lished to resolve finite strain poro-plasticity problem.
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Chapter 3

Multiscale LBM-DEM-FEM coupling

for dual-permeability fissured porous

media

This chapter is reproduced from the published paper: K. Wang, W.C. Sun, An updated La-

grangian LBM-DEM-FEM coupling model for dual-permeability porous media with em-

bedded discontinuities, Computer Methods in Applied Mechanics and Engineering, 344:276-

305, 2019.

3.1 Introduction

The geological complexity of many geo-systems, such as fractured reservoirs and faults

often makes the single-permeability Darcian model inadequate to replicate the complex

hydraulic behaviors [81]. This complexity is linked to the wide spectrum of pore sizes. The

pores among particles, inside individual grains and crystalline planes and those formed

by the dissolution and cavities are often of orders of difference in sizes. In the idealized

cases where pore space distribution of a porous medium is, roughly speaking, bi-modal
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(e.g. fractured reservoir composed of sandstone) a dual-porosity dual-permeability model

can be used to approximate the hydraulic behavior [76, 179, 113, 26, 45]. For a fissured

porous medium exhibiting a major fault, the fissures and the fault can be considered as

macropores, while the pores in the intact solid matrix are considered as the micropores

(Figure. 3.1). Then the macroscopic flow in this double porosity medium is the overlapping

of both flows inside the individual systems of macropores and micropores, as well as the

fluid transfer between the two systems of pores. Should mechanical forces or perturbations

in pore pressure field take place, the major fault which is previously stable is put at the risk

of being reactivated. The evolution of the microstructure of the fault results in the change

of the effective macropore permeability and hence the fluid flow in macropores.

Strong discontinuities such as grain boundaries, flaws, cracks, joints, and faults are

very common across multiple length scales in geological materials. Understanding the

hydro-mechanical responses of the interfaces is important for numerous engineering ap-

plications, such as oil exploration, geothermal applications, geological disposal of nuclear

waste and CO2. The presence of strong discontinuities is important due to (1) their signif-

icant roles in altering the mechanical responses of the host system (e.g. strain localization,

crack bands), (2) inducing anisotropic changes in the flow characteristics as they function

as flow barrier (e.g. compaction band) or channels (e.g. tensile cracks), as well as (3)

changing the hydro-mechanical coupling mechanisms under different loading conditions

[169, 209, 210, 255, 246].

A common approach to capture the hydro-mechanical responses is to use phenomeno-

logical laws designed for these interfaces [261, 20, 57]. Within a finite element model,

the interfaces are then either represented by surface elements inserted in between volume

elements or enriched basis designed to captures the kinematics of the embedded strong
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Figure 3.1: Schematic representation of representative elementary volumes (REVs) of a

fissured porous medium with pre-existing fault through double porosity model. REV 1 is

a multi-dimensional periodic cell of standard double-porosity medium outside the major

fault, with the net of fissures regarded as macropores and the voids in intact solid matrix

as micropores. REV 2 is a cell of double-porosity medium of a fault neighborhood, with

the major fault (induced by cracking, shear band formation, etc, and will be reactivated

under mechanical forces or changes in pore pressure) regarded as macropore spaces in

addition to the net of fissures. REV 2 has a one-dimensional periodicity along the fault.

The formulation of multiscale finite element with embedded strong discontinuity in this

chapter makes use of the second REV.

discontinuities (e.g. assumed strain or extended finite element) within an element (e.g.

[148, 60, 37, 38, 23, 129]). Regardless of the techniques used to represent the strong discon-

tinuities, the quality of the simulations strongly depends on the cohesive zone model cho-

sen to represent the interfaces. However, as pointed out by [95] and exemplified in [165],

many cohesive zone models are highly idealized constitutive responses where softening

regimes are often curve-fitted via simple mathematical expressions (e.g. cubic polynomial,

smoothed trapezoidal, exponential, and bilinear) to yield the right amount of fracture en-

ergy and stiffness. As a result, capturing the mixed-mode and cyclic responses remains a

difficult task. Furthermore, the mixed-mode traction-separation is often an extension of the
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Mode I separation law where one simply uses an effective separation (defined as a func-

tion of normal and tangential displacement jumps) to determine the normal and tangential

traction [235, 164]. In the case where effective separation is defined as a weighted norm of

the normal and tangential component of the displacement jumps, the difference between

Mode I crack and anti-crack cannot be captured. [165, 246]. This assessment has been also

discussed in [16] in which the complications due to the fact that unstable materials cannot

maintain a homogeneous state even when the perturbation is small. This limitation is more

profound when the interfaces possess multiscale microstructures where (1) meso-scale fea-

tures such as voids and inclusions of sizes spanning multiple orders of magnitudes (e.g.

the dual-porosity materials); (2) the microstructural length scale is comparable to the thick-

ness of the interfaces (e.g. granular materials) and (3) when mixed-mode separation and

closure happen cyclically.

The objective of this chapter is to fill the alluded knowledge gaps via multiscale tech-

niques designed specifically to capture the hydro-mechanical responses of interfaces in

fluid-infiltrating porous materials in the finite deformation range. In particular, we intro-

duce the computational homogenization procedure for dual-porosity porous layer based

on the generalized effective stress principle. Extending the previous work in [132, 243,

242], we establish micro-macro transitions to generate the proper hydro-mechanical re-

sponses from representative volume element (RVE) simulations as a replacement for the

phenomenological traction-separation law and cubic laws for interfaces. Furthermore, as

spatial averaging effective permeability of fractured porous system often leads to erro-

neous predictions on the flow characteristics, the interactions of the pore-fluid in the em-

bedded strong discontinuities and that in the host porous matrix is captured via a dual-

permeability system. As the porous media with strong discontinuities is viewed as a
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dual-permeability system at the macroscopic scale, a homogenization procedure is used

to obtain the macro-pore, micro-pore and interfacial effective permeabilities [120, 5]. By

considering the Hill-Mandel lemma for Darcy’s flow in the macro- and micro-pore sys-

tems, admissible boundary conditions are defined such that both the macro- and micro-

permeabilities can be estimated. Numerical examples are used to demonstrate the robust-

ness and capacity of the multiscale poromechanics models. To the best knowledge of both

authors, this is the first time a hierarchical discrete-continuum model has been established

for embedded strong discontinuities in dual-permeability system undergoing large defor-

mation.

The remainder of this chapter is organized as follows. We first explain the kinematics of

the dual-porosity, dual-permeability system with strong discontinuities. We then explain

the various choices of RVE simulations with different boundary conditions that provide

macroscopic hydro-mechanical responses for the interfaces. Following the description of

the RVE simulations, we then describe the macroscopic finite element formulation with

embedded discontinuity for dual-permeability systems. The implementation techniques

are then highlighted, and numerical examples are presented.

3.2 Problem Statement

This section provides a brief account of the theoretical basis of the multi-scale coupling

model designed for a dual-porosity, dual-permeability system with embedded strong dis-

continuities. While there are previous work dedicated to model embedded strong discon-

tinuities of porous media in the small and finite deformation ranges (e.g. [204, 118, 38,

150, 149, 211, 154, 54, 178, 55]), there has not yet been any attempt to introduce bridging-

scale methods for interfaces composed of dual-porosity, dual-permeability materials. Nor
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is there any work aimed at introducing constitutive responses via discrete-continuum cou-

pling to simultaneously replace phenomenological cohesive zone law and anisotropic per-

meability model for interfaces in the finite deformation range. In this section, we first

briefly review the kinematics of the hydro-mechanical interfaces. Following this, a brief

description of the boundary value problem for the dual-permeability system in finite de-

formation range and that of the corresponding finite element formulation of interfaces are

given.

3.2.1 Large-scale dual-permeability hydro-mechanical problem

Consider a saturated porous medium with highly localized deformation zones (e.g. cracks,

faults.) occupying a spatial domain B ⊂ Rnsd , where nsd =1, 2, or 3 stands for the number

of spatial dimensions. The boundary of the body in the reference configuration is denoted

as ∂B ⊂ Rnsd−1. The porous solid is treated as a double-porosity mixture and the two

dominant pore scales are the macropores M (in this case the pores of fissures, shear bands,

cracks) and the micropores m, (micro-pores in the solid matrix). A solid skeleton material

point at point X of the reference configuration may move due to rigid body motion and/or

deformation. Here we assume that this material point is defined in a macroscopic sense

such that the material point is associated with a representative elementary volume whose

space is partially occupied by the solid constituent and the fluid constituent in the macro-

and micro-pores. For convenience, the microstructural attributes of this representative el-

ementary volume are often neglected and the porous medium is therefore regarded as a

multiphase effective medium. If no crack growth or healing occurs, the location of this ma-

terial point in the current configuration can be determined via the mapping x = ϕ(X, t).

The displacement is u(X, t) = x(X, t)−X = ϕ(X, t)−X. The macroscopic deformation of
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the effective medium is therefore characterized by F = ∂ϕ
∂X = ∇X ϕ . The elementary vol-

umes of the total mixture, solid, macropores, micropores and void are denoted as dV, dVs,

dVM, dVm, dVv = dV − dVs = dVM + dVm, respectively. The pore fractions for macropores

(ψM) and micropores (ψm) are defined as,

ψM(X, t) = ψ =
dVM

dVv
, ψm(X, t) = 1− ψ =

dVm

dVv
. (3.1)

Meanwhile, the volume fractions for solid, macropores and micropores can be expressed

as a function of porosity and pore fractions, i.e.,

φ(X, t) =
dVv

dV
,

φs(X, t) =
dVs

dV
= 1− φ,

φM(X, t) =
dVM

dV
= φψ,

φm(X, t) =
dVm

dV
= φ(1− ψ).

(3.2)

The partial mass densities of each constituent can be determined using the volume

fractions and the intrinsic mass density of solid ρs and fluid ρ f :

ρs = φsρs = (1− φ)ρs,

ρM = φMρ f = φψρ f ,

ρm = φmρ f = φ(1− ψ)ρ f .

(3.3)

The pull-back total mass density of the mixture is given by

ρ0 = ρs
0 + ρM

0 + ρm
0 = Jρs + JρM + Jρm, (3.4)

where J = det(F) is the Jacobian of the solid motion.

Let us denote the (solid) material time derivative following the solid skeleton trajectory

as ˙(•) = ∂(•)
∂t +∇x(•) · v. Assuming incompressible solid and fluid constituents and no
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mass exchange between solid and fluid [26]:

ρ̇M
0 = ˙Jφψρ f = J̇ψρ f + Jφψ̇ρ f = ρ f Jψ∇x· v + ρ f Jφψ̇,

ρ̇m
0 = ˙Jφ(1− ψ)ρ f = J̇(1− ψ)ρ f − Jφψ̇ρ f = ρ f J(1− ψ)∇x· v− ρ f Jφψ̇,

(3.5)

using the identities ˙Jφ = J̇ − ˙Jφs = J̇ and J̇ = J∇x· v [203].

The relative fluid mass fluxes qM, qm, and relative fluid velocities ṽM, ṽm take the form

qM = ρMṽM = ρ f φψ ṽM = ρ f φψ (vM − v),

qm = ρmṽm = ρ f φ(1− ψ) ṽm = ρ f φ(1− ψ) (vm − v),
(3.6)

where vM and vm are the fluid velocities in the macropores and micropores, respectively.

The relative fluid mass fluxes are related to pore pressures via Darcy’s law:

qM = −ρ f
kM

µ f
· (∇x pM − ρ f g),

qm = −ρ f
km

µ f
· (∇x pm − ρ f g),

(3.7)

where pM and pm are Cauchy macropore pressure and Cauchy micropore pressure, respec-

tively. kM and km are intrinsic permeability tensors for macro-scale pore and micro-scale

pore. µ f is the dynamic viscosity of the fluid. g is the gravity acceleration vector.

The pull-back mass fluxes are obtained by Piola transforms

QM = JF−1 · qM, Qm = JF−1 · qm. (3.8)

The fluid in macropores can diffuse from or into micropores. The fluid mass transfer

between the two scales is characterized by the coefficient [45]

c0 = Jc = J
ᾱ

µ f
(pM − pm). (3.9)

ᾱ is a material parameter for macro-micro-pore interface permeability.
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To construct the strong form of the problem, the boundary ∂B having unit normal N at

X ∈ ∂B admits the decomposition
∂B = ∂Bu ∪ ∂Bt = ∂BpM ∪ ∂BqM = ∂Bpm ∪ ∂Bqm

∅ = ∂Bu ∩ ∂Bt = ∂BpM ∩ ∂Bqm = ∂BpM ∩ ∂Bqm

, (3.10)

where ∂Bu, ∂BpM and ∂Bpm are Dirichlet boundaries with prescribed solid displacement,

macropore pressure and micropore pressure, respectively. ∂Bt, ∂BqM and ∂Bqm are Neu-

mann boundaries with prescribed tractions, macropore flux and micropore flux, respec-

tively.

Assuming quasi-static case and incompressible solid and fluid constituent, the La-

grangian strong form of the large-scale dual-permeability hydro-mechanical problem reads:

find the displacement u : B → Rnsd , the Cauchy macropore pressure pM : B → R and the

Cauchy micropore pressure pm : B → R such that the balance of linear momentum, the

balance of mass in macropores and micropores, the boundary conditions are satisfied:

∇X ·P + ρ0g = c0(ṽm − ṽM) on B,

ρ̇M
0 +∇X ·QM = −c0 on B,

ρ̇m
0 +∇X ·Qm = c0 on B,

u = û on ∂Bu

P · N = t̂ on ∂Bt,

pM = p̂M on ∂BpM ,

QM · N = −Q̂M on ∂BqM ,

pm = p̂m on ∂Bpm ,

Qm · N = −Q̂m on ∂Bqm ,

(3.11)

where P is the first Piola-Kirchhoff stress and its relation to Kirchhoff stress tensor τ and
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Cauchy stress σ are:

τ = Jσ = P · FT. (3.12)

The total Kirchhoff stress tensor permits the following decomposition in terms of effec-

tive Kirchhoff stress τ′ and Cauchy pore pressures pM and pm, based on the effective stress

principle,

τ = τ′ − JpavgI = τ′ − J[ψpM + (1− ψ)pm]I. (3.13)

The initial conditions are imposed as

u(X) = u0(X), pM(X) = pM0(X), pm(X) = pm0(X) for all X ∈ B at t = t0. (3.14)

3.2.2 Kinematics of embedded strong discontinuities in dual-permeability porous

media

Consider a material point X in the dual-permeability porous media B and an associated

local neighborhood BX ⊂ B embedded with strong discontinuity (fracture, shear band,

fault, etc.). Denote the surface of discontinuity as Γ and the local domain BX is thus di-

vided by Γ into sub-domain pair BX = B+
X
⋃B−X . The motion of the particles within BX is

described by local displacement field uΓ = xΓ − X = ϕΓ(X)− X. Assume the following

relation to the large-scale (or conformal) displacement field u,

uΓ = u + JuK(HΓ − fΓ), (3.15)

where JuK is the displacement jump across the interface Γ, HΓ is the Heaviside step func-

tion across Γ and fΓ is a smooth ramp function in BX [22]. It is also useful to define the

continuous part ū of motion uΓ as

u = u− JuK fΓ. (3.16)
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The large-scale (or conformal) and continuous deformation gradients are defined as,

F = I +∇X u, F = I +∇X u. (3.17)

The local deformation gradient is given by, assuming relative uniformity of JuK along

Γ such that ∇X JuK→ 0 in BX,

FΓ = I +∇X uΓ

= F − JuK⊗∇X fΓ + (JuK⊗N)δΓ

= F + (JuK⊗N)δΓ,

(3.18)

where the equation ∇X HΓ = δΓN is employed. δΓ is the Dirac delta function across Γ and

N is the unit normal of Γ pointing from B−X to B+
X .

From Eq. 3.18, following [8, 38, 9], the local deformation gradient allows a multiplica-

tive decomposition into two parts:

FΓ = F · F̃ = F · (I + (JUK⊗N)δΓ) (3.19)

where JUK = F−1 · JuK is the material displacement jump across Γ.

The presence of displacement jump in the solid phase results in the discontinuity of the

fluid flux across the interface. The localized fluid flow model developed by [37, 38] states

that the fluid flux vector field QΓ in the local neighborhood BX is composed of a regular

flow field Q and a local flux jump JQK:

QΓ = Q + JQK(HΓ − fΓ). (3.20)

The same ramp function fΓ as in the displacement field is employed, but a different ramp

function can also be chosen. The rate of local fluid content MΓ (fluid mass increment per

unit reference volume of porous solid) is thus obtained by

ṀΓ = −∇X ·QΓ = −∇X ·Q + JQK · ∇X fΓ − (JQK · N)δΓ, (3.21)
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with the assumption of ∇X ·JQK → 0 in BX. In this model, the mass flux could be discon-

tinuous across the interface, while the pressure field remains continuous. This assumption

is justified by the experimental findings that in ordinary soil mechanics testing situations

or for quasi-static loading conditions, no pore-water pressure shocks can develop across

shear band boundaries [237]. The assumption is also a necessary condition for the exis-

tence of second order derivative of pore pressures as shown in Equations (3.7), (3.21). This

assumption allows for storage and fluid flow within the discontinuity, but the interface

permeability must be infinitely large. Moreover, since there is no independent pressure

inside the interface, the model also lacks the capability to simulate the pressurized crack

[56].

To circumvent this issue described in [56], we introduce a simplified effective-medium

approach in which pores inside the major fault (strong discontinuity), the nearby net of

fissures and the intact host continuum are idealized as two porous systems of distinct

pore sizes. The pore spaces inside the strong discontinuities and fissures constitute the

macropore system, whereas the pore spaces inside the intact continuum are considered as

the micropore system. Those porous systems may exchange fluid mass. Assuming that

the separation of scales applies and there exists an appropriate length scale such that the

fissured porous media can be treated as the superimposition of three continua, the solid

skeleton, the macro-fluid continuum and the micro-fluid continuum at the representative

elementary volume level. Then the pore pressure and fluid flux of each pore system could

be distinctive until both porous systems reach steady state. In this treatment, the detailed

fluctuation of the micro- and macro-pore fluid flow below the scale of the RVE is ignored.

Nevertheless, this treatment also enables us to capture the transient fluid responses across

distinct time and spatial scales. This capacity is particularly important to deal with dual-
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permeability media with significant permeability differences and/or when the mass ex-

change is slow compared to the flux in either porous system (e.g. the pressurized crack).

Assuming that the homogenization procedure is valid even if an embedded strong dis-

continuity exists, then the pore pressure and flux fields can be defined at the macroscopic

continuum scale such that pM and QM are the macroscopic macropore pressure and flux

of the effective porous system that represents all the macropore space inside the net of fis-

sures and the major fault. Meanwhile, pm and Qm are the pressure and flux of the effective

porous system that represents the micropore space inside the intact solid skeleton. Fur-

thermore, the transfer flow at the continuum scale can be idealized as the flow between

the effective porous system that represents the pore space inside intact solid skeleton and

the counterpart that simultaneously represents both the pore space of the fault and the

fissures.

pM, pm and QM, Qm are continuous fields obtained from separate balance equations

of fluid mass in both pore-scales, interconnected by the fluid mass transfer c0 between the

two pores (Eq. 3.11). For finite elements with embedded strong discontinuity, standard

integrations are employed for all pressure and fluid flow in macropores and micropores.

Note that this treatment employed in the proposed framework is not the only feasible

approach. In the case where sub-scale fluctuations of pore pressure and flux are important,

one may consider the localized fluid flux formulation previously established in [38].

3.2.3 Condition of traction continuity

The solution of the local displacement jump field JuK requires a traction continuity equa-

tion relating the nominal stress field P in BX \ Γ and the nominal traction TΓ in Γ driving

the mechanical inelastic effects inside the strong discontinuity. The weak form writes, for
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all variations δ JuK, [7]

− 1
VBX

∫
BX

δ JuK ·PN dV +
1
LΓ

∫
Γ

δ JuK ·TΓ dΓ = 0, (3.22)

where VBX = measure(BX) and LΓ = measure(Γ). Since the fluid pressure in both pore-

scales are continuous across the strong discontinuity, JpMK = 0, JpmK = 0, Eq. 3.22 can be

written in terms of effective stress and traction:

− 1
VBX

∫
BX

δ JuK ·P′N dV +
1
LΓ

∫
Γ

δ JuK ·T ′Γ dΓ = 0. (3.23)

In the limit
VBX
LΓ
→ 0, the local equilibrium equation writes:

T ′Γ = (P′ · N)|Γ. (3.24)

The effective stress measure P′ in the host continuum just outside the strong discon-

tinuity is determined by the continuous part of the total deformation gradient, i.e., P′ =

P′(F) = P′(F, JuK). The effective traction measure is given by the displacement jump, i.e.,

T ′Γ = T ′Γ(JuK). These two constitutive laws for the host continuum and for the fracture are

presented in the subsequent section.

3.2.4 Constitutive equations

Inelastic dissipation mainly occurs inside the strong discontinuities of a solid body under

external loading, while the host matrix outside these localized zones remains intact. Thus,

to reduce computational cost, the multi-scale approach is only adopted in the vicinity of

strong discontinuities, and we assume a Neo-Hookean hyperelastic constitutive model is

sufficient to replicate the constitutive responses of the host matrix. For a RVE associated

with a material point undergoing a deformation characterized by the Left Cauchy-Green

deformation tensor b = F · FT = F · FT, the effective Kirchhoff stress is given by [16],

τ′ = λ0 ln J I + µ0(b− I), (3.25)
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where λ0 and µ0 are the Lamé constants from linear elasticity.

The spatial elasticity tensor Ce is given by

Ce = λ0I ⊗ I + 2(µ0 − λ0 ln J)I4
sym. (3.26)

Ce relates the Lie derivative of the effective stress tensor to the velocity gradient, i.e.,

Lvτ′ = Ce : d = Ce : 1
2 (∇x v + v∇x) = Ce : ∇x v, after noting the minor symmetry of Ce.

Then the spatial tensor αe with respect to the rate of τ′ is given by

τ̇′ = αe : ∇x v, αe = Ce + τ′ ⊕ I + τ′ 	 I. (3.27)

The material parameters for the model can be determined by numerical experiments on

an initial micro-scale representative volume element (RVE) composed of discrete particles:

a uniaxial tension/compression test to get the P-wave modulus M and a simple shear test

to get the shear modulus G. Then λ0 = M− 2G and µ0 = G.

As for the traction-separation relation T ′Γ = T ′Γ(JuK) for the strong discontinuity, it is

homogenized from the micro-scale RVE, and the approach is detailed in the subsequent

section.

The material properties for the dual-porosity hydraulic model are obtained as fol-

lows. The permeability tensor kM in macropores (fractures) in Eq. (3.7) is given by ma-

chine learning model trained with permeability data from Lattice-Boltzmann simulation

on micro-scale RVE, as explained in Section 3.3. Since the microscale RVE only represents

the medium inside the strong discontinuity, the hydraulic properties for the host medium

and mass transfer between the two media remain updated from phenomenological laws.

The permeability tensor km in micropores (host matrix) is assumed isotropic and its evo-
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lution against the micro-porosity follows the Kozeny–Carman relation,

km = km I, km = km0
φ3

m/(1− φm)2

φm
3
0/(1− φm0)

2
, (3.28)

where km0 is the initial permeability for the solid matrix having initial micro-porosity

of φm0. The pore fraction ψ for macropores (the ratio between the pore volumes of fis-

sures and the total porous continuum) is assumed to be constant during the deforma-

tion of the continuum. Thus the current value of macroporosity is obtained as, assum-

ing incompressible solid phase, φM = ψφ = ψ[1− (1− φ0)J−1], and φm = (1− ψ)φ =

(1− ψ)[1− (1− φ0)J−1].

The mass transfer coefficient ᾱ in Eq. (3.9) is a dimensionless parameter that depends

on the permeability of the interface between macropores and micropores k̄, as well as char-

acteristic length of the macropores spacing and solid matrix geometry [39, 43, 26]. The in-

terface permeability k̄ is assumed to equal to the micropore permeability km, following the

same assumption as [123, 43]. If the effect of the geometry of the strong discontinuity is

considered in the mass transfer term, ᾱ should become a tensor ᾱ instead of a scalar to take

into account the preferential mass transfer direction normal to the interface, in addition to

the assumed isotropic mass transfer between the net of fissure and the micropore space.

Hence Equation (3.9) is modified to a tensor form,

c0 = Jc =
J

3µ f
ᾱ : (pM I − pm I). (3.29)

where ᾱ is now a homogenized mass transfer coefficient tensor including the structural

information of the interfaces between macropores and micropores. A simple form of ᾱ can

be defined as

ᾱ =
dVf issure

dVM
ᾱI +

dVSD

dVM
ᾱn⊗ n, (3.30)
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where dVf issure and dVSD are elementary volumes of the net of fissures and the strong

discontinuity in the macropore space dVM, respectively.

3.3 Computational homogenization for strong discontinuity

Here we present the procedure to obtain the hydro-mechanical constitutive updates for

embedded strong discontinuity from microscale simulations on RVEs nested inside the

material interfaces. The computational homogenization schemes of single-physics ma-

terial layers have been explored in a number of previous studies [94, 47, 30, 247]. For

instance, [94] have introduced a procedure to generate an effective cohesive zone law

for a single interface from microscale RVE. In those studies, FE2 simulations with in-

terface elements are used as the test bed. [47, 30] establish a multi-scale approach for

RVE (or Microstructural Volume Element as introduced in the literature) having local-

ized zones and proposed a new generalized periodic boundary condition. The overall

macro-homogeneous deformation is applied to the MVE and the stress and displacement

jump are homogenized. The local equation to be solved is the consistency between the

macro displacement jump and the homogenized displacement jump in the RVE, instead

of the traction continuity equation. [229, 228] proposed multiscale model at regular points

(MMRp) and singular points (MMSp). It has been successfully used in enhanced strain

finite element simulations [158]. In this study, the RVEs of discrete elements describe the

underlying microstructures inside the discontinuity interface. Based on the effective stress

principle, the mechanical and hydraulic constitutive laws are obtained separately from

two types microscale simulations, i.e. the grain-scale DEM simulation and the pore-scale

LBM simulation, as explained in [214] and [243]. In other words, the effective traction

and the interfacial permeability (and hence the interfacial Darcy’s velocity) are both ob-
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tained from the same deformed configuration. However, the deformed configuration is

not obtained from LBM-DEM simulations but from DEM simulations that generate the

admissible boundary conditions by assuming the validity of the effective stress principle.

The major advantage of this approach is two-fold. First, the calculations of the interfa-

cial permeability are much faster. This is due to the fact that the de-coupled permeability

calculation can be conducted offline such that the trained and validated neural network

can be used to replace the costly LB simulations). The second advantage is the simplicity.

As the effective stress approach does not require the introduction of particle-scale hydro-

mechanical force and any treatment to update the fluid-solid boundary at pore scale. Nev-

ertheless, it should be noted that the validity of this split approach is designed for the case

in which the effective stress principle is applicable for the dual-permeability system. In

many situations that involve particle erosion [74, 230], soil liquefaction [64], or solid-fluid

mixture with non-Darcy flow or high Reynold’s number, such a simplification may lead to

significant errors. In such cases, one must derive the corresponding Hill-Mandel condition

for the multi-physical poromechanics problems to obtain the admissible boundary condi-

tions and apply them to the DEM-LBM model or use direct numerical simulation (DNS)

to capture the multi-physical problems. Such an extension will be considered in the future

study but is out of the scope of this work.

The Hill-Mandel condition and the corresponding computational homogenization pro-

cedure that calculates the homogenized effective traction and interfacial permeability mea-

sures in the finite deformation enhanced strain formulation are detailed in the following

sub-sections.
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3.3.1 Online incremental homogenized mechanical responses for strong dis-

continuities

The homogenization procedure of mechanical constitutive law is an extension of the ap-

proach described in [94] to particle assembly using the theory in [143, 144]. Consider a

cubic assembly of discrete particles representing the granular material inside the strong

discontinuity (Fig. 3.2). The body force is negligible at micro-scale. This RVE of domain

Ωµ and boundary ∂Ωµ has an initial height of h0
µ and is associated with a coordinate sys-

tem with basis vectors Mµ and Nµ. Choose the geometric center as the origin and place

the RVE in alignment with the normal and tangential directions of the strong discontinuity

Γ in the reference configuration (Nµ = N, Mµ = M). The current position xc
µ of a center

of a particle is related to its position Xc
µ in the reference configuration via the deformation

map ϕµ. The local deformation gradient Fµ =
δϕµ

δXc
µ
. The volume average of Fµ is given as:

〈Fµ〉 =
1

V0

∫
Ωµ

Fµ dΩµ =
1

V0

Nbound

∑
i

(xc
µ)i ⊗ Ac

i , (3.31)

where V0 is the initial volume of the RVE. Ac
i is the surface vector of ∂Ωµ associated with

the particle i and Nbound is the number of particles on ∂Ωµ. Assuming rigid particles, the

motion of a particle material point can be decomposed to the motion of the particle center

and the particle rotation, i.e.,

xµ = xc
µ + Rµ · (Xµ − Xc

µ); xc
µ = 〈Fµ〉 · Xc

µ + wc, (3.32)

where wc is the particle center displacement fluctuation and Rµ ∈ SO(3) describes the

particle rotation.

The overall effective Piola stress is given by the volume average

〈P′µ〉 =
1

V0

∫
Ωµ

P′µ dΩµ =
1

V0

Ncont

∑
cont

f cont
µ ⊗ Lcont

µ =
1

V0

Nbound

∑
i

( f ext
µ )i ⊗ (Xc

µ)i, (3.33)
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where f cont
µ is the contact force at the grain contact xcont

µ . Lcont
µ is the initial branch vector,

the vector that connects the centroids of two grains forming the contact. Ncont is the total

number of particles contacts in the RVE. ( f ext
µ )i is the external support force acting on the

boundary particle i. The transition between the summation involving contact forces and

the summation involving external support forces is ensured by the equilibrium of the RVE

of particles.

The volume average of the virtual power in the RVE is given by

〈P′µ : Ḟµ〉 =
1

V0

∫
Ωµ

P′µ : Ḟµ dΩµ =
1

V0

Nbound

∑
i

( f ext
µ )i · ˙(xc

µ)i. (3.34)

The Hill-Mandel micro-heterogeneity condition requires the volume average of the vir-

tual power in the RVE to equal the virtual power done by the volume averages of power-

conjugate stress and deformation measures:

〈P′µ : Ḟµ〉 = 〈P′µ〉 : 〈Ḟµ〉. (3.35)

Since the constitutive behavior of the RVE is homogenized to a traction-separation

law on the interface, the Hill-Mandel condition is recast into the form involving power-

conjugate effective traction and displacement jump measures

h0〈P′µ : Ḟµ〉 = 〈T ′Γ〉 ·Lv JuK = 〈T Γ〉 · ˙JUK. (3.36)

For the transition between the macro-scale kinematics of the strong discontinuity and

the deformation of the micro-scale RVE, the volume average of deformation gradient is

defined as

〈Fµ〉 = I +
1
h0

µ

JuK⊗N. (3.37)

The effective nominal traction 〈T ′Γ〉 averaged in the RVE representing the interface is
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given by:

〈T ′Γ〉 = 〈P′µ〉 · N. (3.38)

Among the admissible boundary conditions fulfilling the Hill-Mandel micro-heterogeneity

condition, we adopt the periodic boundary conditions, where for a pair of particles on op-

posite boundaries ∂V+ and ∂V−, the periodicity enforces the periodicity of fluctuations

and rotations

w−c = w+
c , R−µ = R+

µ , (3.39)

and the anti-periodicity of support forces and couples

a−c = −a+
c , m−c = −m+

c , (3.40)

where ac is the opposite of the resultant force on the boundary particle exerted by other

particles, mc is the opposite of the resultant couple about the center Xc on the boundary

particle.

3.3.2 Offline incremental data-driven hydraulic responses for strong disconti-

nuities

The homogenization procedure used to obtain the effective permeability from a microstruc-

ture RVE has been previously studied in [62, 161, 209, 214]. Here we apply the same pro-

cedure to obtain the homogenized effective permeability of the embedded strong discon-

tinuities. Assume that the separation of the spatial length scale is valid, one may use the

Hill-Mandel lemma corresponding to Darcy’s flow problem to determine the admissible

boundary condition for the flow problems. Recall that the Hill-Mandel lemma requires

that

〈∇x pM · qM〉x = 〈∇x pM〉x · 〈qM〉x (3.41)
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where 〈·〉x is the spatial volume averaged operator.

As shown in [62] and [161], this can lead to a number of admissible boundary condi-

tions. For instance, one may either prescribe flux or pore pressure gradient in two opposite

faces of the RVEs. One interesting aspect found in previous works (cf. [62, 209, 214, 115]) is

that the choice of the boundary condition does not affect the effective permeability once the

size of the RVE is sufficiently large. As mentioned previously in Section 3.2.2, we follow

the treatment in [56] and assume that there is no pore pressure jump across the interface,

whereas discontinuous mass flux is admissible.

The effective permeability tensor of a RVE can be determined via inverse fluid flow

problem performed on the deformed RVE subjected to prescribed loading paths. The Eu-

lerian fluid flux vector q within the RVE is computed when subjected to Eulerian pressure

gradient ∇x p, and the macro-pore effective permeability kM
RVE is determined by Darcy’s

law

qM = − 1
µ

kM
RVE∇x pM. (3.42)

µ is the dynamic viscosity of the fluid. We assume that the normal and tangential directions

of the interface are also the principal directions of the macro-pore effective permeability

tensors. Thus, we need only two hydraulic simulations to determine the permeability

values normal and tangential to the interface, denoted as kM
n and kM

m , respectively. Thus

the permeability tensor is expressed as

kM
RVE = kM

n n⊗ n + kM
m m⊗m, (3.43)

where n = F · N and m = F−T ·M. We choose the lattice Boltzmann (LB) method to solve

the inverse fluid flow problem. For brevity, we omit the description of the LB method.

Interested readers are referred to [210, 214] and [115] for details. The LB code used in this
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study is a C++ open source code called Palabos [59]. The procedure to obtain the two nor-

mal and tangential components is as follows. We first record the positions of all grains in

the deformed microstructural assembly at different strain levels. As the size of each grain

is known, the configuration of the pore space can be reconstructed and subsequently con-

verted into binary images (cf. [214]). Then, pore pressure difference is imposed on two

opposite sides orthogonal to the flow direction and no-flow boundary conditions are ap-

plied on the four remaining side faces. This setting leads to a macroscopic pressure gradi-

ent. As the lattice Boltzmann flow simulation reaches steady state, the resultant fluid flow

velocity is computed and the permeability value is derived via Darcy’s law (Fig. 3.2). Fig.

3.4 illustrates an example computation of permeabilities from LBM. The RVE is subjected

to various displacement loading paths with loading-unloading cycles. The evolution of

normal and tangential permeabilities predicted by the neural network are presented and

are compared to the empirical Kozeny-Carman equation.

Figure 3.2: Initial and deformed configurations of the particle assembly representing the

granular materials inside strong discontinuity. The effective permeabilities in the normal

and tangential directions are determined by Lattice-Boltzmann simulations on representa-

tive volume of current particle assembly.

The numerical solutions of Stokes equations using Lattice-Boltzmann method yield
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accurate results, especially in the low Reynold number regime, but require significant

computational resources to resolve the flow field at pore space. To achieve a reasonable

accuracy, the number of degree of freedoms required to obtain the effective permeability

is at least a few orders more than those used in discrete element simulations [214] Thus,

querying the effective permeability tensor from LBM simulations from each RVE for all in-

cremental steps during a multiscale simulation is computationally expensive. In this work,

we resort to a deep learning approach to predict the effective permeability for each incre-

mental step. The design, training, and testing of the LSTM network on path-dependent

material constitutive laws are detailed in a separate and dedicated work (cf. [247]). For

completeness, a brief overview is provided. First, a database containing the prescribed

displacement jump loading paths, porosity and associated computed permeabilities is es-

tablished by running multiple LBM simulations on deformed discrete element RVEs. Then,

a recurrent neural network consisting of Long-Short-Term-Memory (LSTM) layers (see Fig-

ure 4.6) is trained using the database generated by LBM simulations [96, 245].

Figure 3.3: The recurrent neural network used to predict the permeability of the interface.
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Finally, in each incremental update of the multiscale strong discontinuity simulation,

the updated effective permeability components are generated by propagating signals from

the input layer of the recurrent neural network to the output layers. In this particular

case, the current displacement jumps and porosity are used as the input and the principal

values and the spectral directions of the effective permeability tensor are the output of

the recurrent neural network. One important upshot of this approach is that the querying

time is largely reduced, as the deep learning permeability model typically requires only

few seconds to make predictions.

(a) Displacement jump loading path (b) Evolution of permeabilities along loading

path

Figure 3.4: Example of permeability data generated from LBM simulations on RVEs un-

dergoing loading-unloading sequences. (a) loading path of the normal Un and tangential

displacement jumps Us. (b) Comparison between the normal kn and tangential ks perme-

ability data from LBM simulations and the permeability components from predictions of

LSTM neural network model. The calculation from empirical Kozeny-Carman equation

k =
d2

50
180

φ3

(1−φ)2 (d50 = 1mm) is shown for comparison.

Remarks on the computation time Each LBM simulation for determining the perme-

ability of a DEM assembly costs a CPU time of 5 minutes. If the LBM simulation is used
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online with the FEM-DEM simulation, suppose there exist 10 000 integration points in a

finite element mesh, for each iteration within each time step, the total CPU time spent in

updating the permeability will be 50 000 minutes. If the data-driven approach is adopted,

the LBM simulations are conducted offline to generate the database for the permeability of

DEM assembly. The total CPU time is 5 000 minutes, when the overall size of the training

and testing data is 1 000. The training and testing of a LSTM neural network model is 250

minutes. The CPU time for a LSTM neural network to predict permeability online with

the FEM-DEM simulation is less than 1 minute for 10 000 integration points. Suppose a

simulation consists of 100 time steps and each time step requires on average 10 iterations

to converge. The comparison of CPU time spent on permeability calculation between the

online approach and the data-driven approach is 50 000 000 (5 000 * 100 * 10) minutes

against 6 250 (5 000 + 250 + 1*100*10) minutes. This justifies the advantage of artificial

neural network over the online LBM simulations in saving the computation time.

3.4 Numerical Example: Reactivation of faults

This example analyzes the slip of a pre-existing and formerly stable fault in saturated soil

triggered by the injection of water at a nearby location. The idealized problem geometry

and boundary conditions are shown in Fig. 3.5. The dimensions of the 2D field of satu-

rated porous media are 10 m x 10 m. The domain is constrained in the x-direction on the

left boundary and in the y-direction on the bottom boundary. A foundation has been con-

structed on top of the domain, generating a uniform loading pressure of 10 MPa. A lateral

confining pressure of 5 MPa is applied on the right boundary for the frictional porous me-

dia to sustain the vertical load. There exists a 45-degree fault under the foundation. The

entire system is stable and has been in equilibrium for a long time since the construction of
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the foundation, thus the excess pore pressures in both fractures and host matrix are zero.

The initial effective stress of the porous solid is hence

σ
′
Init =

−5 0

0 −10


xy

MPa, (3.44)

where the subscript xy refers to the coordinate system {x, y} depicted in Fig. 3.5.

Figure 3.5: Geometry of fault reactivation problem and boundary conditions. Red line

represents the pre-existing fault.

The DEM RVEs characterizing the traction-separation law of the fault are placed in

alignment with the strong discontinuity. They must be in the initial stress state consistent

to the macroscopic boundary conditions. From the initial stress state of the macro-scale

problem (Eq. 3.44) and via a coordinate transformation (σmn = RT · σxy · R), the initial

stress tensor of the DEM assemblies is expressed as

σ
′
InitRVE =

−7.5 2.5

2.5 −7.5


mn

MPa, (3.45)
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where the subscript mn refers to the rotated frame {m, n} for the fault depicted in Fig. 3.5.

The initial DEM RVEs in this stress state provide the correct amount of initial shear and

normal tractions along the strong discontinuity.

In this example, the particle contact model for DEM is frictional and without cohe-

sion. The normal and tangential permeabilities are obtained from machine learning mod-

els trained with LBM simulation data. The bulk material is idealized as isotropic hyperelas-

tic material. The permeability tensors in macro- and micro-pores of the bulk are assumed

isotropic and evolve according to the Kozeny-Carman equation. The material parameters

used in the numerical example are summarized in Table 3.1.

Water is injected to the macropore space (pre-existing fractures) of the field through

the source S located at the center of the domain. The macropore pressure is zero on the

top surface and the other three surfaces are no-flow boundaries. There is no drainage

boundary for micropore pressure. This flow boundary condition is to suppress spurious

micropore pressure oscillations near the drainage boundary [43]. The prescribed time his-

tory of Darcy velocity at the source is shown in Fig. 3.6. The injection profile is composed

of injection-pause cycles, in which water supply is provided for 40 hours under a con-

stant rate of 0.02 m/s, followed by a pause for 10 hours before the next cycle of injection.

From the simulation results, the time history of the pore pressure in both scales at the

source S is presented in Fig. 3.6. Upon injection or pause, the macropore injection pressure

jumps up or plunges immediately, while the micropore pressure at the injection point has

the opposite behavior. This is caused by the low mass transfer permeability between the

macropores and micropores. Then in the transient regime, when fluid gradually diffuses

into the micropores by mass transfer, micropore pressure slowly approaches the macrop-

ore pressure. The two pressures will eventually be identical when the diffusion between
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Scale & Model Parameter Value

Grain-scale DEM Particle Young’s modulus E 0.5 GPa

Grain-scale DEM Particle Poisson’s ratio ν 0.3

Grain-scale DEM Particle Friction Angle ϕ π
6

Grain-scale DEM Particle density 2600 kg/m3

Grain-scale DEM Particle mean diameter 0.5 mm

Grain-scale DEM-LBM Initial intrinsic permeability 9e−14 m2

Macro-scale FEM Young’s modulus E 0.2 GPa

Macro-scale FEM Poisson’s ratio ν 0.2

Macro-scale FEM Porosity of macropore φM 0.05

Macro-scale FEM Porosity of micropore φm 0.1

Macro-scale FEM Intrinsic permeability of macropore kM 1e−14 m2

Macro-scale FEM Intrinsic permeability of micropore km 1e−17 m2

Macro-scale FEM Parameter of mass transfer α ρ f ∗ km

Macro-scale FEM Dynamic viscosity µ 1e−3 Pa · s

Table 3.1: Material parameters for the grain- and macro-scale poromechanics problem with

embedded strong discontinuities across length scales. The parameters for the simple fric-

tional DEM model are defined in [240].

pores reaches equilibrium.

The macropore and micropore pressure field at time 40 h, 100 h and 180 h are presented

in Fig. 3.7. The pressure plume is initially of the shape of a circle and then expands as

the increasing amount of water are being injected through the source. The pore pressure

drops when the injection pauses, but the plume is still expanding, driven by the excess

pore pressure that has not been entirely diffused. When the injection is resumed, the pore

pressure rises again. The presence of the fault with higher permeability disturbs the pres-

sure plume. The fluid flows more quickly to the top surface through the channel inside the
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(a) (b)

Figure 3.6: Water supply in the fault reactivation problem. (a) Time history of the pre-

scribed injection velocity in macropore at the source point. (b) Computed responses of

injection pressure in macropore and micropore at the source point. The numbers mark the

sequence of injection-pause cycles.

fault. As for the micropore pressure field, it has a similar but delayed evolution behavior,

due to the time required for the fluid transfer between macropores and micropores. The

difference between macropore and micropore pressure is due to the different permeability

in macropores and micropores for the fluid to diffuse in the macro-scale field, and also the

low transfer permeability between pores.

Due to the fully coupled nature of the problem, the mechanical responses of the porous

solid, especially the displacement jump and traction at the strong discontinuity, strongly

depend on how pore fluid diffuses inside the pore space. The evolution of macro-scale

mean effective stress field during the fluid injection cycles is shown in Fig. 4.28. The

increase in the mean effective stress is due to the increase in excess pore pressure, in agree-

ment to the effective stress principle Eq. 3.13. This results in a reduction in the normal

compression traction. As the fault is frictional, this reduction in normal compression also



CHAPTER 3. MULTISCALE LBM-DEM-FEM COUPLING FOR DUAL-PERMEABILITY
FISSURED POROUS MEDIA 79

(a) 40 hours (b) 100 hours (c) 180 hours

(d) 40 hours (e) 100 hours (f) 180 hours

Figure 3.7: Evolution of macropore pressure (a-c) and micropore pressure (d-f) field. Ar-

rows indicate the fluid flux vector field in macropores (a-c) and in micropores (d-f). The

non-zero components normal to the impervious boundaries are due to the inaccuracy of

the nodal projection of the flow vector field evaluated at quadrature points.

reduce the shear strength and ultimately leads to the reactivation of the fault. The slip

can be clearly observed from the changes in deviatoric strain field illustrated in 3.9. The

deviatoric strain gradually increases and concentrates inside the fault zone. This simula-

tion result suggests the hazardous effect of injecting water to the underground, as a fast

fluid flow may trigger the slip of a nearby pre-existing fault, leading to the failure of the

foundation.

The local responses to the fluid injection-pause cycles, including the spatial displace-
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(a) 40 hours (b) 100 hours (c) 180 hours

Figure 3.8: Evolution of the mean effective stress field in the macro-scale simulation.

(a) 40 hours (b) 100 hours (c) 180 hours

Figure 3.9: Evolution of the differential strain field in the macro-scale simulation.

ment jump, effective nominal traction and spatial macropore permeability, are illustrated

in Fig. 3.10, Fig. 3.11 and 3.12 respectively for three locations A, B, C in the fault indicated

in Fig. 3.9. The plots clearly illustrate the failure of the fault system by the opening and

sliding of the local microstructures, caused by reductions in both normal and tangential

tractions. These results demonstrate the capacity of our proposed multiscale model in cap-

turing the complex mechanical and hydraulic behaviors of the interfacial materials. This

is an improvement over the phenomenological traction-separation laws where idealized

tensile and shear (linear or exponential) behavior is often adopted [165].
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(a) RVE A (b) RVE B (c) RVE C

Figure 3.10: History of normal Un and tangential Us components of the displacement jump

JuK for local RVEs A, B and C (locations shown in Fig. 3.9). The numbers mark the sequence

of injection-pause cycles (Fig. 3.6).

(a) RVE A (b) RVE B (c) RVE C

Figure 3.11: History of normal Tn and tangential Ts components of the effective nominal

traction T ′ for local RVEs A, B and C (locations shown in Fig. 3.9). The numbers mark the

sequence of injection-pause cycles (Fig. 3.6).

3.5 Conclusions

In this work, we present, for the first time, a multiscale coupling model that captures the

hydro-mechanical responses of dual-permeability porous media with strong discontinu-

ities in the finite deformation range. The traction-separation law is homogenized from
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(a) RVE A (b) RVE B (c) RVE C

Figure 3.12: History of normal kn and tangential ks components of the macropore perme-

ability kRVE for local RVEs A, B and C (locations shown in Fig. 3.9). The numbers mark the

sequence of injection-pause cycles (Fig. 3.6).

DEM RVEs located in the strong discontinuity, and the interfacial permeability is given

by a data-driven model trained with Lattice-Boltzmann simulations on deformed RVEs.

An enhanced-strain dual-porosity formulation suitable for incorporating the homogenized

constitutive laws is derived. The proposed semi-data-driven multiscale framework is ca-

pable of simulating complex and fully coupled geomechanics problems with pre-existing

and non-propagating fractures. This is demonstrated by a field-scale problem that show-

case the failure of a fault system induced by the underground injection of fluid.
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Chapter 4

Multiscale multi-permeability

poroplasticity model via recursive

homogenizations and deep learning

This chapter is reproduced from the published paper: K. Wang, W.C. Sun, A multiscale

multi-permeability poroplasticity model linked by recursive homogenizations and deep

learning, Computer Methods in Applied Mechanics and Engineering, 334(1):337-380, 2018.

4.1 Introduction

In the classical hierarchical multiscale framework, such as FEM2 (cf. [71, 68]) and DEM-

FEM ([132, 244, 242]), the multiscale simulations are conducted by replacing constitutive

law with representative elementary volume (REV) simulations that provide the incremen-

tal constitutive updates at each integration point. This method is typically much more cost

efficient than the direct numerical simulation, as the micro-mechanical simulations are

confined in the REV domain rather than conducted in the entire physical domain. How-

ever, the computational cost is typically much higher than the conventional constitutive
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law driven method [132, 89].

This computational cost is perhaps feasible for two-scale coupling simulations, but it

may become a severe computational barrier if one attempts to link simulations across more

than one scale. The remedy to this issue can be classified as two approaches – the usage

of surrogate model [108, 131] or the usage of reduced-order modeling [69]. In the former

case where surrogate model is used, the smaller scale simulations will often be used to

generate a database aimed to record the homogenized responses of the representative el-

ementary volume. This database can also be experimental data or a combination of both

”real” experimental data and the ”virtual” simulation data. This database is then split

into two mutually exclusive subsets – One used to calibrate and identify material parame-

ters via inverse problems; another one used for validation and performance assessment of

the numerical models [131]. Nevertheless, the primary drawback of the surrogate-based

approach, in particular in the cases where phenomenological models are used as surro-

gate model, is that the accuracy and efficiency are highly dependent on the quality of the

surrogate models that replace the direct numerical simulations (DNS). Furthermore, this

approach often requires multiple surrogate models for multiphysics problem that might

not be consistent with each other. This issue is particularly common for poromechanics

problems (e.g. [192]) where the usage of kinematic hardening plasticity model coupling

with isotropic permeability model often leads to the discrepancy that is hard to detect.

Even worse, the introduction of multiple material parameters may make it easier to com-

plete curve-fitting for a model that lacks prediction capacity otherwise.

Here we limit our focus on a hierarchical multiscale coupling approach in which recur-

rent neural network trained by a supervised deep learning is used as surrogate model to

deliver constitutive responses, from solution database [221, 102]. Our major point of de-
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parture is the use of a graph-based concept previously presented in [170], [208] and [188]

to design the information flow from smaller to larger scales and the use of recurrent neu-

ral network to automatically generate one surrogate model that provide the updates for

both the effective stress and permeability tensors in the macroscopic and microscopic pore

space.

This directed graph represents the hierarchy of information processed in a computa-

tional model that utilizes a combination of classical and data-driven models. In the di-

rected graph representation, physical quantities are viewed as vertices, while the relations

among physical quantities are considered as edges that link those building blocks together

to form a computational model. In the case where the directed graph represents the hi-

erarchy of information of the initial boundary value problem, the most upstream vertices

(also called the root in graph theory literature) would be the governing equations (e.g.

balance principles, phase field evolution equations, etc), while the downstream vertices

(also called the leaves in graph theory literature) are the unknown variables (e.g. displace-

ment, pore pressure, temperature). Close examination of the information flow may help

us distinguish the edges into 1. definitions (e.g. relation between deformation gradient

and displacement field, relation between Biot’s coefficient and bulk moduli) 2. universal

principles (e.g. effective stress principle – relationship among total stress, effective stress

and the pore pressure of the macro- and micro-pores, balance principles) and 3. mate-

rial laws, phenomenological relations or empirical rules (e.g. Darcy’s law, water retention

curve, stress-strain relation), as shown in Figure 4.1.

Unlike the model-free approach in which the entire computational model is replaced

by neural network (cf. the model-free approach e.g. [84]), our approach is to keep the

edges identified either as definitions or universal principles, but replace the edges that are
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Figure 4.1: Directed graph representing the information flow of the multi-scale multi-

physics dual-permeability poromechanics problem for fluid-infiltrating media. Red arrow

represents either a phenomenological relation or an operator that is defined not by defini-

tion, universal law or first principle.

commonly linked together by phenomenological models with data-driven model trained

from deep learning. To do so, we first identify the subgraph (the graph formed by a subset

of the vertices and edges of the graph that presents the computer model) in which the

vertices are only connected by material laws. In this subgraph, we again identify the leaves

and roots.

This information in return gives us an idea about what we should ”learn” and what

should be in the input and output in the supervised machine learning setting. In the dual-

permeability poromechanics problem, which we selected as test bed, we assume that the

effective stress principle is valid for the dual-permeability system [19, 222, 39, 48]. Fur-

thermore, since we use a recurrent neural network for the supervised training, the time

history of strain is not explicitly expressed as an additional vertex in the directed graph,
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Figure 4.2: Sub-graph of the multi-scale multi-physics poromechanics problem for fluid-

infiltrating media. Red arrow represents either a phenomenological relation or an operator

that is defined not based on first principles.

as previously done in [122] where feed-forward neural network is used. Rather, they are

taken into account as internal state by default such that the path-dependent behavior of

the dual-permeability porous material can be replicated. In the dual-permeability prob-

lem, we identify that macroscopic strain, εmarco is the root and the effective stress σ′marco,

permeability of the macroscopic and microscope pores, kM
macro, km

macro, the mass exchange

rate cmacro, and the bulk modulus of solid skeleton Kskeleton, as shown in Figure 4.2. Once

the input and output are determined, the rest of the task is to determine the appropriate

model that gives us the output prediction when a specific input is given. Notice that it is

also possible that the ”material laws” of a multiphysical problem may also lead to multiple

sub-graphs that share no vertex. In such sense, the procedure described above still applies,

but the machine learning for each sub-graph will be independent to each other.

Another important observation is that it is not necessary to completely replace the sub-

graph with data-driven model. For instance, one may use the conventional material law

to connect the strain and strain history with stress but use experimental data to generate



CHAPTER 4. MULTISCALE MULTI-PERMEABILITY POROPLASTICITY MODEL VIA
RECURSIVE HOMOGENIZATIONS AND DEEP LEARNING 88

a data-driven model that predicts the permeability from strain history. The optimization

of the choice of the edges for the hybrid approach, especially when it is subjected to noisy

data is an important topic but is out of the scope of this study.

4.2 Preparation of databases for offline hierarchical supervised

machine learning

In the previous section, we discuss the anatomy of the mathematical model represented in

a directed graph, and the method to identify the components to insert data-driven model

properly in a multi-physical problem without altering the hierarchy and connectivity of

the physical quantities. In this section, our goal is to focus on how to use sub-scale data

to enhance the predictions via an offline hierarchical bridging scale method. In particu-

lar, we will review the difference of online and offline hierarchical multiscale approaches

and procedure of generating pre-computation databases for fast or real-time multiscale

simulations.

Figure 4.3: Comparison between off-line pre-trained multiscale ANN-FEM simulations

and online hierarchical multiscale simulations.
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In an online hierarchical coupling approach in which simulations of different scales are

linked, we might define macroscopic problems and microscopic problems and consider

different technique to link the two problems in a hierarchical manner. For instance, the

mechanical and hydro-mechanical responses of granular materials can be replicated by a

DEM-FEM coupled model in which the macroscopic material laws are homogenized from

discrete element simulations. By associating each integration point with an RVE, the cou-

pling of the micro-problem (DEM) and macro-problem (FEM) is established by replacing

macroscopic phenomenological relations with DEM simulations for each incremental time

step. [142, 155, 88, 132, 242, 244]. This approach is nevertheless very expensive, as each

constitutive update at each integration point would require an individual sub-scale DEM

simulation performed on a different RVE at each incremental step. While parallel imple-

mentation is efficient for the hierarchical DEM-FEM coupling approach (as the DEM sim-

ulations can be embarrassingly parallel), the total number of required DEM simulations

still grows proportionally with the mesh size used in the macroscopic problems. This cost

becomes more profound when information across more than two scales become impor-

tant, as shown in the dual-porosity, dual-permeability poromechanics problem illustrated

in Figure 4.3.

On the other hand, the offline hierarchical coupling method does not directly use the

DEM simulations during the macroscopic simulations. Rather, it involves an additional

step in which the sub-scale simulations are used to generate a database. This database

is then used to calibrate a surrogate model that is sufficiently efficient for macroscopic

boundary value problems. The surrogate model can be simply a phenomenological model

[108, 131], a reduced-order sub-scale model [68, 265, 266] or a data-driven model [111]. The

offline hierarchical technique, if conducted properly, has at least two advantages. First, it
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costs less as the offline techniques as it does not need on-the-fly sub-scale simulations.

Second, the offline treatment provides an opportunity for one to combine real and virtual

data together to improve the accuracy of numerical simulations.

Figure 4.4: Hierarchy of a multi-scale multi-physics poromechanics problem for fluid-

infiltrating media. Black arrow represents a definition or a ”universal principle”; red arrow

represents either a phenomenological relation or an operator that is defined not based on

first principles.

As shown in Figure 4.3, we will leverage these advantages to conduct a simulation that

links the hydro-mechanical simulations of fractured porous media across three scales. In

particular, our objective is to introduce a recursive training procedure where the database

generated from small-scale simulations would be used to train a meso-scale RNN data-
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driven model, while the meso-scale RNN-FEM model will be used to generate another

database to train the macroscopic data-driven model used for field scale simulations, as

shown in Figure 4.4. Here we first assume that the principle of separation of scale is valid

such that,

lmicro ≤ lmeso ≤ lmacro. (4.1)

Previously, [244] has established a finite strain DEM-FEM coupling model to simulate

two-phase poromechanics problem. Here we extend this work and focus on the case where

intense localization due to damage or fractures occurs across the micro-, meso- and macro-

scopic scales. As a result, we require two sets of numerical simulations to generate the ap-

propriate database to first link micro-mechanical DEM simulations to the meso-scale RVE,

then again link the meso-scale DEM-FEM simulation to macroscopic scale field problem.

The first micro-mechanical simulation database consists of simulation results obtained

from a DEM-network model in which DEM assemblies are subjected to different load-

ing paths. The constitutive laws (traction-separation law and anisotropic permeability of

macroscopic pore space) obtained from homogenizing the DEM responses are used as the

data set for training and validating the neural network models. Here we assume that the

mesoscale model employs a finite element discretization with displacement, pore pressure

and their corresponding jumps as unknown in each incremental time step. Applying the

effective stress principle, we postulate that there exists an effective stress such that it solely

depends on the deformation and deformation history of the solid skeleton [222, 19].

In the infinitesimal regime, the Hill-Mandel micro-heterogeneity condition requires the

volume average of the virtual power in the RVE to equal the virtual power done by the

volume averages of power-conjugate stress and deformation measures. In terms of stress
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σ′ and infinitesimal strain ε:

〈σ′〉 : 〈ε̇〉 = 〈σ′ : ε̇〉 (4.2)

The traction 〈T ′Γ〉 averaged in the RVE representing the interface is given by,

〈T ′Γ〉 = 〈σ′〉 · n, (4.3)

where n is a unit vector normal to the interface and m is a unit vector tangential to the

interface. The average infinitesimal strain is defined in terms of JuK and the initial height

of the RVE h0:

〈ε〉 = sym(
1
h0

JuK⊗n). (4.4)

Thus, the Hill-Mandel lemma in the interface in terms of 〈T ′Γ〉 and JuK is given by:

h0〈σ′ : ε̇〉 = 〈T ′Γ〉 · ˙JuK. (4.5)

In the infinitesimal regime, the time derivative of displacement jump reads,

˙JuK = ˙JuKnn + ˙JuKmm. (4.6)

The Hill-Mandel lemma for the interface therefore can be rewritten as,

h0〈σ′ : ε̇〉 = = 〈Tn〉Ju̇Kn + 〈Tm〉Ju̇Km. (4.7)

According to Eq. (4.3), effective traction in the normal and tangential direction can be

written as,

〈Tn〉 = 〈σ′〉 · n · n

〈Tm〉 = 〈σ′〉 · n ·m
(4.8)

where the overall effective stress is given by,

〈σ′〉 = 1
V0

Nc

∑
c

f c ⊗ lc (4.9)
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where V0 is the initial volume of the RVE. f c is the contact force at the grain contact x+ yc ∈

R3. lc is the branch vector, the vector that connects the centroids of two grains forming the

contact. Nc is the total number of particles in the RVE. Among the admissible boundary

conditions fulfilling the Hill-Mandel micro-heterogeneity condition, we adopt the periodic

boundary conditions [144], where the motion of a particle on the boundary of the RVE is

characterized by, assuming rigid particles,

x(X) = 〈F〉 · Xc + wc + R · (X − Xc) (4.10)

where Xc is the initial position of particle center, wc is the displacement fluctuation and

R describes the particle rotation. For a pair of particles on opposite boundaries ∂V+ and

∂V−, the periodicity enforces the periodicity of fluctuations and rotations

w−c = w+
c , R− = R+, (4.11)

and the anti-periodicity of support forces and couples

a−c = −a+
c , m−c = −m+

c , (4.12)

where ac is the opposite of the resultant force on the boundary particle exerted by other

particles, mc is the opposite of the resultant couple about the center Xc on the boundary

particle.

The theoretical basis and the calculation of homogenized permeability has been pre-

viously studied in [62, 161, 209]. Assuming that the DEM assembly is used to model the

strong discontinuity which often becomes flow conduit or flow barrier, we may again use

a Hill-Mandel lemma corresponding to the Darcy’s law to determine the effective perme-

ability of the assembly, i.e., [62],
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〈∇p · q〉 = 〈∇p〉 · 〈q〉 (4.13)

Eq. 4.13 can be satisfied by the Dirichlet boundary condition in which the pore pressure

difference across two opposite face is prescribed and Darcy’s velocity is determined. As

a result, the effective permeability tensor of a RVE can be determined via numerical flow

experiment on the RVE. The fluid flux vector q within the RVE is computed when subjected

to pressure gradient ∇p, and the permeability kRVE is determined by Darcy’s law

q = − 1
µ

kRVE∇p. (4.14)

Among the solution strategies, the numerical solution of Stokes equations using finite ele-

ment or Lattice-Boltzmann method yield accurate results but require large computational

resources. This work resorts to the pore network flow model which simplifies the pores

as nodes interconnected by edges allowing fluid flow [36, 40]. The first step of the ho-

mogenization procedure of permeability is the domain decomposition of the DEM sphere

packing. This is achieved by well developed Delaunay triangulation and dual Voronoi

graph algorithms [63, 40]. Using the particle centers as the triangulation nodes, the de-

formed micro-scale domain Ωµ is decomposed into cells Ωµ =
⋃Nt

i=1 Ωi
µ. Ωi

µ is triangle in

2D analysis and tetrahedron in 3D analysis. The 2D concepts are adopted in the following

descriptions. Each triangular cell Ωi
µ encloses a pore space of volume Vi

v between three

particles. The remaining solid space is the intersection of Ωi
µ with the three particles and

has the volume Vi
s . The dual domain decomposition of Ωµ into Voronoi cells generates the

pore network in the DEM assembly. Each node is regarded as the center of the pore space

in a triangular cell Ωi
µ and each edge serves as the flow pipe connecting two pore space

centers.
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The next step is to define the local conductance of each edge (”pipe”) in the flow net-

work. Consider an edge connecting the pore i and j of cells Ωi
µ and Ωj

µ, respectively.

Suppose that the flux in this pipe is qij when i at position xi has the pressure pi and j at

position ji has the pressure pj, and that the length of the pipe is Lij = ||xi − xj||2, the local

conductance gij relates these quantities by,

qij · (xi − xj) = qij =
gij

µ

pi − pj

Lij . (4.15)

Extensive studies have been conducted on defining gij in pore network models [175,

93]. This work adopts the definition in [40], in which a new method of determining hy-

draulic radius HRij of a cross-section of complex geometry is proposed. The local conduc-

tance admits the expression

gij = α Aij (HRij)2. (4.16)

where α is a non-dimensional factor reflecting the pore throat shape (α = 0.5 in this work),

Aij is the cross-sectional area of the throat. A domain Θij around the throat between two

pore spaces is defined based on the triangular cells and the dual Voronoi cells. Its volume

is φij and the total area of its boundaries is γij. The hydraulic radius is given by

HRij =
φij

γij . (4.17)

In the numerical example of this work, we adopt the micro-scale DEM assembly as the

hydro-mechanical constitutive model for the sealing fault, which has an intrinsic perme-

ability in the order of 10−14 m2. This low level of permeability is observed in porous media

that often has a porosity of 0.1-0.2. However, in the DEM numerical assembly, where

mono-disperse spheres are adopted to represent the particles, this porosity is not possible

to achieve under confining stress in the order of Mega Pascals. The lowest porosity of the
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RVE is still higher than 0.3. This discrepancy comes from the poor representation of the

actual shape of grains in real soils by the idealized spheres. Realistic and accurate porosity

will be reached by using numerical particles with complex shapes, yet this requires more

powerful DEM simulation tools and is out of the scope of this study. Hence the perme-

ability obtained from the flow network simulation on the micro-scale DEM assembly is

artificially scaled to the order of 10−14 m2. Our focus lies on the path-dependent changes

in permeabilities in the normal and tangential directions of the strong discontinuity, fol-

lowing the displacement jumps applied to the interface.

Once the DEM assembly generates a sufficiently large database, the database can be

used to train the data-driven model. Typically one would like to test a large variety of

different loading paths such that different responses (torsion, shear, stretch, compression,

loading & unloading) can be anticipated. The exact content of the database is often de-

termined after a trial-and-error procedure. The size of database strongly depends on the

exact configuration, type and the training process used for the neural network. Under-

standably, it could be counterproductive to generate a large database for a small neural

network. On the other hand, it also does not make sense to have a very deep and complex

neural network design while the data available for the supervised training and validation

are limited. The detailed description on the design of the neural network will be presented

in the next section.

One may think of the trained meso-scale data-driven model as a representation of the

data or as a surrogate model. However, the advantage of the neural network as surrogate

model is that one may easily adjust the neural network configuration, whereas changing

from one surrogate model to another often require a substantial amount of work to identify

material parameters.
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Figure 4.5: The generation of database for macroscopic data-driven model using hybrid

neural-network / finite element model. In the meso-scale simulations, we consider the lo-

calized damage zone as a dual-porosity material in which the data-driven model provides

the traction-separation law and the flow prediction normal and orthogonal to the interface

while the responses of the host matrix is captured by a simple elastic materials. The meso-

scale RVEs are then subjected to various loadings, and the responses are recorded and used

to train and validate the macroscopic data-driven model. In this figure, displacement field

is scaled by a factor of 50.

After the completion of the training of the meso-scale data-driven model used to rep-

resent the strong discontinuity at the meso-scale, we then generate another set of RVE that

uses the data-driven model as a replacement of the DEM model to capture the traction-

separation law of the localized damage zones at the meso-scale. We then subject the meso-

scale RVE to various loading paths and obtain the simulated responses from the the hybrid

neural network/finite element model as shown in Figure 4.5. If there is no comparable

experimental data available, then the simulated responses of the dual-porosity material
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constitute the database for the data-driven model used in field-scale problems.

4.3 Offline bridging scales via recurrent neural network

In a nutshell, machine learning refers to the ability of a computer to learn without being

explicitly programmed. In the field of computational mechanics, machine learning has

been widely used for finding the bases of the reduced dimensional space for reduced or-

der modeling, and for replacing constitutive laws with trained artificial neural network.

The latter tasks have found a various degree of success in previous work such as [77] and

[122]. One key aspect that is critical for the application of the solid mechanics applications

is that the machine learning process must be able to generate path dependent responses

such that the strain, strain rate and strain history may all affect the resultant stress re-

sponses. The ability of replicating history dependent behavior is equally important for

capturing the hydraulic responses. For instance, the effective permeability of a porous

rock may be influenced by the damage of the host matrix. Furthermore, water retention

curve, the relation between degree of saturation and suction, is known to be dependent

on the wetting and drying history of the pores. In the poromechanics literature [104, 117],

the hydro-mechanical path-dependent behavior has been enforced by additional input in

a feed-forward neural network or support vector machine.

4.3.1 Deep learning with recurrent neural network

The recurrent neural network (RNN) is an umbrella term for artificial neural networks with

connection topology possesses cycles [135]. In other words, the recurrent neural network

considers data existing as sequences and the output of a layer in the previous step is added

back as additional input and fed back into the same layer to produce the output (hence the
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name recurrent neural network).

The existence of the cycles leads to a profound difference, as it resembles how a history-

dependent process evolve in time with cause-and-effect relationship (e.g. translating para-

graphs of content between different languages, analysis of video surveillance). While clas-

sical artificial neural network can be regarded as a mathematical function, the recurrent

neural is a dynamical system model of the biological neural networks that possess mem-

ory and is able to process arbitrary sequences of input and generate arbitrary sequences

of output. These important features have made RNN versatile among many applications

that require learning from temporal data such as speech recognition, machine translation,

quick-type for smartphones and driver-less car technology. In structural engineering, RNN

has been used to perform model-free structural analysis in which the structural behavior is

predicted without any physical model [84]. Similar approach has been applied in geotech-

nical engineering in which an RNN is used to replicate stress-strain relation of sand sub-

jected to monotonic triaxial compression loading [269].

In all the application mentioned above, the RNN machine learning procedure is often

used to produce data-driven model that completely replace the constitutive models based

on human interpreted knowledge. In this work, we take a different approach in which the

machine learning is not used to generate model-free prediction but to be used for gener-

ating links for bridging simulations across scales in an offline fashion. Furthermore, we

also retain the usage of the mechanics principles whenever possible in the multiphysical

model conceptualized as a directed graph. Ultimately, the resultant model represents a

hybridization of human- and machine-interpreted knowledge that can be used to generate

predictions and as forecast engine. In the following subsections, we will describe the spe-

cific techniques we used to build the recurrent neural network and how it can be trained



CHAPTER 4. MULTISCALE MULTI-PERMEABILITY POROPLASTICITY MODEL VIA
RECURSIVE HOMOGENIZATIONS AND DEEP LEARNING 100

using a combination of data generated from experiments and micro-mechanical simula-

tions.

4.3.2 Overcoming gradient vanishing or exploding issues with long short-term

memory architecture

Despite the exceptional prediction power of RNN as forecast engine, RNN is known to be

relatively vulnerable to the vanishing and exploding gradient problems. While a vanishing

gradient may lead to the change of weight of the nodes in the recurrent neural network

that has no significant changes on the error measured by the objective function or cost

function. By contrary, an exploding gradient may lead to the error very sensitive to any

small change of weights in the nodes. Both issues can be resolved for mechanics data-

driven model produced by very small architecture with limited number of hidden layers

[122, 105]. However, since (1) the usage of RNN leads to a larger number of nodes in the

input layers, (2) the multiscale coupling scheme uses additional microstructural attributes

as input, and more importantly (3) we intend to study the usage of deep learning which

requires a sizable number of hidden layers, the vanishing or exploding gradients could be

a significant issue.

Here we take advantages of a technique commonly used in computational linguistics

called Long Short Term Memory (LSTM). First introduced by [96], the LSTM’s major de-

parture is the use of memory blocks, instead of the classical artificial neurons as nodes for

RNN. Within a memory block, a new entity called ”gate” is introduced to control the flow

of information and the state of the block, as shown in Figure 4.6.

A LSTM neuron possesses a state of the memory cells at time t Ct. Define xt as the

value of the input sequence at time t, and ht as the value of the output sequence at time t.
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Figure 4.6: A Long-Short-Term-Memory neuron with input, output, and forget gate to

process sequence with memory effect.

The signal through the forget gate is given by

ft = σ(W f · xt + U f · ht−1 + b f ), (4.18)

where σ is the sigmoid function σ(x) = 1
1+exp(−x) , W f and U f are weight matrices, b f is

bias vector for the forget gate.

The new information to be stored in the cell state is given by the signal it through the

input gate

it = σ(Wi · xt + Ui · ht−1 + bi), (4.19)

where Wi and Ui are weight matrices, bi is bias vector for the input gate.

The new candidate value cell state is given by a tanh layer

C̃t = tanh(WC · xt + UC · ht−1 + bC), (4.20)

where tanh is the hyperbolic tangent function tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) , WC and UC are

weight matrices, bC is bias vector.

The old cell state Ct−1 is updated by the above forget and input information, i.e.,

Ct = ftCt−1 + itC̃t (4.21)
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Finally, for the output signal

ht = ottanh(Ct) (4.22)

where ot is the signal through the output gate

ot = σ(Wo · xt + Uo · ht−1 + bo), (4.23)

where Wo and Uo are weight matrices, bo is bias vector for the output gate.

To showcase the advantage of using LSTM with micro-structure information as a part

of input features, we examine the forward prediction capability of (1) the classical neural

network ”ANN” (2) LSTM neural network which is specially designed for memorizing

sequences ”LSTM” and (3) LSTM neural network that also memorizes micro-structure at-

tributes ”LSTM Microstructure Data”. Numerical simple shear tests with loading-unloading

under different confining pressure (σ = 50 MPa, 60 MPa, 70 MPa, 90 MPa and 100 MPa)

are conducted on a discrete element assembly and serve as the training data to the three

neural network models (Fig 4.7(a)). The ”ANN” model design is similar to [77], where the

inputs are the confining pressure σ, the shear strains γn−1, γn, γn+1 and the shear stresses

τn−2, τn−1, τn. The subscripts indicate the time steps tn−2, tn−1, tn, tn+1. The output is the

shear stress τn+1 at the next time step tn+1.

Different from the classical ANN model, LSTM neural network accepts sequences of

history values of the physical parameters as inputs. Thus the input features now consist of

the confining pressure σ, the sequence of history values of shear strains [γn−1, γn, γn+1],

and the sequence of history values of shear stresses [τn−2, τn−1, τn]. The output features is

again the shear stress τn+1. In addition to the strain and stress history, one key innovation

we attempted in this chapter is to incorporate the evolution of microstructural attributes as

additional input for the neural network. The micro-structure data adopted in this example
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are the porosity φ of the DEM assembly, the coordination number CN and the fabric tensor

AF . AF = 1
Nc

∑c nc ⊗ nc, where nc is the normal of contact c. Here our goal is to check

whether the incorporation of any of these additional data as input in the RNN network

improves the prediction quality. If the answer is positive, it is likely that a human-derived

phenomenological model could benefit from the inclusion of these physical quantities.

In a supervised machine learning setting, the LSTM neural network will be adjusted

based on the portion of the dataset used for calibration. After the training or back propa-

gation completes, the relationship between these averaged micro-scale attributes and the

predicted stress state can be determined. For phenomenological models where history-

dependent behavior is encoded in the evolution of internal variables, the influence of

micro-structural attributes are often implicitly incorporated (except a few exception such

as [52, 72]), this could be a difficult task.

All three neural network models have two hidden layers of 80 nodes, and dropout

layers of rate 0.2 are placed after each LSTM layer. The sigmoid activation function is

chosen for the output layer. We also set the same mean squared error as the training goal

of all three models such that the errors are supposed to reduce to the same level (around

1e-5).

Fig 4.7(b) compares their forward predictions of the loading-unloading behavior under

confining pressure of σ = 80 Mpa (not included in the training set). It is shown that the

LSTM model performs better than the ANN model, in regard to the peak stress, soften-

ing and unloading-reloading cycles. Also, with micro-scale information, LSTM can yield

closer prediction to the test data than LSTM that only process macroscopic strain and stress

data.

Furthermore, determining how much and what types of micro-structure data to be in-
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(a) Training data for different con-

fining pressure σ

(b) Forward prediction of ANN,

LSTM and LSTM with micro-scale

data

(c) Forward prediction of LSTM

with different types of micro-scale

data included

(d) Forward prediction of mono-

lithic loading

(e) Forward prediction of unload-

ing

Figure 4.7: Comparison of forward prediction capacity between different configurations of

neural network models.

corporated into machine learning model is a challenging task. As an example, we compare

three designs of LSTM network (1) LSTM with φ (2) LSTM with φ, CN and (3) LSTM with

φ, CN, AF (Fig 4.7(e)). For (1) and (2), the additional information on average number of in-

teractions per particle does not improve the generalization capability of the LSTM model.

The model with the fabric tensor, which describes the matrix of the porous media, gives

significantly more accurate results. This is due to the deformation mode of the DEM sam-
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ple. The micro-structure are heavily distorted during the shearing. This is reflected in the

change of principal values and rotation of principal directions of the fabric tensor. φ and

CN, however, are hard to represent this induced anisotropy in the micro-structure because

they are scalars. Thus in this example, the evolution history of the fabric tensor is crucial

to the forward prediction capacity of the LSTM network.

Lastly, we study the performance of different LSTM architectures to determine the neu-

ral network parameters adopted in this work. Table 4.1 lists 5 neural network configura-

tions that differ in the number of hidden layers, the number of neurons per hidden layer

and the activation function for the output layer. The training data and testing data are

the previous dataset from the numerical simple shear tests including the micro-scale at-

tributes: porosity, coordination number and fabric tensor. The training data consists of 500

samples and the testing data contains 100 samples. The training phase consists of 5000

epochs and the batch size is 100. The loss function is the standard mean squared error. The

value of loss on both training and testing data are recorded during the training epochs and

are presented in Fig. 4.8. The performance curves show that all architectures can drive the

training error down to the 10−5 level and the testing error down to the 10−4 level. Config-

urations 4 and 5 perform better in the training data and Configuration 5 is more accurate

in predictions. The discrepancy is not significant. Thus for the neural network architecture

used in this work, we choose the second configuration in Table 4.1, which gives good train-

ing and prediction performances. The number of LSTM neurons in the network is small so

that it will speed up the training and the calculation in the triple-scale online simulations.
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ANN Configura-

tion

Number of hid-

den layers

Number of LSTM

neurons per hid-

den layer

Activation func-

tion for output

layer

1 2 50 Sigmoid

2 2 80 Sigmoid

3 2 100 Sigmoid

4 3 80 Sigmoid

5 2 80 ReLU

Table 4.1: Different ANN architectures for evaluation of training performance.

(a) Loss on training data (b) Loss on testing data

Figure 4.8: Comparison of training performance of different ANN architectures in Table

4.1.

4.3.3 Highlights of Implementation

As for the implementation, we have leveraged Keras (cf. [42]), a high-level Python deep

learning library, to build the LSTM neural networks and complete the training procedure.

This model-level library allows for easy and fast prototyping of machine learning models.
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The low-level operations (such as tensor calculus) for machine learning are handled by

Tensorflow, an open-source symbolic tensor manipulation library developed by Google,

Inc [1], serving as the ”backend engine” of Keras. One upshot of Tensorflow is that it has a

flexible architecture based on data flow graphs that enable easy GPU accelerated training

of various types of neural networks.

The building and training of the LSTM data-driven model in this chapter contains four

steps. Firstly, the data acquired from lower-scale numerical simulations are preprocessed

and converted to specific data structure compatible with the LSTM training and valida-

tion algorithms. The data of numerical simulations are stored in comma-separated values

(CSV) file and are imported by an open-source Python data analysis library Pandas [140].

The data are split to input features and outputs. These data are of different scales: 106

for traction, 10−2 for jump, 10−1 for porosity and 10−14 for permeabilities. Thus, each se-

quence of input and output is re-scaled to be within [0, 1] using the MinMaxScaler class in

sklearn.preprocessing toolkit [171]. The input data structure that can be processed by the

LSTM model must be an array of dimension 3, where the entries for the first dimension

are the samples, the second dimension is the time history steps and the last dimension are

the input features.

Secondly the multi-layered neural network is constructed with a few and easy-to-

modify lines of codes. Keras offers a simple way to establish neural networks that in-

corporate input, LSTM, dropout, output layers. Adding or deleting a layer, modifying

the number of nodes, changing the activation functions are very convenient thanks to the

high-level library of Keras.

Then we are ready to launch the training epochs. We feed the LSTM model with the

preprocessed input and output data. The back propagation algorithm will modify the
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weights of the neural network iteratively and the loss will be reduced to a small number

(about 2e-6 in this work). The learning rate can be reduced when the convergence becomes

slow. Finally, the performance of the fully-trained LSTM material model is assessed on a

set of test data that has not been provided to the model in the training phase.

4.4 Numerical Experiments

In this section, we present a triple-scale simulation which links the grain-scale simulations,

the meso-scale assumed strain simulations and the macroscopic fault simulator together,

as shown in Figure 4.9.

Figure 4.9: Triple-scale data-driven fault reactivation simulations. {X, Y} constitutes the

coordinate system of the macro-scale problem. {M, N} constitutes the local coordinate

system of the strong discontinuity in macro-scale. For meso-scale problem, the coordinate

system is {x, y} (co-axial to {M, N}), and the internal structure distinguishes two coordi-

nate systems of interface: {m1, n1} and {m2, n2}. The corresponding coordinate systems

for micro-scale RVEs are {x′1, y′1} and {x′2, y′2}.

Instead of directly replacing phenomenological laws with sub-scale simulations to gen-
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erate constitutive responses as done in [244], we introduce a data-driven offline coupling

method in which numerical results from sub-scale simulations first constitute material

databases. These databases are then used to train the recurrent neural network models.

Once the training and validation is completed, the neural network is then used to replace

the phenomenological traction-separation law and the interface conductivity models of the

dual-porosity systems. This process is applied recursively across length scales twice such

that the responses of the fault is predicted by a data-driven model trained and validated

by data set generated with another set of data-driven models at smaller scale.

As emphasized in [16], macroscopic responses of a material system are often domi-

nated by the evolution of microstructural attributes, especially after the material bifurca-

tion occurs. Yet, the traction-separation law and the conductivity law are often highly

simplistic due to the difficulty to propose a proper model that captures the phenomenol-

ogy. By incorporating the micro-structural information via deep learning, more realistic

and complex constitutive laws can be generated automatically such that more accurate

simulations of the localized responses can lead to more reliable macroscopic predictions.

In the following simulations, we assume that embedded strong discontinuities are pre-

existed and do not propagate. In total, we construct two material databases. One contains

the material responses of the DEM-network simulations that replicate the grain-scale inter-

face between two bulk materials. In the second material database, the data are obtained via

running RNN-FEM simulations where the neural network trained by the DEM-network

database are re-used to model strong discontinuities, while the bulk material is idealized

as isotropic elastic material. This recursive training strategy allows one to use machine

learning as a mean to incorporate sub-scales information in an offline material. As a re-

sult, the triple-scale simulation only requires grain-scale material parameters for the DEM
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and flow network simulations as well as the material parameters used to model the bulk

responses. All the path-dependent behaviors are therefore originated from the meso-scale

interfaces and the macroscopic fault. The material parameters used in the numerical ex-

ample are summarized in Table 4.2.

Scale & Model Parameter Value

Grain-scale DEM Particle Young’s modulus E 0.5 GPa

Grain-scale DEM Particle Poisson’s ratio ν 0.3

Grain-scale DEM Particle Friction Angle π
6

Grain-scale DEM Particle density 2600 kg/m3

Grain-scale DEM Particle mean diameter 5 mm

Meso-scale FEM Young’s modulus 0.2 GPa

Meso-scale FEM Poisson’s ratio ν 0.2

Meso-scale FEM Intrinsic permeability κ 2e−14 m2

Meso-scale FEM Dynamic viscosity µ 1e−3 Pa · s

Marco-scale FEM Young’s modulus 0.2 GPa

Marco-scale FEM Poisson’s ratio ν 0.2

Marco-scale FEM Porosity of macropore φM 0.1

Marco-scale FEM Porosity of micropore φm 0.2

Marco-scale FEM Intrinsic permeability of macropore kM 1e−12 m2

Marco-scale FEM Intrinsic permeability of micropore km 5e−17 m2

Marco-scale FEM Parameter of mass transfer α ρ f ∗ km

Marco-scale FEM Dynamic viscosity µ 1e−3 Pa · s

Table 4.2: Material parameters for the grain-, meso- and macro-scale poromechanics prob-

lem with embedded strong discontinuities across three length scales.

The initial and boundary conditions of the macroscopic 2D fault reactivation problem

is shown in Figure 4.9. Note that this initial boundary value problem is a highly simpli-
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fied model used for demonstration and testing purpose. A more dedicated case study

intended to capture the actual complex operations of fluid injection in an actual field will

be conducted in the future but is out of the scope of this study. The size of the macroscopic

domain is 1km × 1 km and it is assumed that the field is under plane strain condition. To

simulate an anisotropic stress condition, the traction applied on the two opposite faces of

the square domain is 10 MPa and 6 MPa accordingly. These values are held constant dur-

ing the simulations. Meanwhile, we prescribe the Darcy’s velocity of the macropores at the

injection well about 250 meters from the fault line. To test the capacity of the data-driven

model and to generate path-dependent responses at the field-scale level, this Darcy’s ve-

locity is not held constant but allowed to change over time, with the initial Darcy’s velocity

equals to 50m/s.

4.4.1 Training and validation of material laws for meso-scale interface

To train the recurrent neural network such that it can replicate the meso-scale hydro-

mechanical responses of the embedded strong discontinuities, we first conduct 21 grain-

scale simulations. The time history of the traction, displacement jump, and permeability

in the normal and tangential direction, as well as the major and minor principal values of

the fabric tensor are recorded. 16 of the simulation results are used as the training data set

and rest 5 of them are used as the validation data set.

In each RVE simulation, the displacement boundary conditions are prescribed as shown

in Figure 4.10. The DEM RVE is of the size of 10cm X 10cm X 5cm, while the averaged

grain diameter is 0.5cm. The micro-scale traction-separation law and the relation between

the micro-structure and the permeability tensor on the interface are homogenized from a

micro-scale RVE of discrete element particles. A set of displacement jump paths {un, us}
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are applied to the micro-scale RVE, and the tractions {tn, ts} are homogenized at each in-

cremental deformation step. Furthermore, at each incremental step, we also construct a

flow network inferred from the deformed configuration of the DEM assembly and use an

inverse problem to compute the effective permeability in the tangential and normal direc-

tions, as shown in Figure 4.10.

Figure 4.10: Micro-scale RVE. The initial configuration of the granular assembly (LEFT),

the deformed configuration of the granular assembly (MIDDLE), and the flow network

generated from the deformed configuration used to predict the anisotropic effective per-

meability (RIGHT).

Before the displacement-driven grain-scale simulation begins, the DEM assembly must

be in the stress state consistent to the macroscopic boundary condition. This is achieved by

subjecting the DEM assembly with the right amount of shear and normal tractions along

the boundaries.

The initial state of the micro-scale RVE is determined by the initial state of the macro-

scale problem. The macro-scale fault with the inclination angle of 80◦ is under a confining

pressure of 6 MPa in the X direction and 10 MPa in the Y direction.

σInit
macro =

−6 0.

0. −10


XY

MPa, (4.24)
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where the subscript XY refers to the frame depicted in Figure 4.9. To introduce the proper

initial stress state to the DEM assemblies, we first express this stress tensor in the local

frame of the meso-scale RVE as depicted in Figure 4.9 via coordinate transformation, i.e.,

σxy = RT · σXY · R such that,

σInit
meso =

−9.88 −0.68

−0.68 −6.12


xy

MPa, (4.25)

where the subscript xy refers to the rotated frame for the meso-scale RVE. Note that since

the DEM assemblies are aligned with the strong discontinuities in the meso-structures,

the stress state is re-expressed in the two local coordinate systems such that the correct

traction can be applied to the DEM assemblies to generate the correct initial stress state.

Recall that the two local coordinate systems are 20 degrees apart from each other (one 10

degrees clockwise to the meso-scale frame, one 10 degrees counterclockwise to the meso-

scale frame). As a result, we have,

σInit
microRVE1 =

−9.88 −0.68

−0.68 −6.12


x′1y′1

MPa ; σInit
microRVE2 =

−9.88 0.68

0.68 −6.12


x′2y′2

MPa. (4.26)

Once the initial stress state of the DEM assemblies are set, we then run multiple simu-

lations and collect the results to form the database for supervised machine learning. The

choice of loading cases to be included in the training data set is often based on empirical

knowledge. In this work, we adopt such design of proportional loading paths: in each

loading case the ratio between the normal displacement un (along the unit vector n in Fig.

4.10) and the tangential displacement us (along the unit vector m in Fig. 4.10) remains a

constant. In total the training data set contains 16 ratios: un
us

= iπ
8 , i = 0, 1, 2, ..., 15. Similar

proportional loading paths have also been used to train constitutive laws for bulk mate-

rials in [122]. In order for the data-driven model to learn the path-dependent behavior of
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the interface, we, for each loading ratio in our cases, prescribe the displacement such that

, the norm of the displacement u =
√

u2
n + u2

s are prescribed with the following loading-

unloading sequences: u first increases to 0.2 of the maximum displacement magnitude 0.01

m, then decreases to 0.1 of 0.01 m, and rise again to 0.4, then to 0.2, 0.6, 0.3, 0.8, 0.4, 1.0,

0.5. Note that, this design of training data set is suitable (but not necessarily optimized)

for data-driven model used in finite element simulations in which the deformation paths

of strong discontinuities are not known a priori. In many simulation cases, the major de-

formation paths could be anticipated. For instance, in shear band simulations, the shear

effects predominate over the opening or closing of the interface. Thus the training data

set to be constructed for these simulations should incorporate more shear-dominate load-

ing paths. Nevertheless, the optimization of training data set is a challenging task and

will be studied in future work. 5 additional loading paths for testing are also constructed.

Some of them are monotonic loading, some have different loading-unloading sequences,

and in some cases the ratio un
us

is not constant. Figure 4.11 shows a portion of the load-

ing paths designed for machine learning. For brevity, we did not include all the available

simulations in the database in the chapter. Instead, we only show the results of 3 training

sets and 3 testing sets, which are denoted as TR1, TR2 and TR3 and TE1, TE2 and TE3

respectively. Nevertheless, the training and validation algorithm as well as the database

itself will be made available in an open source repository. The discrepancy between the

data from micro-scale DEM simulation XDEM and the results predicted by LSTM neural

network XLSTM is quantified by the scaled mean squared error given by

MSE =
1
N

N

∑
i=1

[MinMaxScaler(XDEMi)−MinMaxScaler(XLSTMi)]
2, (4.27)

where N is the number of data points. XDEM and XLSTM are re-scaled to be within the
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range [0, 1] using the MinMaxScaler as described in the data preprocessing for machine

learning in Section 4.6.

(a) TR1 (b) TR2 (c) TR3

(d) TE1 (e) TE2 (f) TE3

Figure 4.11: Loading path of three selected training cases TR1, TR2, TR3 and three selected

testing cases TE1, TE2, TE3 on the micro-scale RVE 1. un and us are the normal and tangen-

tial displacement jumps. The coordinate system is {m1, n1} (or {x′1, y′1}) depicted in Fig.

4.9. It can be seen that TR1 and TR2 represent tensile-shear loading cases (as un is positive)

and TR3 represents a compressive-shear loading case (un negative). The numbers mark

the sequence of loading-unloading cycles.

The physical parameters for the input of the LSTM neural network are the sequence

of history values at time [tn−1, tn, tn+1] of the normal and tangential components of dis-

placement jump, the sequence of history values at time [tn−2, tn−1, tn] of the normal and

tangential components of traction, and the sequence of history values at time [tn−2, tn−1,

tn] of the maximum and minimum principal values of the fabric tensor of the DEM RVE.

The outputs of the LSTM neural network are the normal and tangential components of

traction at time tn+1, the maximum and minimum principal values of the fabric tensor at
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time tn+1, and the permeabilities normal and tangential to the strong discontinuity at time

tn+1.

Since in many engineering applications, the flow injection rate is transient and changes

with time, the data-driven traction-separation laws must be able to capture the resultant

combined isotropic and kinematic hardening mechanisms. Figures 4.12 and 4.13 show

the comparisons between the DEM simulations and the simulated mechanical responses

generated from the recurrent neural network in the normal and tangential directions. Ex-

cept for the testing case TE2 in which there are notable discrepancy when the thin DEM

layers are reloaded, the meo-scale data-driven traction-separation law is able to replicate

both the cyclic and monotonic loading responses with negligible errors. Remarkably, this is

achieved without using any internal variables to capture the history-dependent effect. Fur-

thermore, we also show that the predicted responses are able to simulate both the damage-

plastic flow and the elastic unloading in the cyclic responses. This coupled damage-plastic

response is attributed to the evolution of the fabric tensors.

Figures 4.14 and 4.15 show the maximum and minimum eigenvalue of the fabric ten-

sors following the prescribed displacements obtained from DEM and from the RNN pre-

dictions. The RNN generated responses are able to deliver very accurate predictions of the

fabric tensor evolution. This good match is important for predicting induced anisotropy

and may explain why the traction predictions in Figures 4.12 and 4.13 match well with the

database.

The predictions of normal and tangential permeabilities following the prescribed dis-

placements are shown in Figures 4.16 and 4.17 respectively. Again, with the help of char-

acteristic microstructure information, the match is satisfying. To sum up, the trained

data-driven model is capable of representing the micro-scale DEM-flow network model,
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(a) TR1, MSE = 3.73e-5 (b) TR2, MSE = 1.05e-4 (c) TR3, MSE = 1.33e-5

(d) TE1, MSE = 2.62e-5 (e) TE2, MSE = 1.21e-3 (f) TE3, MSE = 7.11e-4

Figure 4.12: Comparison of the micro-scale DEM simulation data and the trained meso-

scale data-driven model. Normal traction against normal displacement jump for the se-

lected training and testing cases. The numbers mark the sequence of loading-unloading

cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

in terms of traction, permeability, and invariants of fabric tensor. It is ready to be used

as constitutive law for the strong discontinuity of the meso-scale RVE in the FEM-LSTM

coupled simulations.

4.4.2 Training and validation of material laws for dual-porosity fault

The path-dependent constitutive model governing the displacement jump induced trac-

tion and permeability changes in the macroscopic sealing fault is provided by the macro-

scale data-driven LSTM model. The data used to train and test this model are generated

from multiscale simulations of the meso-scale RVE, where the interface behavior comes

from the micro-scale RVE. The multiscale model is FEM-LSTM coupled, using the data-
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(a) TR1, MSE = 7.09e-4 (b) TR2, MSE = 8.82e-4 (c) TR3, MSE = 1.07e-4

(d) TE1, MSE = 5.98e-4 (e) TE2, MSE = 1.49e-2 (f) TE3, MSE = 4.66e-4

Figure 4.13: Comparison of the micro-scale DEM simulation data and the trained meso-

scale data-driven model. Tangential traction against tangential displacement jump for the

selected training and testing cases. The numbers mark the sequence of loading-unloading

cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

driven model trained in the previous section.

In each RVE simulation, the displacement boundary conditions are prescribed as shown

in Figure 4.18. The meso-scale RVE is 2D, and has the size of 1m X 1m. A set of displace-

ment jump paths {un, us} are applied to the meso-scale RVE, and the tractions {tn, ts}

are homogenized at each incremental deformation step. Furthermore, at each incremen-

tal step, we also conduct an inverse problem to compute the effective permeability in the

tangential and normal directions, as shown in Figure 4.18.

It is important to investigate how well the FEM-LSTM coupled scheme represents the

FEM-DEM multiscale scheme, where the interface constitutive law comes from the DEM

assembly from the previous section. An example of comparison is presented, where the
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(a) TR1, MSE = 1.27e-4 (b) TR2, MSE = 2.81e-4 (c) TR3, MSE = 1.06e-3

(d) TE1, MSE = 1.44e-3 (e) TE2, MSE = 1.26e-3 (f) TE3, MSE = 1.38e-3

Figure 4.14: Comparison of the micro-scale DEM simulation data and the trained meso-

scale data-driven model. Maximum eigenvalue of fabric tensor against normal displace-

ment jump for the selected training and testing cases. The numbers mark the sequence of

loading-unloading cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

meso-scale RVE is subjected to a displacement loading path with unloading. Fig. 4.19

compares the tractions in the normal and tangential directions following the prescribed

displacements. The results are close to each other. Thus FEM-LSTM model could approxi-

mately represent the FEM-DEM model in the generation of a database. Another alternative

is using hybrid database. In other words, a portion of the data is from FEM-LSTM model

simulations, while the other potion is from FEM-DEM model. In the extreme case, all data

are from FEM-DEM model, then the numerical example in this work will be two-scale

data-driven simulation, instead of triple-scale.

We then run multiple meso-scale simulations and collect the results to form the database

for supervised machine learning. The design of the training and testing data set is simi-
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(a) TR1, MSE = 1.16e-4 (b) TR2, MSE = 1.71e-4 (c) TR3, MSE = 1.29e-3

(d) TE1, MSE = 1.45e-3 (e) TE2, MSE = 7.73e-4 (f) TE3, MSE = 9.61e-3

Figure 4.15: Comparison of the micro-scale DEM simulation data and the trained meso-

scale data-driven model. The minimum eigenvalue of fabric tensor against tangential dis-

placement jump for the selected training and testing cases. The numbers mark the se-

quence of loading-unloading cycles. MSE refers to the scaled mean squared error defined

in Eq. 4.27.

lar to the design in the previous section. In the meso-scale RVE, there is no definition of

fabric tensor, thus the input data only consists of the displacement jumps and tractions in

normal and tangential directions. Figure 4.20 shows a portion of the loading paths: TR1,

TR2 and TR3 in the training sets and TE1, TE2 and TE3 in the testing sets. The physical

parameters for the input of the LSTM neural network are the sequence of history values at

time [tn−1, tn, tn+1] of the normal and tangential components of displacement jump, and

the sequence of history values at time [tn−2, tn−1, tn] of the normal and tangential compo-

nents of traction. The outputs of the LSTM neural network are the normal and tangential

components of traction at time tn+1, and the permeabilities normal and tangential to the
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(a) TR1, MSE = 9.06e-5 (b) TR2, MSE = 1.17e-4 (c) TR3, MSE = 2.63e-5

(d) TE1, MSE = 2.33e-3 (e) TE2, MSE = 3.10e-3 (f) TE3, MSE = 9.07e-4

Figure 4.16: Comparison of the micro-scale DEM simulation data and the trained meso-

scale data-driven model. Normal permeability against normal displacement jump for the

selected training and testing cases. The numbers mark the sequence of loading-unloading

cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

strong discontinuity at time tn+1.

Figures 4.21 and 4.22 shows the comparison between the FEM-LSTM simulations and

the simulated mechanical responses generated from the recurrent neural network in the

normal and tangential directions. The predicted responses are able to simulate both the

damage-plastic flow and the elastic unloading in the cyclic responses. The predictions of

normal and tangential permeabilities following the prescribed displacements are shown

in Figures 4.23 and 4.24 respectively. The trained data-driven model is ready to be used as

constitutive law for the strong discontinuity of the macro-scale problem.
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(a) TR1, MSE = 3.09e-5 (b) TR2, MSE = 5.10e-4 (c) TR3, MSE = 3.25e-5

(d) TE1, MSE = 4.97e-4 (e) TE2, MSE = 6.57e-3 (f) TE3, MSE = 8.32e-4

Figure 4.17: Comparison of the micro-scale DEM simulation data and the trained meso-

scale data-driven model. Tangential permeability against tangential displacement jump

for the selected training and testing cases. The numbers mark the sequence of loading-

unloading cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

Figure 4.18: Meso-scale RVE. The initial configuration of the meso-scale RVE and its

pre-embedded interfaces (LEFT), the deformed configuration and the deviatoric strain

field of the meso-scale RVE (MIDDLE), and the fluid flux calculation used to predict the

anisotropic effective permeability (RIGHT).
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(a) Normal traction (b) Tangential traction

Figure 4.19: Comparison of FEM-LSTM coupled model and FEM-DEM coupled model for

meso-scale RVE. The numbers mark the sequence of loading-unloading cycles.

4.4.3 Simulation of macro-scale fault reactivation problem

Water is injected to the macro-scale field through the source S located to the right of the

sealing fault. The distance between S and the fault is about 250 m (Fig. 4.26(a)). The pre-

scribed Darcy velocity at the source is shown in Fig. 4.25(a). The injection profile is com-

posed of three injection-pause cycles, where water supply is provided for 40 hours under

constant rate of 50 m/s, followed by a pause for 10 hours before the next cycle of injection.

We simulate the hydro-mechanical dual-porosity problem with the traction-separation law

and macropore permeability tensors along the sealing fault given by the meso-scale data-

driven model. The pore pressure in both scales at the source S is presented in Fig. 4.25(b).

The fluid is injected to the macropore space. Upon injection or pause, the macropore injec-

tion pressure jumps up or plunge immediately, while the micropore pressure at the injec-

tion point has the opposite behavior. This is caused by the low mass transfer permeability

between the macropores and micropores. Then in the transient regime, when fluid gradu-

ally diffuses into the micropores by mass transfer, micropore pressure slowly approaches
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(a) TR1 (b) TR2 (c) TR3

(d) TE1 (e) TE2 (f) TE3

Figure 4.20: Loading path of three selected training cases TR1, TR2, TR3 and three selected

testing cases TE1, TE2, TE3 on the meso-scale RVE. un and us are the normal and tangential

displacement jumps. The coordinate system is {M, N} (or {x, y}) depicted in Fig. 4.9. It

can be seen that TR2 represents a tensile-shear loading case (as un is positive), TR1 and TR3

represent compressive-shear loading cases (un negative). The numbers mark the sequence

of loading-unloading cycles.

the macropore pressure. The two pressure will eventually be identical when the diffusion

between pores reaches equilibrium. To show the influence of the inter-pore transfer, we

present an additional case where the transfer parameter α is ten times higher (Fig. 4.25(c)).

The discrepancy between the pressures is significantly reduced. The following results are

from the low inter-pore transfer case.

To illustrate the hydraulic response, the macropore pressure field at time 40 h, 100 h and

140 h are presented in Fig. 4.26. The pressure plume is in the form of circle and expands

with increasing amount of water injected through the source (t = 40 h). The pore pressure

drops when the injection pauses, but the plume is still expanding (t = 100 h) driven by the
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(a) TR1, MSE = 4.96e-5 (b) TR2, MSE = 2.46e-4 (c) TR3, MSE =2.13e-4

(d) TE1, MSE = 8.22e-5 (e) TE2, MSE = 6.04e-3 (f) TE3, MSE = 3.57e-4

Figure 4.21: Comparison of the meso-scale FEM-LSTM simulation data and the trained

macro-scale data-driven model. Normal traction against normal displacement jump for the

selected training and testing cases. The numbers mark the sequence of loading-unloading

cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

excess pore pressure that has not been entirely diffused. When the injection is resumed, the

pore pressure also rises again. The form of the pressure plume is disturbed when it reaches

the sealing fault, which has a two-order-lower macropore permeability (t = 140 h). As for

the micropore pressure field, it has a similar but delayed evolution behavior, due to the

time required for the fluid transfer between macropores and micropores. The local pres-

sure responses are illustrated in Fig. 4.27 for three locations in the fault indicated in Fig.

4.26(a). The distances to the source point dSB > dSA > dSC. It is seen that the closer a point

is to the source, the faster the pressure increases upon injection. There is also significant

pressure gradient across the less-permeable fault. The difference between macropore and

micropore pressure is due to the different permeability in macropores and micropores for
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(a) TR1, MSE = 1.38e-4 (b) TR2, MSE = 3.25e-3 (c) TR3, MSE = 2.25e-3

(d) TE1, MSE = 3.41e-3 (e) TE2, MSE = 4.76e-3 (f) TE3, MSE = 8.44e-4

Figure 4.22: Comparison of the meso-scale FEM-LSTM simulation data and the trained

macro-scale data-driven model. Tangential traction against tangential displacement jump

for the selected training and testing cases. The numbers mark the sequence of loading-

unloading cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

the fluid to diffuse in the macro-scale field, and also the low transfer permeability between

pores.

Due to the fully coupled nature of the problem, the mechanical responses of the porous

solid, especially the displacement jump and traction at the strong discontinuity, strongly

depend on how pore fluid diffuses inside the pore space. The evolution of macro-scale

mean effective stress field during the fluid injection cycles is shown in Fig. 4.28.

It is clear that this field has the same pattern as the pore pressure field. The increase

in the mean effective stress is due to the increase in pore pressure, in agreement to the

effective stress principle. The evolution of macro-scale differential stress field (Fig. 4.29)

is a combined effect of the far field differential stress, fluid injection and presence of seal-
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(a) TR1, MSE = 1.85e-5 (b) TR2, MSE = 9.24e-5 (c) TR3, MSE = 8.00e-5

(d) TE1, MSE = 2.33e-4 (e) TE2, MSE = 5.48e-3 (f) TE3, MSE = 3.87e-3

Figure 4.23: Comparison of the meso-scale FEM-LSTM simulation data and the trained

macro-scale data-driven model. Normal permeability against normal displacement jump

for the selected training and testing cases. The numbers mark the sequence of loading-

unloading cycles. MSE refers to the scaled mean squared error defined in Eq. 4.27.

ing fault. The decrease in normal compression traction makes the fault surface unable to

sustain the shear traction, and the fault starts to mobilize.

The local displacement and traction responses are illustrated in Fig. 4.30 and Fig. 4.31

respectively for three locations in the fault indicated in Fig. 4.26(a). The traction states that

the material at A, B, C experienced during the injection-pause cycles are depicted in Fig.

4.32.

These results clearly demonstrate the capacity of our data-driven model in capturing

the complex and path-dependent interface behaviors. This is a significant improvement

over the phenomenological traction-separation laws where idealized tensile and shear (lin-

ear or exponential) behavior is often adopted [165]. The data-driven model can preserve
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(a) TR1, MSE = 2.32e-5 (b) TR2, MSE = 3.20e-4 (c) TR3, MSE = 3.56e-4

(d) TE1, MSE = 2.11e-4 (e) TE2, MSE = 1.27e-2 (f) TE3, MSE = 3.48e-3

Figure 4.24: Comparison of the meso-scale FEM-LSTM simulation data and the trained

macro-scale data-driven model. Tangential permeability against tangential displacement

jump for the selected training and testing cases. The numbers mark the sequence of

loading-unloading cycles. MSE refers to the scaled mean squared error defined in Eq.

4.27.

important mechanical properties of the interface from sub-scale structures while reducing

the computational costs compared to full micro-scale models such as DEM.

4.5 Conclusions

This chapter presents a semi-data-driven multiscale approach that obtains both the traction-

separation law and the aperture-porosity-permeability relation from micro-mechanical sim-

ulations performed on representative elementary volumes in the finite deformation range.

To speed up the multiscale simulations, the incremental constitutive updates of the me-

chanical responses are obtained from discrete element simulations at the representative
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(a) (b) Low transfer between pores (c) High transfer between pores

Figure 4.25: Water supply in the macro-scale fault reactivation problem. (a) Time history

of the prescribed injection velocity in macropores at the source point. (b) Computed re-

sponses of injection pressure in macropore and micropore at the source point (transfer

parameter α = ρ f ∗ km). (c) Computed pressures in a comparison simulation where the

transfer parameter α = 10 ∗ ρ f ∗ km. The numbers mark the sequence of injection-pause

cycles.

elementary volume whereas the hydraulic responses are generated from a neural network

trained with data from lattice Boltzmann simulations. These responses are then linked

to a macroscopic dual-permeability model. This approach allows one to bypass the need

of deriving multi-physical phenomenological laws for complex loading paths. More im-

portantly, it enables the capturing of the evolving anisotropy of the permeabilities of the

macro- and micro-pores. A set of numerical experiments are used to demonstrate the ro-

bustness of the proposed model.
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(a) 40 hours (b) 100 hours (c) 140 hours

(d) 40 hours (e) 100 hours (f) 140 hours

Figure 4.26: Evolution of macropore pressure (a-c) and micropore pressure (d-f) field. S

denotes the fluid source. A, B, C are three locations on the sealing fault. 40h is the end

of the first injection, 100h is the end of the second pause, and 140h is the end of the third

injection.
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(a) A (b) B (c) C

Figure 4.27: Time history of local macropore and micropore pressure at locations A, B,

C (Fig. 4.26(a)) of the sealing fault. ”Front” refers to the side of fault that is facing the

source point. ”Back” is another side that is away from the source. The numbers mark the

sequence of injection-pause cycles.

(a) 40 hours (b) 100 hours (c) 140 hours

Figure 4.28: Evolution of the mean effective stress field in the macro-scale simulation. 40h

is the end of the first injection, 100h is the end of the second pause, and 140h is the end of

the third injection.
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(a) 40 hours (b) 100 hours (c) 140 hours

Figure 4.29: Evolution of the differential stress field in the macro-scale simulation. 40h is

the end of the first injection, 100h is the end of the second pause, and 140h is the end of the

third injection.

(a) A (b) B (c) C

Figure 4.30: Time history of normal and tangential displacement jumps at locations A, B,

C (Fig. 4.26(a)) of the sealing fault. The coordinate system is {M, N} (or {x, y}) depicted

in Fig. 4.9. The numbers mark the sequence of injection-pause cycles.
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(a) A (b) B (c) C

Figure 4.31: Time history of normal and tangential displacement tractions at locations A,

B, C (Fig. 4.26(a)) of the sealing fault. The coordinate system is {M, N} (or {x, y}) depicted

in Fig. 4.9. The numbers mark the sequence of injection-pause cycles.

(a) A (b) B (c) C

Figure 4.32: Traction Path at locations A, B, C (Fig. 4.26(a)) of the sealing fault. The coordi-

nate system is {M, N} (or {x, y}) depicted in Fig. 4.9. The numbers mark the sequence of

injection-pause cycles.
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Chapter 5

Metamodeling game for deriving

micro-structure-based

traction-separation models for

geomaterials

This chapter is reproduced from the published paper: K. Wang, W.C. Sun, Meta-modeling

game for deriving theory-consistent, micro-structure-based traction-separation laws via

deep reinforcement learning, Computer Methods in Applied Mechanics and Engineering, 346:216-

241, 2019.

5.1 Introduction

Constitutive responses of interfaces are important for a wide spectrum of problems that

involve spatial domain with embedded strong discontinuity, such as fracture surfaces [182,

166, 246, 35], slip lines [180, 27], joints [65] and faults [157, 247, 216]. While earlier modeling

efforts, in particular those involving the modeling of cohesive zones , often solely focus on
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mode I kinematics, the mixed mode predictions of traction-separation law relations are

critical for numerous applications, ranging from predicting damage upon impacts [160],

to predicting seismic events [186]. [166] provide a comprehensive account of the major

characteristic of traction-separation laws and conclude that, while there are differences in

details, most of the traction-separation laws obey a number of universal principles, such as

the indifference of any superimposed rigid-body motion, the finite work required to create

new surface, the existence of characteristic length scales, and the vanishing of cohesive

traction with sufficient separations.

In the case where the loading history is not monotonic, constitutive responses of inter-

faces often become path-dependent. For instance, geomaterials, such as fault gauges, are

known to exhibit rate- and state-dependent frictional responses [169, 206, 24, 251, 151].

While there are phenomenological models designed to capture the path-dependent re-

sponses of the interfaces, a recent trend that gains increasing popularity is to replace the

phenomenological traction-separation laws with a computational homogenization proce-

dure to capture the responses of materials with heterogeneous microstructures (cf. [147, 95,

94]. Nevertheless, as pointed out previously in [247], the major issue of applying hierar-

chical multiscale coupling on interfacial problems is the increasing computational demand

due to the large number of required representative elementary simulations, a trade-off that

is widely known in FEM2 [67] and other homogenization-based multiscale methods, such

as FEM-DEM [210, 209, 68, 214, 241, 133, 115, 244, 259].

To overcome this computational barrier, surrogate models are often derived to repli-

cate the homogenized responses of sub-scale simulations [110, 238, 108, 163, 66, 131, 218].

Nevertheless, since surrogate models are often constitutive laws hand-crafted by model-

ers to incorporate morphology-dependent features [131], deriving, verifying and validat-
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ing a surrogate model that can incorporate the essential information to yield macroscopic

predictions with sufficient accuracy and robustness remain difficult and time-consuming.

Data-driven models such as [119, 18, 239, 106] and [260] attempted to overcome this issue

via supervised machine learning (e.g. neural network [121], symbolic regression model

[239]) and unsupervised machine learning (e.g. dimensional reduction, feature extraction

and clustering [18, 260]).

In particular, recent work by [247] attempted to resolve this issue by building a generic

recurrent neural network that can easily incorporate different types of sub-scale informa-

tion (e.g. porosity, fabric tensor, and relative displacement) to predict traction. This tech-

nique uses the concept of directed graph on the transfer learning approach (cf. [162]) in

which multiple neural networks trained to make predictions on other physical quantities

(e.g. relationship between porosity and fabric tensor) are re-used to generate additional

inputs for predicting traction. However, the determination of the optimal input informa-

tion (in addition to the displacement jump history) and configurations of information flow

that enhances the prediction accuracy still requires a time-consuming trial-and-error task

(cf. Section 4.3 [247]).

In this work, we introduce a general artificial intelligence approach to automate the cre-

ation and validation of traction-separation models. Unlike the previous approach in which

neural networks are often used to either identify material parameters or create black-box

constitutive laws, this work focuses on leveraging the capacity of a computer to improve

via self-playing, a technique commonly referred as (deep) reinforcement learning in the

computer science community [217, 194, 196]. In the past two years, the functionality of

algorithms automatically generated from deep reinforcement learning have achieved re-

markable success. In many cases, the demonstrated capacities were thought to be impossi-
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ble in the past. For instance, the algorithm trained by deep reinforcement learning created

by a company called DeepMind is able to outperform human experts in Go, Chess and

Atari games. The most exciting part of this achievement is that, unlike previous AI such as

the IBM Deep Blue, the deep reinforcement learning does not rely on hand-crafted policy

evaluation functions and is therefore applicable to different kinds of games once they are

defined and implemented.

This success motivates this research of proposing a meta-modeling approach where

deep reinforcement learning may generate constitutive laws for (1) a given set of data, (2)

a well-defined objective, and (3) a given set of universal principles. To achieve this goal,

we recast the process of writing a constitutive model as a game with components suitable

for deep reinforcement learning, involving a sequence of actions completely compatible

with the stated rules (i.e., the law of physics). First, we define the model score, which

could be any objective function suitable for a given task. For instance, this objective can be

minimizing the discrepancy between calibrated experimental results and blind predictions

measured by a norm, or a constrained optimization problem that gives considerations on

other attributes such as consistency, speed, and robustness [251]. Once the score (i.e., the

objective) is clearly defined, we then implement the rules, which are the universal prin-

ciples of mechanics, such as material frame indifference, laws of thermodynamics. These

rules are applied in an environment in which scores are sampled. In the case of traction-

separation law, the environment is simply the validation process itself.

Following this, we then define the action space which consists of a number of actions

available for the modelers to write constitutive models. Once the action space and the

model score are defined, we leverage the directed graph modeling technique to generate

a state. The state at the end of each game represents a constitutive model automatically
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generated from the computer algorithm. In reality, the action space could be of very high

dimensions such that manually deriving, implementing, verifying and validating all pos-

sible configurations are not feasible. This situation is similar to playing the games of chess

and Go where the number of possible combinations of decisions or moves (each can be

represented by a decision tree) remains finite but is so enormous that it is not possible to

seek the optimal moves by exhausting all possibilities [193].

With the state, action, rule and objective defined, the most critical part is to assign re-

ward for each action. In principle, if the action space is of very low dimension, i.e., there

are not many ways to model the physical processes, then the reward for each action can be

determined by exhausting all the possible model configurations. However, in the case of

writing a complex traction-separation model, we cannot evaluate the quality of the model

until its predictions are compared with benchmark data. Therefore, the ability to approx-

imate the reward for each action (in our case the modeling choices) without the need to

evaluate all the available options becomes crucial for the success of the meta-modeling

approach.

The deep reinforcement learning is therefore ideal for us to achieve this goal. We

can approximate the rewards via neural networks and the Bellman expectation equation

[15, 61]. By repeatedly generating new constitutive laws (i.e., playing the game of writ-

ing models), the agent will use the reward obtained from each played game, in analogy

with the binary game result (win/loss) at the end of a Go game, to update the action

probabilities and value functions to improve the agent’s ability to write good constitutive

laws. Through sufficient self-plays, the reinforcement learning algorithm then improves

the modeling choices it made over time until it is ready for predictions.

There are a few major upshots for this approach. First, once the reinforcement learning
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Figure 5.1: Scheme of the reinforcement learning algorithm in which an agent interacts

with environment and receives rewards. Through exploration, the agent then determines

better actions to achieve a particular goal defined by the reward. In our case, the reward is

the score which represents the quality of the forward prediction, the action is any possible

activities required to derive a constitutive law, and the environment is the procedure that

compares the predictions with the benchmark data. Actual graphs of the Environment,

State and Action will be detailed in the subsequent sections.

algorithm is established, it can serve as a model generator without any human interven-

tion. Second, since we regard the validation process as the environment component of the

reinforcement learning, the performance of a resultant model is simultaneously evaluated

and therefore validations are always a part of the model writing process. Third, the meta-

modeling approach may easily embed any existing model generated by domain experts

into the action space without re-implementing a new model. These unique capabilities

enable us to have an unbiased tool to evaluate how well existing models fulfill a particular

objective. Furthermore, since the model generation procedure is automated once an objec-

tive function is defined, this work may potentially eliminate the need of writing multiple

incremental models for the same materials over time. Finally, this modeling approach is
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particularly powerful for discovering hidden physical coupling mechanisms that are oth-

erwise too subtle to detect with human observation.

The rest of the chapter is organized as follows. We first review the directed graph ap-

proach that enables us to generate and utilize a decision tree to represent the modeling

process (Section 5.2). The definition of model scores is then described in Section 5.3. We

then provide a formal definition of a game invented to generate traction-separation laws

for predictions (Section 7.4). This is followed by a description on how to use the rein-

forcement learning for the traction-separation law generation (Section 5.5). Two numerical

experiments are then used to showcase the performance of the automated meta-modeling

approach using synthetic data from microscale discrete element simulations (Section 5.6).

The major findings are then summarized in the conclusions.

5.2 Representing traction-separation law in directed graph

In this section, we introduce a building block for a simplified and extensible game that

generates traction-separation laws by considering the relationships among different types

of data collected from sub-scale simulations. In this game, the goal is to find a specific way

to link different types of data such that a score function is maximized. Before we introduce

the formal definition of the game, one necessary step is to recast the algorithm that leads

to predictions from constitutive laws as a network of unidirectional information flow, i.e.,

a directed graph (also referred to as digraph) [215, 212, 208, 188, 247]. Recall that a digraph

D = (V, E) is an ordered pair of non-empty finite sets which consists of a vertex set V

and an edge set E [12]. Each edge connects a source vertex (tail) to a target vertex (head).

Following the treatment in [208] and [247], the following rules are applied to generate the

traction-separation law.
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1. The traction t is placed as the only leaf of the digraph (i.e., the vertex that is not

source to any other vertices).

2. The displacement jump δ is placed as the only root of the digraph (i.e., the vertex

that is not target of any other vertices).

3. There may exist isolated vertices in the digraph, i.e., some internal variables or mi-

crostructural features between δ and t may not contribute to the final completed

digraph and the corresponding constitutive model.

4. The digraph is acyclic, which means that there must be no cycle in the digraph.

5. If a vertex has sources or targets connected to it, it must be on at least one of the paths

leading from δ to t. This ensures that an internal variable, once considered, is fully

incorporated into the final constitutive model.

In the previous published work (cf. [208, 247]), we prescribed theoretical models or,

in some cases, neural network models to create linkages and enforce the hierarchy among

physical quantities (e.g. porosity-permeability relation). While this treatment is conve-

nient for software engineering and code design [188], this approach only works if we have

a prior knowledge about the relationships among the physical quantities. While one may

presumably make ad hoc assumptions to complete the models, such a treatment is often at

the expense of robustness. Another possible remedy is to gather all the measurement and

data one may possibly obtain from observations and experiments, then find the key mech-

anisms that incorporate the most essential physics (e.g. the critical state plasticity for soil).

This latter approach can be re-expressed as a problem in the directed graph in which we

only know the elements of the vertex set but have no idea whether and how these vertices
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are connected, except that the traction is the leaf and the displacement jump is the root of

the directed graph. Note that, in reality, the creation of a deterministic constitutive law

does not only limit at determining connections among vertices (physical quantities), but

also includes finding hidden vertices and appropriate edges. These actions are not mod-

eled in this chapter, but will be considered in future studies. Furthermore, while our focus

in this chapter is on deriving the traction-separation laws, in principle, the idea can be

easily extended to other problems, such as the stress-strain relation for bulk materials, the

porosity-temperature-fabric-tensor-permeability relations for porous media, among oth-

ers.

For demonstration purposes, we consider a constitutive law t(δ, q) that predicts the

traction vector t based on the history of the displacement jump δ over a cohesive or

cohesive-frictional surface with the normal direction vector being n. q is a collection of

state variables with n degrees of freedom, i.e., q1, q2, q3, ..., qn. We use sub-scale discrete

element simulations to generate synthetic data and attempt to create a traction-separation

model which can replicate the constitutive responses of complex loading histories.

Imposing restrictions of material frame indifference and assuming isotropic cohesive-

frictional surface, the traction-separation model can be simplified to [160]

t(δ, q) = t(δn, δm, q), (5.1)

where δn = δ · n and δm = |δm| = |δ− δnn|. Hence, the traction t is related to its compo-

nents tn and tm that

t(δ, q) = tn(δn, δm, q)n + tm(δn, δm, q)
δm

δm
. (5.2)

The internal variables in q, if the cohesive surface is composed of a thin layer of granu-

lar materials, can be chosen among a large set of geometrical measures on micro-structural
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attributes [214, 115]. In this work, we first manually select the following measures to be

the intermediate vertices (the vertices that are neither the leaves nor the roots) to make

forward predictions on the traction vector.

• Porosity φ, the ratio between the volume of the void and the total volume of a repre-

sentative volume element (RVE) of the material layer.

• Coordination number CN = Ncontact/Nparticle where Ncontact is the number of particle

contacts and Nparticle is the number of particles in the RVE.

• Fabric tensor A f =
1

Ncontact
∑Ncontact

c=1 nc ⊗ nc, where nc is the normal vector of a particle

contact c, c = 1, 2, ...,Ncontact in the RVE.

• Strong fabric tensor As f =
1

Nstrongcontact
∑

Nstrongcontact
c=1 nc⊗ nc, where nc is the normal vector

of a strong particle contact (having a compressive normal force greater than mean

contact force) c, c = 1, 2, ...,Nstrongcontact in the RVE.

All particle contacts inside the RVE can form a graph with particles as vertices and

interactions as edges. Some quantitative measures of this graph of connectivity can be

included in the internal variables q as additional microstructural characteristics. Here, we

focus on four measures, which are computed using the software package NetworkX ([90]),

and their detailed explanations can be found in the software documentation.

• da, degree assortativity, a scalar value between -1 and 1 measuring the similarity of

connections in the graph with respect to the node degree.

• ct, transitivity coefficient, ct = 3 ntriangles
ntriads

, the fraction between the number of triangles

and the number of triads present in contact graph.

• lsp, average shortest path length in the contact graph.
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• ρg, density of the graph, ρg = 2m
n(n−1) , where n is the total number of nodes and m is

the total number of edges in the graph.

To sum up, in the digraph representations of traction-separation models, δ is the root

and t is the leaf, and currently we consider q to be a subset of the following set of physical

quantities {δn,m, tn,m, φ, CN, A f , As f , da, ct, lsp, ρg}. For the edges, we classify them

as either ”definitions” (such as tn,m → t, δ → δn,m) which are determined by universal

principles in mechanics and should not be modified, or the ”phenomenological relations”

(such as δn,m → A f , φ→ CN, lsp → tn,m) which incorporate material parameters chosen to

fit experimental data. The latter category of edges provide opportunities for researchers to

propose hand-crafted constitutive relations of different degrees of complexities. For exam-

ple, their forms can be linear, quadratic, exponential functions or be approximated by arti-

ficial neural networks (ANNs). For illustration purposes, we consider a simple digraph of

traction-separation models involving only the nodes {δ, t, δn,m, tn,m, φ, CN, A f }. Figure

5.2 provides examples of two admissible and two illegal digraph configurations according

to the Rules 1-5.

5.3 Score system for model evaluation and objective function

A score system must be introduced to evaluate the generated directed graphs for constitu-

tive models such that the accuracy and credibility in replicating the mechanical behavior

of real-world materials can be assessed. This score system may also serve as the objective

function that defines the rewards for the deep reinforcement learning agent to improve

the generated digraphs and resultant constitutive laws. In this work, we define the score

as a positive real-valued function of the range [0, 1] which depends on the measures Ai
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δδ δn,m

tn,m

A fCN

ϕ
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(a) The digraph is admissible.

δδ δn,m

tn,m

A fCN

ϕ

tt

(b) The digraph is admissible according to Rule

No. 3, CN is not considered in the constitutive

model.

δδ δn,m

tn,m

A fCN

ϕ

tt

(c) The digraph violates Rule No. 4, since there

exists a cycle φ→ A f → CN → φ.

δδ δn,m

tn,m

A fCN

ϕ

tt

(d) The digraph violates Rule No. 5, since CN and

A f are not on any paths leading from δ to t.

Figure 5.2: Examples of admissible directed graphs (a-b) and illegal directed graphs (c-d)

representing information flow in traction-separation models involving internal physical

quantities of porosity φ, coordination number CN and fabric tensor A f . The yellow node

of separation δ refers to the root node, the pink node of traction t refers to the leaf node,

and the cyan nodes refer to intermediate nodes. The black arrows refer to ”definition” or

”universal principles” edges. The red arrows refer to ”phenomenological relations” edges.

(i = 1, 2, 3, ..., n) of n important features of a constitutive model,

SCORE = F(A1, A2, A3, ..., An), (5.3)

where 0 ≤ Ai ≤ 1. Some features are introduced to measure the performance of a model

such as the accuracy and computation speed. Other features are introduced to enforce con-

straints to ensure the admissibility of a constitutive model, such as the frame indifference

and the thermodynamic consistency. Suppose there are npfm measures of performance fea-

tures Apfm
i and ncrit measures of critical features Acrit

i in the measure system of constitutive
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models, the score takes the form,

SCORE = (
ncrit

∏
j=1

Acrit
j ) · (

npfm

∑
i=1

wi A
pfm
i ), (5.4)

where wi ∈ [0, 1] is the weight associated with the measure Apfm
i , and ∑

npfm
i=1 wi = 1. In

this section, two examples of measures of accuracy Aaccuracy and prediction consistency

Aconsistency are presented.

5.3.1 Accuracy of calibrations and forward predictions

In this work, the abilities of the models to replicate calibration data and make forward

predictions are considered separately. Here we introduce a cross-validation procedure in

which the dataset used for training the models (e.g. identifying material parameters (e.g.

[251, 131]) or adjusting weights of neurons in recurrent neural networks (e.g. [121, 247]) is

mutually exclusive to the testing dataset used to evaluate the quality of blind predictions.

The details of the generation of these calibration and testing data sets using frictional dis-

crete element simulations are presented in Appendix A. Both calibration and blind pre-

diction results are compared against the target data. The mean squared error (MSE) com-

monly used in statistics and also as objective function in machine learning is chosen as the

error measure for each data sample i in this study, i.e.,

MSEi =
1

Nfeature

Nfeature

∑
j=1

[Sj(Ydata
ij

)− Sj(Ymodel
ij

)]2, (5.5)

where Ydata
ij

and Ymodel
ij

are the values of the jth feature of the ith data sample, from target

data value and predictions from constitutive models, respectively. Nfeature is the number

of output features. Sj is a scaling operator (standardization, min-max scaling, ...) for the

output feature {Yij}, i ∈ [1, Ndata].
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The empirical cumulative distribution functions (eCDFs) are computed for MSE of

the entire dataset {MSEi}, i ∈ [1, Ndata], for MSE of the training dataset {MSEi}, i ∈

[1, Ntraindata] and for MSE of the test dataset {MSEi}, i ∈ [1, Ntestdata], with the eCDF de-

fined as [107],

FN(MSE) =



0, MSE < MSE1,

r
N

, MSEr ≤ MSE < MSEr+1, r = 1, ..., N − 1,

1, MSEN ≤ MSE,

(5.6)

where N = Ndata, or Ntraindata, or Ntestdata, and all {MSEi} are arranged in increasing order.

A measure of accuracy is proposed based on the above statistics,

Aaccuracy = max(
log[max(εP%, εcrit)]

log εcrit
, 0), (5.7)

where εP% is the Pth percentile (the MSE value corresponding to P% in the eCDF plot) of

the eCDF on the entire, training or test dataset. εcrit � 1 is the critical MSE chosen by users

such that a model can be considered as ”satisfactorily accurate” when εP% ≤ εcrit.

5.3.2 Consistency of accuracy between calibrations and forward predictions

For the examination of the consistency in model predictions on training data and test data,

the K-sample Anderson-Darling (AD) test of goodness-of-fit (gof) is conducted to check

whether the eCDFs of training and test data come from the same probability distribution,

while this distribution is unspecified [3, 191]. It is a non-parametric hypothesis test and de-

termines whether the null hypothesis H0 that the two eCDFs come from the same continu-

ous distribution can be rejected or not, under a chosen significance level αgof. The method

consists of calculating a normalized AD test statistic, critical values of the AD statistic that

depends on the sample sizes, and a p-value indicating the approximated significance level
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at which H0 can be rejected. If the p-value is smaller than the significance level αgof, the H0

hypothesis is rejected. Otherwise there is insufficient evidence to reject H0. In this work,

we define the following binary measure for the consistency of the MSE distributions, with

the significance level αgof,

Aconsistency = Hαgof =


0, p-value < αgof,

1, p-value ≥ αgof.
(5.8)

5.4 Game of the traction-separation law

Our focus in this chapter is primarily on the meta-modeling game invented for generat-

ing traction-separation models. Nevertheless, similar games can be defined for generating

other types of constitutive models based on the ideas presented in this work. With the

directed graph representations of traction-separation models as presented in Section 5.2,

the process of developing a model can be recast as a game of making a sequence of deci-

sions in generating edges between nodes in the digraphs. The player of the game can be

a human or an AI agent. The game starts with an initial ”game board” of digraph with

predefined nodes and predefined “definition” edges (e.g. displacement and deformation

gradient, displacement jump vector and the scalar components in a given basis), while no

”phenomenological relation” edge is formed among them. Each step of the game consists

of activating only one edge among all possible choices of edges in the predefined action

space, following the predefined rules of the game. The game terminates when a complete

and admissible digraph following the rules in Section 5.2 is established. The output mod-

els of the game are measured by a score system as presented in Section 5.3.

The game can be mathematically formalized as a Markov decision process. The human

or AI agent observes the state of the game st at the current step t from the game environ-
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(a) Initial configuration of the ”game board”

δδ δn,m

tn,m

A fCN

ϕ

tt

(b) All possible actions on the ”game board”

Figure 5.3: A game of traction-separation model for the digraph example in Figure 5.2. (a)

the initial ”board” on which the game is played. (b) All possible actions for picking the

edges connecting the nodes are represented by the red arrows.

ment (the directed graph that represents a constitutive model) in the form of a vector of

binaries indicating the on/off status of each valid edge choices in the action space. The

agent takes an action at on the game environment in the form of an integer indicating the

next edge to switch on in the action space. The action at is sampled from a vector of prob-

abilities π(st) of taking each valid action from the state st. Consequently, the state of the

game becomes st+1 at the next step t + 1. The agent also receives a reward rt+1 for the ac-

tion at of taking the game state from st to st+1. Each policy applied in a complete gameplay

produces a particular trajectory s0, a0, r1, s1, a1, r2, ..., at−1, rt, st, at, ..., aT−1, rT, sT. Once a

complete constitutive model is generated, the model score is evaluated. The final reward

rT is defined as: if the current score is higher than the average score of models from a group

of already played games by the agent, then the current game wins and rT = 1, otherwise,

the current game loses and rT = −1. The average score can be initialized to 0 for the first

game.

Note that the exact values of the rewards rt≤T are only known at the end of the game,

similar to the game of Chess and Go. rT is determined according to the final score of the

generated model. If rT = 1, then all previous intermediate rewards rt<T = 1. If rT = −1,
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then rt<T = −1. Before the game reaches an end, however, rt<T can only be estimated by

the agent based on its knowledge of the game. For a human agent, both rewards rt<T and

move probabilities π(s) come from ”intuition” gained during many constitutive modeling

practices. An experienced human modeler estimates the rewards and probabilities more

accurately and hence more likely generates better constitutive models. For an AI agent,

rt<T and π(s) are approximated by hand-crafted mathematical functions or recently neural

networks as in deep reinforcement Q-learning. They are estimated based on the expected

game reward of taking action a from state s (Q-value) Q(s, a) and the value of current

state v(s). The above-mentioned important quantities for mathematical descriptions of

the gameplays are summarized in Table 5.1. Moreover, the constitutive modeling game is

compared side-by-side with the game of Chess more familiar to the public in Table 5.2, in

the aspects of the board to play on, the permitted actions to execute, the criteria for wining

the game, etc.

Environment Benchmark training and test data, idealized multigraph for

constitutive models

Agent Human or AI

State s A list of binaries indicating the on/off status of each valid

edge choice

Action a An integer indicating the next edge to switch on from the

current game state

Reward r Win (1) / loss (-1) according to the score of the constitutive

model in Section 5.3

π(s, a) Probability of taking action a at state s

v(s) Expected reward of state s

Q-value Q(s, a) Expected reward from taking action a at state s

Table 5.1: Key ingredients of the game of constitutive models in directed graph.
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Game of Chess Game of constitutive model-

ing in directed graph

Definition of game Make a sequence of decisions

to maximize the probability

to win

Make a sequence of decisions

to maximize the score of the

constitutive model

Game board 8×8 grid Directed graph with prede-

fined nodes of physical quan-

tities and edges of definition

or universal principles

Game state Configuration of chess pieces

on the board

Configuration of directed

graph representing the

constitutive model

Game action Move chess pieces Select among modeling

choices.

Game rule Restrictions on chess piece

movements

Universal principles

Rules in Section 5.2

Specific restrictions on edge

choices

Game reward Win, draw or loss (discontin-

uous)

Win or loss (discontinuous)

from comparison of model

scores (continuous)

Reward evaluation Only available at the end Only available at the end

Table 5.2: Comparison of the essential definitions between the game of Chess and the game

of constitutive modeling in directed graph.

For illustration purposes, we provide a simple game example for the digraph presented

in Figure 5.2, which only involves the nodes {δ, t, δn,m, tn,m, φ, CN, A f }. Figure 5.3

presents the ”initial game board” and all possible edges choices in the current game defi-

nition. The configuration of the digraph, or the state of the game, can be totally described
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by a list of binaries for 13 edges [δn,m → φ, δn,m → CN, δn,m → A f , δn,m → tn,m, φ →

CN, φ→ A f , φ→ tn,m, CN → φ, CN → A f , CN → tn,m, A f → φ, A f → CN, A f → tn,m]

(The edges δ → δn,m and tn,m → t are definitions and always active). The list also repre-

sents the entire action space. The action a is an integer ∈ [0, 12] indicating the next edge

ID to activate in the list. The legal moves at the current game state are represented by a

list of 13 binaries indicating whether the corresponding edges are allowed to be activated

for the next action step. The rule of the legal moves are as follows: (1) if one edge has

already been selected, it is excluded from the selection of actions; (2) if an edge between

two intermediate nodes has been selected, the other edge involving these two nodes but

with opposite direction is also excluded (e.g., The edges φ → CN and CN → φ are mutu-

ally exclusive); (3) the final digraph of a complete traction-separation model must obey the

rules in Section 5.2. This rule is explicitly checked for each action at each game state. All

the actions resulting in a final digraph violating the rules in Section 5.2 will be forbidden.

For example, if the edges φ→ CN and CN → A f have already been selected in the current

incomplete digraph, then the action to select the edge A f → φ is an illegal move, since it

will lead to a final digraph that has a cycle.

Figure 5.4 provides a gameplay example of the constitutive modeling game in Figure

5.3, with mathematical representations of game states, actions and legal actions, as well as

the Markov decision process.

The score evaluation (Section 5.3) requires model calibration on training data, and for-

ward predictions on test data. The procedure for score evaluation is as follows. Once the

final digraph configuration is determined, all paths (information flows) leading from δ to

t and all predecessors for each node in the paths are identified using the graph theory

(software package NetworkX). Secondly, the predecessor nodes for the terminal node t
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Figure 5.4: A gameplay example formalized as a Markov decision process (s0, a0, r1, s1, a1,

r2, s2, a2, r3, s3, a3, r4, s4, a4, r5, s5) for the digraph game in Figure 5.3. The states are lists

of binaries for 13 edges [δn,m → φ, δn,m → CN, δn,m → A f , δn,m → tn,m, φ → CN, φ →

A f , φ → tn,m, CN → φ, CN → A f , CN → tn,m, A f → φ, A f → CN, A f → tn,m]. The

actions a are integers ∈ [0, 12] (the list indices start from 0) indicating the next edge ID to

activate. The legal moves are lists of binaries indicating whether the edges are allowed to

be activated next. Final reward r5 is determined by the model score evaluated at the end of

the game. r1−4 are only estimated by ”intuitions” on whether the current policy can lead

to a win or not, until r5 is known. Note that the Markov decision process leading to the

final digraph configuration s5 is not unique.

within these paths are identified. Recursively going upstream along all the information

flows, the predecessors for these nodes are identified, until the final predecessor node is

the start node δ only. All the predecessor-successor node pairs can be connected by ei-

ther mathematical equations frequently used in handcrafted constitutive models (linear,

quadratic, exponential, power law, etc.) or artificial neural networks. In this work, we
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take the advantage of the flexibility of ANNs that they are universal function approxima-

tors to continuous functions of various complexity on compact subsets of Rn (Universal

approximation theorem, [97]). Moreover, a special type of ANN, recurrent neural net-

work (e.g., long short-term memory LSTM [96], gated recurrent units GRU [41, 42]), can

capture the function of a time series of inputs, which is ideal for replicating the path-

dependent material behavior. Hence, we only focus on ANN edges, without loss of gener-

ality of the meta-modeling games. The hybridized constitutive models with both math-

ematical equation edges and ANN edges will be studied in a separate research. The

predecessor-successor node pairs are also inputs and outputs of all ANNs involved in the

constitutive model. For example, there are two paths in the final digraph s5 in Figure 5.4:

{δ → δn,m → CN → A f → tn,m → t} and {δ → δn,m → CN → φ → tn,m → t}. Then the

three required ANNs are, represented as input-output pairs, [δn,m → CN], [CN → φ, A f ]

and [φ, A f → tn,m]. The parameters in each ANN are calibrated with training data of

the input and output features using back propagations. The final output of t is predicted

by executing consecutively the ANNs following the established paths from δ to t in the

directed graph. In the numerical examples of this chapter, the same neural network ar-

chitecture is used for all ANNs for all edges in the directed graph: two hidden layers of

32 GRU neurons in each layer, and the output layer is a dense layer with linear activation

function. All input and output data are pre-processed by standard scaling using mean

values and standard deviations [172]. Each input feature considers its current value and

19 history values prior to the current loading step. Each ANN is trained for 1000 epochs

using the Adam optimization algorithm [109], with a batch size of 256.

This particular form of ANN configurations is chosen after a number of trial-and-error

numerical experiments similar to the one described in greater details in [247]. These ex-
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periments shown that the performance of the models is not particularly sensitive to small

changes of the design parameters we considered (e.g. number of layers, number of neu-

rons per layer), provided that a recurrent network is used and successfully trained. In fact,

we found that the prediction accuracy does not exhibit significant different while we re-

place the long short-term memory neurons with the gated recurrent neurons. This robust-

ness ensures that the predictions of each edges are sufficiently accurate and therefore po-

tentially leads to more accurate predictions from the entire directed graph and ultimately

higher game rewards.

In principle, other designs of neural networks can also be used as the universal function

approximators for the digraph edges, provided that the true path-dependent relations are

accurately captured. While it is possible that there exists better RNN setups, determining

this optimal setup from all possible combinations of choices manually will nevertheless

require a significant amount of trial-and-error effort. One way of overcoming this obstacle

is to use the reinforcement learning to automate this trial-and-error procedure which de-

termines the optimal setup for each edge in the directed graph. Exploring this fine-tuning

option is out of the scope of this study, but we will nevertheless investigate this further in

future studies.

5.5 Deep reinforcement learning for generating constitutive laws

With the game of constitutive modeling completely defined, a deep reinforcement learning

(DRL) algorithm is employed as a guidance of taking actions in the game to maximize the

final model score (Figure 7.6). This tactic is considered one of the key ideas leading to

the major breakthrough in AI playing the game of Go (AlphaGo Zero) [196], Chess and

shogi (Alpha Zero) [195] and many other games. The learning is completely free of human
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interventions. It does not need previous human knowledge in traction-separation model

as a starter database. The AI agent simply learns to improve from a number of games it

played and from the corresponding model scores and game rewards, even if the initially

generated digraph configurations make very little sense for a traction-separation model.

Moreover, during the self-plays and training, no human guidance is needed.

Figure 5.5: Self-play reinforcement learning of traction-separation law.

A (deep) neural network fθ with parameters θ (weights, bias, ... of the artificial neu-

rons) takes in the current configuration of the directed graph of the constitutive law s and

outputs a policy vector p with each component pa = p(s, a) representing the probability

of taking the action a from state s, as well as a scaler v estimating the expected score of the

constitutive law game from state s, i.e.,

(p, v) = fθ(s). (5.9)

These outputs from the policy/value network guide the game play from the AI agent.

At each state s, the action to take is sampled from an action probability π(s). This prob-

ability is based on the policy p predicted from the neural network enhanced by a Monte
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Carlo Tree Search (MCTS) ([34]). The search tree is composed of nodes representing states

s of the game, and edges representing permitted actions a from s. Each edge (s, a) pos-

sesses a list of statistics [N(s, a), W(s, a), Q(s, a)], where N(s, a) is the number of visits to

the edge during MCTS search, W(s, a) is the total action value and Q(s, a) = W(s,a)
N(s,a) is the

mean action value. The search procedure consists of firstly a recursive selection of a se-

quence of optimal actions a0, a1, a2, ... leading to the corresponding child states s1, s2, s3, ...,

starting from the root state s0, until a leaf node of state sl (that has never been encountered

before in the search) is reached. The criteria for selection from a state s is that the action

a maximizes the upper confidence bound U(s, a) of the Q-value, among all valid actions.

The upper bound is defined as

U(s, a) = Q(s, a) + UQ(s, a) = Q(s, a) + cpuct p(s, a)
√

∑b N(s, b)
1 + N(s, a)

. (5.10)

where cpuct is a parameter controlling the level of exploration. If sl is not a terminal state

that ends the game, then its p(sl) and v(sl) are predicted from the policy/value neural

network fθ(sl). The search tree is expanded and the statistics for each edge (sl , a) is initial-

ized to [N(s, a) = 0, W(s, a) = 0, Q(s, a) = 0]. Otherwise, v(sl) is equal to the final reward

of the constitutive modeling game. Finally, v(sl) is propagated back to the parent states

{s0, s1, s2, ...sl} and actions {a0, a1, a2, ...a(l−1)} traversed during the seach. Their statistics

are updated as

N(si, ai) = N(si, ai) + 1, W(si, ai) = W(si, ai) + v(sl), Q(si, ai) =
W(si, ai)

N(si, ai)
, for all i < l.

(5.11)

The MCTS procedure is repeated a number of times. The searches in MCTS eventually

yield a vector of search probabilities π(s0) recommending actions to take from the root
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position s0. π(s0) is proportional to the exponentiated visit count for each edge, i.e.,

π(s0, a) =
N(s0, a)−τ

∑b N(s0, b)−τ
, (5.12)

where τ is a positive temperature parameter that also controls the level of exploration. The

MCTS algorithm for the game of constitutive models is illustrated in Figure 5.6.

During one episode of self-play by the AI agent, the above MCTS algorithm is executed

for each state st in the sequence of encountered states {s0, s1, s2, ..., sT−1}. The root node

s0 of the search tree is set to st as the game progresses to the state st. All child nodes

and their statistics constructed in the MCTS for the prior game states are preserved. The

training data for the neural network consists of (st, πt, zt) obtained from a number of full

plays of the constitutive law game guided by the aforementioned reinforcement learning

algorithm. πt is the estimation of policy after performing MCTS from state st and zt is the

reward of the generated constitutive model at the end of the game sT. The loss function to

be minimized by adjusting parameters θ using back propagation is,

l = ∑
t
(v(st)− zt)

2 + ∑
t

πt log[p(st)], (5.13)

which is the combination of mean squared errors in game reward (1 or -1) and cross-

entropy losses in policy probabilities. Hence, accordingly, the activation functions for the

output layer are the hyperbolic tangent function tanh(x) = e2x−1
e2x+1 and the softmax function

[152]. The procedure of DRL guided self-plays and the following training of the network

fθ is iterated until the score of the generated directed graph of the constitutive model does

not improve further.

The pseudocode of the reinforcement learning algorithm designed to play the meta-

modeling game and improves via self-play is presented in Algorithm 1. As demonstrated
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Figure 5.6: Monte Carlo Tree Search (MCTS) in a game of constitutive models (figure de-

sign adopted from [196]). A sequence of actions are selected from the root state s0, each

maximizing the upper confidence bound Q(s, a) + UQ(s, a). The leaf node sl is expanded

and its policy probabilities and position value are evaluated from the neural network

(p(sl), v(sl)) = fθ(sl). The action values Q in the tree are updated from the evaluation

of the leaf node. Finally the search probability π(s0) for the root state s0 is returned to

guide the next action in self-play.
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in Algorithm 1, each complete DRL procedure involves numIters number of training iter-

ations and one final iteration for generating the final converged digraph model. Each iter-

ation involves numEpisodes number of game episodes that construct the training example

set trainExamples for the training of the policy/value network fθ . For decision makings

in each game episode, the action probabilities are estimated from numMCTSSims times of

MCTS simulations.

This design of algorithm is very similar to the one used in AlphaGo Zero to play and

discover knowledge from the Game of Go and chess (cf. [196, 195]). The major difference

is that we are now applying the reinforcement learning on a newly design game in which

discoveries of physical relationships and quality of blind predictions are all based on mak-

ing the right decisions in the step-by-step construction of directed graph rather than the

movement of the game piece. This similarity of the algorithm design is encouraging, as

it demonstrate that the DRL aglorithm is closer to reach the goal of becoming a form of

general artificial intelligence and that it can can be easily applied to many other decision

making ”games” designed for different research fields [146, 14].

5.6 Numerical Experiments

In this section, we present two traction-separation modeling games with different digraph

complexities to demonstrate the intelligence, robustness and efficiency of the deep rein-

forcement learning algorithm on improving the accuracy and consistency of the generated

traction-separation models through self-plays. For both examples, sub-scale discrete ele-

ment simulations (DEM) are used to generate synthetic benchmark data for model calibra-

tions and blind prediction evaluations. The accuracy scores of the DRL-generated models

are evaluated by material point tests with deformation histories identical to those used to
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Algorithm 1 Self-play reinforcement learning of the meta-modeling game
Require: The definition of meta-modeling game: game environment, state, action, model

score, reward, game rules (Section 7.4).

1: Randomly initialize the policy/value network fθ .

2: Initialize empty set of the training examples trainExamples← [].

3: for i in [0,..., numIters (number of training iterations)-1] do

4: for j in [1,..., numEpisodes (number of game episodes)] do

5: Initialize the starting game state s.

6: Initialize empty tree of the Monte Carlo Tree search (MCTS), set the temperature

parameter τ = 1 for ”exploration and exploitation”.

7: while True do

8: Check for all legal actions at current state s according to the game rules.

9: Get the action probabilities π(s, ·) for all legal actions by performing

numMCTSSims times of MCTS simulations.

10: Sample action a from the probabilities π(s, ·)

11: Modify the current game state to a new state s by taking the action a.

12: if s is the end state of a game then

13: Evaluate the score of the constructed digraph.

14: Evaluate the reward r of this game episode according to the model score.

15: Break.

16: Append the history in this game episode [s, a, π(s, ·), r] to trainExamples.

17: Train the policy/value network fθ with trainExamples.

18: Use the final trained network fθ and set τ = 0.01 in MCTS for one more iteration

of ”competitive gameplays” (numEpisodes games) to generate the final converged di-

graph model.

19: Exit



CHAPTER 5. METAMODELING GAME FOR DERIVING MICRO-STRUCTURE-BASED
TRACTION-SEPARATION MODELS FOR GEOMATERIALS 162

generate the benchmark data.

5.6.1 Generation of synthetic data from discrete element modeling (DEM)

The data for calibration and evaluation of prediction accuracy of the deep-reinforcement-

learned traction-separation models are generated by numerical simulations on a represen-

tative volume element (RVE) representing the granular materials on a frictional surface.

The open-source software YADE for DEM is used [202]. The discrete element particles in

the RVE have radii between 1± 0.3 mm with uniform distribution. The RVE has the height

of 20 mm in the normal direction of the frictional surface and is initially consolidated to

isotropic pressure of 10 MPa. The Cundall’s elastic-frictional contact model ([49]) is used

for the inter-particle constitutive law. The material parameters are: interparticle elastic

modulus Eeq = 1 GPa, ratio between shear and normal stiffness ks/kn = 0.3, frictional

angle ϕ = 30◦, density ρ = 2600 kg/m3, Cundall damping coefficient αdamp = 0.2.

The DEM RVE is loaded in the normal n and tangential m directions of the frictional

surface by displacement controls δn and δm (Figure 5.7(a)). The synthetic database consists

of 200 numerical experiments under different loading paths. They differ from each other

in the ratio of normal and tangential loading rate δ̇n/ ˙δm, as well as the loading-unloading-

reloading cycles, as illustrated in Figure 5.7(b), 5.7(c) and 5.7(d). The traction-separation

curves of the experiments are recorded and three examples corresponding to the paths

in Figure 5.7 are presented in Figure 5.8. The microstructural information required for

the intermediate nodes in the directed graphs, such as porosity, coordination number and

fabric tensor, are also recorded during the simulations. The open-source library NetworkX

[90] is employed to analyze the graph of the particle interactions in the RVEs. Figure 5.9

presents examples of microstructural information and graph characteristics for the three
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example loading paths. The 200 numerical simulations in the database are shuffled. The

first 50 simulations are used as ”training data” for the calibration of model parameters

for the edges in the directed graphs. The other 150 simulations are ”test data” only for

evaluating the blind prediction accuracy of the resultant constitutive model.

(a) RVE of frictional sur-

face

(b) Example loading path

1

(c) Example loading path

2

(d) Example loading path

3

Figure 5.7: Representative volume element of a frictional surface having normal n and

tangential m directions. Three examples of different loading-unloading-reloading paths

among 200 numerical experiments for the generation of database are shown.

(a) Example loading path 1 (b) Example loading path 2 (c) Example loading path 3

Figure 5.8: Examples of traction-separation curves corresponding to the three loading

paths in Figure 5.7 among 200 numerical simulations. The normal traction Tn is plotted

against the normal displacement jump δn. The tangential traction Tm is plotted against the

tangential displacement jump δm.
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(a) Coordination number (b) Average Shortest Path Length (c) Graph density

Figure 5.9: Examples of coordination number, average shortest path length and graph den-

sity for particle interactions corresponding to the three loading paths in Figure 5.7 among

200 numerical simulations. These quantities are plotted against the normal displacement

jump δn.

5.6.2 Numerical Experiment 1: Determining optimal physical relationships for

traction-separation laws

In the first example, our goal is to test the DRL algorithm and see whether it can determine

the optimal topological relations among microstructural physical quantities of porosity φ,

coordination number CN and fabric tensor A f . In [247], the authors use domain expertise,

i.e., knowledge from previous literature on fabric tensor and critical state theory to deduce

that the porosity and fabric tensor can be used as state variables to improve the forward

prediction accuracy of the traction-separation law (cf. [72, 125, 206, 244]). In this work, we

do not make any assumption or introduce any interpretation to the meta-modeling com-

puter agent. Instead, we simply make a number of physical quantities measured from dis-

crete element simulations available as vertices in the directed graph but do not introduce

any relation (edge) manually. In other words, the edge set that represents the relations of

the physical quantities is self-discovered by the computer agent from the reinforcement
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learning without any human intervention. We document our training procedure and ana-

lyze the performance of the models generated by the meta-modeling approach.

The directed graphs, states, actions, rewards and game rules of the modeling game

have been defined in Sections 5.2 and 7.4, and illustrated in Figures 5.2, 5.3 and 5.4. The

action space is of dimension 13. Through exhaustive plays of the game, the authors count

3200 possible game states, among which 591 states represent complete and admissible di-

rected graph configurations according to the game rules. The model score is defined as:

SCORE = 0.45 ∗ Acalibration
accuracy + 0.45 ∗ Aprediction

accuracy + 0.1 ∗ Aconsistency, (5.14)

where P% = 90% and εcrit = 1e−6 for accuracy evaluations and αgof = 1% for consistency

evaluations. The training data for model calibration contains 50 loading cases, and the test

data for forward prediction evaluation contains 150 loading cases.

The DRL meta-modeling procedure (Algorithm 1) contains numIters = 10 training

iterations of ”exploration and exploitation” of game strategies, by setting the tempera-

ture parameter τ to 1. Then an iteration of ”competitive gameplay” (τ = 0.01) is con-

ducted to showcase the performance of the final trained AI agent. Each iteration consists

of numEpisodes = 20 self-play episodes of the game. Hence one execution of the entire

DRL procedure contains numIters ∗ numEpisodes = 10 ∗ 20 = 200 game episodes for train-

ing the policy/value neural network. Each game starts with a randomly initialized neural

network for the policy/value predictions, and each play step require numMCTSSims = 20

MCTS simulations. Then the play steps and corresponding final game rewards are ap-

pended to the set of training examples for the training of the policy/value network.

Because each run of the DRL procedure (Algorithm 1) is initialized randomly and

the MCTS simulations also involve probability of the action possibilities, the gameplays
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in each individual DRL procedures could, in theory, lead to different resultant directed

graph model for the same set of data, especially if the exploration is not sufficient. To an-

alyze how much influence does the initial randomly directed graph affects the outcome

of the gameplay, we conduct a numerical experiment in which 20 independent DRL pro-

cedures, each with a different initial configuration, are ran. We then compare the results

obtained from these DRL procedures to assess the statistical performance of the DRL and

also check whether they all converged to the same directed graph. The gameplay results

are presented in Figure 5.10. The number of gameplays required for each DRL algorithm

to successfully generate the optimal digraph model is 200, which is about 33% of total 591

possible digraphs the brutal-force approach required to evaluate and rank. such that the

optimal graph can be determined. Yet, these 20 independent DRL procedures with dif-

ferent initial configurations all lead to the same optimal digraph. This optimal digraph is

identical to the one determined from the brutal-force approach in our benchmark study.

At the first DRL iteration, the AI agent only knows the rule of the game without hu-

man knowledge on which physical quantities are essential in predicting the traction and

how they should be connected. The AI just plays with trial-and-error following strategies

guided by random initial neural network and MCTS. This lack of gameplay knowledge

can be seen from the widely spread density distribution of model scores between maxi-

mum and minimum scores, large interquartile range between 25% and 75%, and the large

standard deviation (Figure 5.10). In the subsequent iterations, the AI plays with increasing

knowledge of game play reinforced by the ultimate game rewards, and it shows intel-

ligence in keep playing games with better outcomes. This is shown by the increase in

median and average of scores, the narrowing of interquartile range and the migration of

the density distribution towards higher scores. The automatic learning is very efficient.
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Statistically, after 5 iterations (100 games out of the total 591 possible game outcomes), the

scores already concentrate around the maximum. Few bad games could be played, since

the AI is still allowed to explore different game possibilities to avoid convergence to local

maximum. The strength of the AI agent after 10 iterations is tested by suppressing the ”ex-

ploration plays”, and the outcome game scores show outstanding performances. Figure

5.11 illustrates the improvement of knowledge of traction-separation constitutive model-

ing by four representative digraph games played during the DRL iterations. The traction

predictions from the resultant constitutive models are compared against both training data

and unseen test data. In addition, four examples of blind predictions from the optimal di-

graph configuration (the 4th digraph in Figure 5.11) obtained in this game are shown in

Figure 5.12.

5.6.3 Numerical Experiment 2: Data-driven discovery for enhancement of traction-

separation laws

In the second example, we consider another common scenario in which we attempt to

convert qualitative observations into quantitative predictions with the help of the rein-

forcement learning algorithm as a tool for augmented intelligence. The need to interpret

observations of mechanisms into predictions is one of the oldest problems in constitutive

modeling [167]. For instance, the observation that yielding depends on the amount of

normal traction leads to the Mohr-Coulomb yield criterion [225]. The evolution of fabric

tensor has been incorporated into the hardening law and the plastic flow rule to capture

the induced anisotropy and critical state of sand [141, 52, 53]. However, recent advance-

ments on the application of graph theory as well as the experimental techniques such as

micro-CT imaging have revealed many geometric measures on the grain connectivity that
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(a) Violin plots of the density distribution of model

scores in each DRL iteration

(b) Mean value and± standard deviation of model

score in each DRL iteration

Figure 5.10: Statistics of the model scores in deep reinforcement learning iterations from

20 separate runs of the DRL procedure for Numerical Experiment 1. Each DRL procedure

contains ten iterations 0-9 of ”exploration and exploitation” (by setting the temperature

parameter τ = 1.0) and a final iteration 10 of ”competitive gameplay” (τ = 0.01). Each

iteration consists of 20 games. (a) Violin Plot of model scores played in each DRL iteration.

The shade area represents the density distribution of scores. The white point represents the

median. The thick black bar represents the interquartile range between 25% quantile and

75% quantile. The maximum and minimum scores played in each iteration are marked

by horizontal lines. (b) Mean model score in each iteration and the error bars mark ±

standard deviation.

help explain the onset of shear band [227, 226], coherent vortex structure [256] and post-

bifurcation behaviors in granular materials [214, 241, 130]. While these discoveries of new

knowledge are indeed encouraging, one cannot make use of them without investing sig-

nificant efforts and time to derive, verify, and validate new constitutive laws that incor-

porate new information. Hence the graph-theoretical approaches, although have found

great promises on analyzing the granular assemblies obtained from real or virtual exper-
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Figure 5.11: Knowledge of directed graphs of traction-separation models learned by deep

reinforcement learning in Numerical Experiment 1. Four representative digraph games

played during the DRL iterations and their prediction accuracy against training and test

data are presented.
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Figure 5.12: Four examples of blind predictions from the optimal digraph configuration

(the 4th digraph in Figure 5.11) against unseen data among test database of 150 loading

cases.

iments, have not yet made significant impacts on constitutive laws used for engineering

applications. Our meta-modeling approach is capable of overcoming this bottleneck by

efficiently automating some of these tasks currently undertaken by modelers. This second

numerical experiment is used to demonstrate how the augmented intelligence can be used

to incorporate the insights from observations into predictions without manually re-writing

an existing constitutive law every time new information comes up.

This example is an extension of the first numerical experiment, in which more mi-

crostructual information are considered, including the fabric of strong interactions As f

and four measures of grain connectivities da, ct, lsp, ρg. The task of identifying their roles

in constitutive models for granular materials is now simply recast as defining a new game

with augmented vertex set in digraph and extended action space. The ”game board” and

all possible actions for this new game are shown in Figure 5.13. The dimension of the ac-
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tion space increases from 13 to 71. A particular game rule is added to test the flexibility

of the DRL algorithm in handling different types of game constraints: the strong fabric

tensor As f and the fabric tensor A f , since both are geometric measures of inter-particles

forces, are mutually exclusive in the final digraphs of constitutive models. The number

of possible game states increases from 3200 to over 400000. The number of complete and

admissible directed graph configurations increases from 591 to over 20000. The score def-

inition is the same as Equation (5.14). The meta-modeling algorithm tries to learn the

optimal ways to incorporate the microstructual information and make better predictions

only from the training database of 50 loading cases, while the gained knowledge is vali-

dated on the test database of another 150 loading cases. The parameters for the DRL meta-

modeling algorithm are set as: numIters = 10 iterations of ”exploration and exploitation”,

1 iteration of ”competitive gameplay”, numEpisodes = 30 self-plays in each iteration, and

numMCTSSims = 30 MCTS simulations in each play step. Hence only a total number of

300 game episodes are needed to complete the DRL procedure, comparing to more than

20000 possible digraph models in this game setting.

δδ δn,m tn,m

ρg

lsp

ct

da

Asf

A f

CN

ϕ tt

(a) Initial configuration of the ”game board”

δδ δn,m tn,m

ρg

lsp

ct

da

Asf

A f

CN

ϕ tt

(b) All possible actions on the ”game board”

Figure 5.13: A game of traction-separation model for a digraph involving the nodes

{δn,m, tn,m, φ, CN, A f , As f , da, ct, lsp, ρg} (detailed in Section 5.2). (a) the initial ”board”

on which the game is played. (b) All possible actions for picking the edges connecting the

nodes are represented by the red arrows.
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The statistics of the gameplay results from 5 separate runs of the DRL procedure are

presented in Figure 6.4. We observe a very efficient improvement in generated traction-

separation models, even though the number of legal game states in the new game has

largely increased. Figure 5.15 exhibits four representative digraph configurations devel-

oped during DRL iterations, as well as their prediction quality on calibration data and

unseen data. It can be seen that the information flows in a constitutive model are of cru-

cial importance. Although the first and the fourth graphs both incorporate the same types

of microstructual information, the difference in the ways these information are connected

results in significant difference in model scores of 0.191 and 0.915, respectively. Moreover,

the DRL algorithm develops the intelligence of selecting the strong fabric tensor As f over

the fabric tensor A f in order to further improve the prediction score of the model. Four

blind prediction examples of the optimal digraph configuration (the 4th digraph in Fig-

ure 5.15) obtained in this game are presented in Figure 5.16. Comparing to the numerical

example 1 (Figure 5.12), the augmented knowledge of additional microstructural informa-

tion in constitutive models lead to more accurate representations of granular materials.

5.7 Conclusions

This chapter presents a new meta-modeling framework to employ deep reinforcement

learning (DRL) to generate mechanical constitutive models for interfaces. The consti-

tutive models are conceptualized as information flow in directed graphs. The process

of writing constitutive models is simplified as a sequence of forming graph edges with

the goal of maximizing the model score (a function of accuracy, robustness and forward

prediction quality). Thus meta-modeling can be formulated as a Markov decision pro-

cess with well-defined states, actions, rules, objective functions and rewards. By using
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(a) Violin plots of the density distribution of model

scores in each DRL iteration

(b) Mean value and± standard deviation of model

score in each DRL iteration

Figure 5.14: Statistics of the model scores in deep reinforcement learning iterations from

5 separate runs of the DRL procedure for Numerical Experiment 2. Each DRL procedure

contains ten iterations 0-9 of ”exploration and exploitation” (by setting the temperature

parameter τ = 1.0) and a final iteration 10 of ”competitive gameplay” (τ = 0.01). Each

iteration consists of 30 games. (a) Violin Plot of model scores played in each DRL iteration.

The shade area represents the density distribution of scores. The white point represents the

median. The thick black bar represents the interquartile range between 25% quantile and

75% quantile. The maximum and minimum scores played in each iteration are marked

by horizontal lines. (b) Mean model score in each iteration and the error bars mark ±

standard deviation.

neural networks to estimate policies and state values, the computer agent is able to effi-

ciently self-improve the constitutive model it generated through self-playing, in the same

way AlphaGo Zero (the algorithm that outplayed the world champion in the game of

Go) improves its gameplay. Our numerical examples show that this automated meta-

modeling framework not only produces models which outperform existing cohesive mod-

els on benchmark traction-separation data, but is also capable of detecting hidden mech-
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Figure 5.15: Knowledge of directed graphs of traction-separation models learned by deep

reinforcement learning in Numerical Experiment 2.
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Figure 5.16: Four examples of blind predictions from the optimal digraph configuration

(The 4th digraph in Figure 5.15) against unseen data among test database of 150 loading

cases.

anisms among micro-structural features and incorporating them in constitutive models to

improve the forward prediction accuracy, which are difficult tasks to do manually.
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Chapter 6

Cooperative metamodeling game for

automated learning of elastoplasticity

models for geomaterials

This chapter is reproduced from the published paper: K. Wang, W.C. Sun, Q. Du, A co-

operative game for automated learning of elasto-plasticity knowledge graphs and models

with AI-guided experimentation, Comput Mech, 64: 467, 2019.

6.1 Introduction

In single-physics solid mechanics problems, the balance of linear momentum is often used

to provide constraints for the motion of a body in the space-time continuum, while a consti-

tutive law is often supplied to replicate constitutive responses at a selected material point

of the body. Many successful commercial and open-source codes now introduce mecha-

nisms or gateways that simplify the incorporation of material point constitutive models

into predefined solid mechanics solvers (e.g. UMAT in ABAQUS) [187, 188, 257, 44]. Once

a constitutive law is formulated, algorithms are then designed to approximate the mathe-
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matical model such that a computer can be used to run simulations. The algorithms that

approximate or enforce the constitutive laws are then verified, validated and eventually

used in engineering practice [111, 101, 247].

In this chapter, our goal is to (1) introduce a meta-modeling method to generate al-

gorithms that hybridize theory, phenomenological relations, and universal principles to

automatically generate constitutive laws to fulfill a specific objective defined by the loss

(objective function) in a quantitatively optimal manner and (2) incorporate the reinforce-

ment learning technique to select experiments that lead to improvement in prediction ca-

pacity. We do not limit ourselves to the approach in which the neural network model is

either used to replace the entire constitutive law or not being used at all (cf. [77, 111, 247]).

Instead, our goal is to find the optimal way out of all the possible choices to construct a

constitutive law for a given material data.

To reach our goal, we employ two techniques of discrete mathematics that are less com-

monly used in computational mechanics, the directed multigraph and decision tree learn-

ing. First, the directed multigraph is used to recast the available choices of constitutive

laws as a family of possible ways to configure a graph of information flow from the up-

stream (the source or input, such as the relative displacement or strain) to the downstream

(the target or output, such as the traction or stress). A model is a path (in the terminol-

ogy of graph theory) of this directed multigraph that optimizes an objective function. As

such, a model is associated with a collection of physical quantities (vertices in the directed

graph) linked by either mathematical expressions or machine learning models that connect

the upstream to the downstream (edges in the directed graph) (cf. [247]).

Within our framework, a black-box neural networks model, for instance, is simply a

model in which there are no human-interpretable quantities connecting the input and out-
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put. Many classical neural network models such as [77, 122] and [247] all belong to this

category, as neurons are the only media that propagate the information flow. Meanwhile,

a classical theory-based constitutive law can be viewed as a directed graph (or a particular

path of the directed multigraph) in which all the edges are mappings that can be written as

mathematical expressions formulated by human. On the other hand, a hybridized model

could have a subset of neural network edges while having the rest edges theoretically

based.

Since the optimal configuration of the directed graph for a given problem and the cor-

responding objective function is not known a priori, we introduce mechanisms to hier-

archically explore the possible modeling choices using a decision tree. A decision tree is

simply an explicit representation of all possible scenarios such that the sequence of deci-

sions (in our case the modeling choices and data explorations) is evaluated by an agent

who then takes account of the possible observations (e.g. experimental observations), and

state changes (e.g. the changes of validation metrics or loss function values) to estimate

the best choices.

In this work, our major contributions are threefold. First, we introduce the concept of

labeled directed multigraph to represent relational knowledge. Such a mechanism pro-

vides a convenient mean to hybridize theory-based and data-driven models to yield op-

timal forward predictions. Second, we recast the reinforcement learning as the process of

formulating constitutive laws as a combinatorial optimization problem for making large

number of modeling choices. Through an automated trial-and-error process, the AI agent

continues to improve its decision making ability automatically without human interven-

tion. The resultant meta-modeling approach therefore enables the AI to discovery model

building knowledge via the Edisonian approach, while overcoming the low efficiency
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through automation. The application of concepts from graph theory, such as directed

graph and directed multigraph gives us hierarchical information that helps understand

the causal connection among events and mechanisms. As point out in [116], this model-

building approach has an advantage over the model-free machine learning approaches in

interperability. As considerable evidence has indicated that the model-based planning,

such as the one introduced in this chapter, is not only an essential ingredient of human

intelligence, but also the key step to enable flexible adaptation for new tasks and goals.

The importance of the usage of multigraph is that it enables us to form complex idea,

knowledge, prediction, inference and response with a rather small set of simple elements.

This kind of application of the principle of combinatorial generalization has long been re-

garded as the key signature of intelligence [100, 14]. Third, we also introduce a cooperative

mechanism to integrate the data exploration into the modeling process. In this way, the

framework can not only generate constitutive models to make the best predictions among

the limited data, but also estimate the most efficient way to select experiments such that

the most needed information is included to generate the knowledge closure.

The rest of the chapter is organized as follows. We first introduce the meta-modeling

cooperative game, including the method to recast a model as directed multigraph, and

the generation of decision tree (Section 6.2). Following this, we will introduce the de-

tailed design of the data collection/meta-modeling game for modeling the collaboration

of the AI data agent and the AI modeler agent (Section 7.4). In Section 6.4, we then review

the multi-agent reinforcement learning algorithms that enable us to find the optimal deci-

sion for constitutive models, as well as the corresponding optimal actions the data agent

takes to maximize the prediction quality of the AI-generated model. We then present nu-

merical experiments to assess the accuracy and robustness of the blind predictions of the
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model generated via our meta-modeling algorithm operated on the directed multigraph.

To check whether our approach is able to deal with a wide spectrum of situations and can

be generalized for different materials, the multigraph meta-modeling algorithm is tested

with distinctive types of data (e.g. synthetic data from elasto-plastic models and discrete

element simulations). To aid the reproducibility of our numerical experiments by the third

party, these data will be open source upon the publication of this article.

For convenience, we provide a minimal review of the essential terminologies and con-

cepts from graph theory that are used throughout this chapter. Their definitions can be

found in, for instance, [253, 12].

Definition 6.1.1. A n-tuple is a sequence or ordered list that consists of n element where

n is a non-negative integer and that (unlike a set) may contain multiple instances of the

same element.

Definition 6.1.2. A directed graph (digraph) is an ordered pair (2-tuple) G = (V, E) where

V is a nonempty set of vertices and E is a set of ordered pairs of vertices (directed edges)

where each edge in E connects a pair of source (beginning) and target (end) vertices in a

specific direction. Both vertices connected by an edge in E must be elements of V and the

edge connecting them must be unique.

Definition 6.1.3. A directed acyclic graph is a directed graph where edges do not form

any directed cycle. In a directed acyclic graph, there is no path that can start from a vertex

and eventually loop back to the same vertex.

Definition 6.1.4. A directed multigraph with a distinctive edge identity (also called multi

digraph) is an ordered 4-tuple G = (V, E, s, t) where V is a set of vertices, E is a set of

edges that connect source and target vertices, s : E→ V is a mapping that maps each edge
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to its source node, and t : E→ V is a mapping that maps each edge to its target node.

Definition 6.1.5. An underlying graph U of a directed multigraph G is a multigraph

whose edges are without directions.

Definition 6.1.6. A subgraph G′ of a directed multigraph G is a directed multigraph whose

vertex set V′ is a subset of V ( V′ ⊆ V), and whose edge set E′ is a subset of E ( E′ ⊆ E).

Definition 6.1.7. A labeled directed multigraph is a directed multigraph with labeled ver-

tices and edges which can be mathematically expressed as an 8-tuple G = (LV, LE, V, E,

s, t, nV , nE) where V and E are the sets of vertices and edges, LV and LE are the sets of

labels for the vertices and edges, s : E→ V and t : E→ V are the mappings that map the

edges to the source and target vetrices, nV : V → LV and nE : E → LE are the mappings

that give the vertices and edges the corresponding labels in LV and LE accordingly.

6.2 Meta-modeling: deriving material laws from a directed multi-

graph

In this section, we describe the concepts behind the proposed automated meta-modeling

procedure and the mechanism of the learning process. The key departures of our newly

proposed method via the neural network approaches for constitutive laws (e.g. [78, 122]) is

the introduction of labeled directed multigraph that represents all possible theories under

consideration for modeling a physical process, the acyclic directed graph that represents

the most plausible knowledge on the relationships among physical quantities, and the data

agent which enables users to estimate the amount of data required to reach the point where

additional information no longer enhances prediction capacity for a given action space.

In this chapter, our focus is limited to the class of materials that exhibits elasto-plastic
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responses while damage can be neglected. We assume that the deformation is infinitesimal

and the material is under isothermal condition. The proposed methodology, however, can

be extended to other more complex materials.

6.2.1 Material modeling algorithm as a directed multigraph

The architecture of an algorithm is often considered as a directed multigraph [51]. In

essence, a material model can be thought as a procedure that employs organized knowl-

edge to make predictions such that relationships of components and the universally ac-

cepted principles governs the outcomes of predictions. For instance, we may consider a

traction-separation model as an information flow in a directed graph where physical at-

tributes, such as porosity, plastic flow, permeability, are considered as vertices and their

relationships are considered as edges [247]. The input and output of the models (e.g. rel-

ative displacement history and traction) are then considered as the sources and targets of

the directed graph.

However, in some circumstances, a physical relation can be modeled by more than one

methods, theories or constitutive relations. To reflect the availability of options, a gener-

alized representation of the thought process is needed when we try to use artificial intel-

ligence algorithm to replace human to write constitute models. This generalized thought

process, which we refer as meta-modeling (i.e. modeling the process of writing a model),

can be recast as a labeled directed multigraph. The latter can be used where a pair of con-

nected vertices are not necessarily connected by one edge but by multiple edges, each rep-

resents a specific model that connects two physical quantities (e.g. porosity-permeability

relationship). A formal statement can be written as follows:
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Possible configurations of constitutive laws as a labeled directed multigraph.

Given a data set which measures a set of physical quantities defined as V with a cor-

responding set of labels LV where nV : V → LE is a bijective mapping that maps the

vertices to the labels. Let VR ⊂ V and VL ⊂ V be the source(s) and target(s) of the

directed multigraph. All possible ways to write constitutive laws that map the input

VR (e.g. strain history) to output VL (e.g. stress) as information flow can be defined

by the sets of directed edges where each edge that links two physical quantities E, the

mappings s : E→ V and t : E→ V that provide the direction of the information flow,

and the surjective mapping nE : E → LE that assigns the edge labels (names) to the

edges.

6.2.2 Recasting the process of writing constitutive laws as selecting subgraphs

in a directed multigraph

In the first meta-modeling game introduced in this work, we consider a scenario where a

set of experimental data is given. This experimental data include measurement of different

physical quantities, but the inherent relationships are unknown to the modeler. Further-

more, in the process of writing the constitutive law, the modeler must follow a set of rules

coined as universal principles (e.g. thermodynamic principles, material frame indiffer-

ence) [111, 247]. Here, we first assume that an objective of writing the constitutive model

is well defined and hence a score system is available for the deep Q-learning. We then ide-

alize the process of writing a constitutive law with a fixed set of data as a two-step process.

First, we consider all the possible ways to write a constitutive law and represent all these

possibilities in a labeled directed multigraph. This labeled directed multigraph define the
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action space of the meta-modeling game. Second, among all the possible ways to write

a constitutive law, i.e., on the labeled directed multigraph, we seek the optimal configu-

ration that will lead to the best outcome measured by an objective function. If the total

number of possible configurations is sufficiently small, then the optimal configuration can

be sought by building all the possible configurations and comparing their performance

afterward. However, this brute force approach becomes infeasible when the total number

of configurations is very large as in the case of the game of chess and Go [196, 197]. As a

result, the proposed procedure of finding the optimal configuration of a constitutive law

is given as follow.

Instants of constitutive laws are considered as directed graphs. Given a dataset that

contains the time history of measurable physical quantities of n types of data stored in

the vertices labeled by the vertex label li ∈ LV and the labeled direct graph defined

by the 8-tuple G = (LV, LE, V, E, s, t, nV , nE), and objective function SCORE and con-

straints to enforce universal principles. Find an subgraph G′ of G consists of vertices

V ∈ Vs ⊆ V and edges E ∈ Es ⊆ E such that 1) G′ is a directed acyclic graph, 2) a

score metric is maximized under a set of m constraints fi(l1, l2, . . . , ln) = 0, i = 1, . . . , m

where , i.e.,

maximize
li

SCORE(l1, l2, . . . , ln)

subject to fi(ii) = 0, i = 1, . . . , m.
(6.1)
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6.3 Two-player meta-modeling game for the discovery of elasto-

plastic models through modeling and automated experiments

In this work, we conceptualize the process of writing, calibrating and validating constitu-

tive laws as a cooperative two-player game played by one modeler and one experimental-

ist (data) agent. These two agents, in theory, can be played by either a human or an artificial

intelligence (AI) machine. To simplify the problems, we consider only virtual experiments

such as discrete element simulations [272, 236] and that the agents are not constrained by

the number of virtual experiment tests they might conduct. The control of the experimen-

tal cost and the ability to automate the execution of experiments are important topics but

are both out of the scope of this work.

As such two AI agents must be able to cooperate such that they can find the hierarchical

relationships among available data and (2) come up with the experiment plan that helps

improve the performance of the blind predictions made by the directed graph model, as

shown in Figure 6.1. This lead to a multi-agent multi-objective problem that can be solved

by a deep reinforcement learning framework [220, 181]. In this work, the deep reinforce-

ment learning algorithm is based on a model-free policy gradient algorithm that employs

neural network to estimate the Q values of the policies (cf. [197, 248]). In principle, it is

possible to use other Bayesian reinforcement learning approaches, such as Thompson sam-

pling, Bayesian upper confidence bounds, Bayesian sparse sampling and other different

decision making algorithms to optimize the learning process. Finding the optimal strategy

for the deep reinforcement learning in specific applications is an active research area, but

is out of the scope of this study. Interested readers are referred to [79] for a comprehensive

review on these reinforcement learning algorithms.
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Modeler	
Agent	

Environment
(the	validation	procedure	

with	constraints	)

Reward
(Improvement	of	prediction	
capability	due	to	additional	

data)

State
(the	constitutive	model	

generated	via	the	
decision	 tree)

Action
(writing	constitutive	
laws	on	directed	

graph)

Experimentalist		
Agent	

Reward
(Score	of	the	model	based	on	
accuracy,	speed,	 consistent	

and	robustness)

State
Experimental	campaign	
(e.g.	loading	path,	types	

of	test,	cost..etc)

Action
(conducting	
experiments)

Data	
transfer

Figure 6.1: Scheme of the reinforcement learning algorithm in which two agents interact

with environment and receives rewards for their corresponding actions (writing models

and conducting experiments).

6.3.1 Data collection game for experimentalist agent

This section presents a design of the data collection game involving the common decision-

making activities of experimentalists in testing the mechanical properties of a material.

The goal of this game is for the experimentalist agent to find the optimal subset of tests for

model generation and parameter calibration within a set of candidate tests on the material.

The key ingredients of the game are detailed as follows.

6.3.1.1 Game Board for Experimentalist

Consider a set of possible mechanical experiments on a material T = {T1, T2, T3, ..., Tn}.

The experiments can be divided into two types: (1) a subset Tc of calibration experiments

for material parameter identification in a constitutive model, (2) a subset Tv of valida-

tion experiments for testing the forward prediction accuracy of the constitutive model.



CHAPTER 6. COOPERATIVE METAMODELING GAME FOR AUTOMATED LEARNING
OF ELASTOPLASTICITY MODELS FOR GEOMATERIALS 187

T = Tc ∪ Tv, Tc ∩ Tv = ∅, Tc 6= ∅ and Tv 6= ∅. Suppose the experimentalist has a

priori preselected the elements in both categories: Tc = T0
c = {Tc1, Tc2, Tc3, ..., Tcn} and

Tv = T0
v = {Tv1, Tv2, Tv3, ..., Tvn}. This selection could be based on the availability of lab-

oratory equipment, i.e., T0
c includes all tests that the experimentalist can perform in the

laboratory, while T0
v includes other tests that can only be acquired from literature or third-

party laboratories. The experimentalist then chooses the final set of experiments Tc ⊂ T0
c

which could generate necessary and sufficient data for the modeler agent to develop and

calibrate a constitutive model with the highest model score. The final validation set Tv

contains both experiments in T0
v and those not selected in Tc, i.e., Tv = T0

v ∪ (T0
c \ Tc).

Hence the set T0
c constitutes the ”game board” for the experimentalist agent to play the

data collection game.

6.3.1.2 Game State for Experimentalist

The mathematical description of the current state of the game board is a list of binary

indicators s = [ic1, ic2, ic3, ..., icn, iterminate] representing whether a test Tci ∈ T0
c is selected to

be one of the calibration tests, and also whether the game is terminated. If Tci ∈ Tc, the

corresponding indicator ici = 1, if Tci /∈ Tc ici = 0. If iterminate = 1, the game reaches the end,

otherwise the experimentalist can continue. The initial state of the game is ici = 0, ∀Tci ∈

T0
c and iterminate = 0. A special final state in which ici = 0, ∀Tci ∈ T0

c and iterminate = 1

indicates that no data is available for model generation and calibration, hence the reward

for this state is set to 0.
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6.3.1.3 Game Action for Experimentalist

At each state s, the experimentalist can select the next calibration test Tci ∈ Tc, by chang-

ing the indicator ici from 0 to 1, or decide to stop the selection immediately, by changing

iterminate from 0 to 1.

6.3.1.4 Game Rule for Experimentalist

Generally, there are no specific rules constraining the selection of experiments for model

parameter calibration. But the game designer could always customize certain rules that

prohibit the coexistence of certain experiments in Tc. The game rule can be reflected by

a list of binaries LegalActions(s) = [iic1, iic2, iic3, ..., iicn, iiterminate], indicating whether an

element ici of the state s can be changed in the next action step.

• If ici = 0 in the current state s, then iici = 1 in LegalActions(s).

• If ici = 1 , then iici = 0.

• if iterminate = 0 , then iiterminate = 1.

We enforce a game rule that require the two tests Tci and Tcj are mutually exclusive in Tc.

• If ici = 1 , then iicj = 0, and vice versa.

The initial legal actions are iici = 1, ∀Tci ∈ T0
c and iiterminate = 1.

6.3.1.5 Game Reward for Experimentalist

The reward from the game environment to the experimentalist agent should consider the

scores of the constitutive models generated by the modeler, given the calibration data and

validation data prepared by the experimentalist. For each result of the data collection

game Tc (hence its pair Tv = T \ Tc), the modeler could generate a number of different

constitutive models with scores [SCOREi, i=1,2,3,...]Tc . The reward should also consider the
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total cost of the calibration tests Tc. This can be measured by a weighted sum COST(Tc) =

∑T0
c wcost

ci ∗ ici, where wcost
ci is the normalized cost for test Tci ∈ T0

c , ∑T0
c wcost

ci = 1, wcost
ci ∈

[0, 1].

If the experimentalist and the modeler are fully cooperative on generating the consti-

tutive model with the highest score, the reward r is a function of the maximum model

scores for all possible Tc ⊂ T0
c and the total experimental cost of Tc. Suppose that since

the beginning of the two-payer cooperative game (Figure 6.1), the experimentalist have

experienced a number of calibration test sets Tc (they constitute a set T
history
c ), and the

modeler have generated constitutive models and evaluated their scores for these calibra-

tion test sets ([SCOREi, i=1,2,3,...]Tc , ∀Tc ∈ T
history
c ). Then, both agents have the knowledge

of the highest model score for each Tc: SCOREmax
Tc

= max([SCOREi, i=1,2,3,...]Tc). Thus

they know the highest model score in the history of self-played games: SCOREmax =

max(SCOREmax
Tc

), ∀Tc ∈ T
history
c . Then the agents can identify a set Tmax

c ⊂ T
history
c in

which the elements are all calibration test sets that can lead to maximum scores compara-

ble to the highest score, i.e., Tc ∈ Tmax
c , if |SCOREmax

Tc
− SCOREmax| ≤ TOL, where TOL is

a small tolerance criteria.

From the perspective of the experimentalist agent, for a fully cooperative game, Tc

(represented by the state s) is winning the data collection game if it is an element of the set

Tmax
c , and if its total cost is the lowest among all elements in Tmax

c . Hence the reward is

designed as

r(s) =


1, if Tc ∈ Tmax

c and COST(Tc) ≤ COST(∀Ti
c ∈ Tmax

c )

0, otherwise
, (6.2)
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6.3.1.6 Game Choices for Experimentalist

The elements in the set T = {T1, T2, T3, ..., Tn} could be all possible mechanical experi-

ments on a material. For example, for granular materials, the candidates can include the

following common types of tests in soil laboratories:

1. Drained conventional triaxial test (ε̇11 6= 0, σ̇22 = σ̇33 = σ̇12 = σ̇23 = σ̇13 = 0).

2. Drained true triaxial test (ε̇11 6= 0, b = σ22−σ33
σ11−σ33

, σ̇33 = σ̇12 = σ̇23 = σ̇13 = 0).

3. Undrained triaxial test (ε̇11 6= 0, ε̇11 + ε̇22 + ε̇33 = 0, σ̇22 = σ̇33, σ̇12 = σ̇23 = σ̇13 = 0).

4. One-dimensional test (ε̇11 6= 0, ε̇22 = ε̇33 = ε̇12 = ε̇23 = ε̇13 = 0).

5. Simple shear test (ε̇12 > 0, σ̇11 = σ̇22 = ε̇33 = ε̇23 = ε̇13 = 0).

The loading conditions are represented by constraints on the components of the stress rate

and strain rate tensors

ε̇ =


ε̇11 ε̇12 ε̇13

ε̇22 ε̇23

sym ε̇33

 , σ̇ =


σ̇11 σ̇12 σ̇13

σ̇22 σ̇23

sym σ̇33

 . (6.3)

Remarks on implementation In the numerical testing of the constitutive models, the above

material test conditions are applied via a linearized integration technique for loading con-

straints of laboratory experiments Sdσ + Edε = dY , combined with incremental constitu-

tive equations, as proposed in [13]. dσ and dε are Voigt forms of incremental stress and

strain, respectively. S and E are matrices of constraints on incremental stress and strain,

respectively. dY is a vector of constraint values. See [13] for their formulations for different

loading constraints in geomechanics tests (e.g., drained and undrained triaxial tests).
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6.3.2 Meta-modeling game for modeler agent

This section presents a design of the constitutive modeling game involving the common

decision-making activities of modelers in developing models to approximate the mechan-

ical properties of a material. The goal of this game is for the modeler agent to find the

optimal configuration of the directed graph from a predefined directed multigraph (Sec-

tion 6.2) with its structure inherited from the graphs of the classical infinitesimal strain

elasto-plasticity models. The key ingredients of the meta-modeling game consist of game

agents, game board, game state, game actions, game Rules, game reward and game choices such

that it constitutes an agent-environment interactive system [21, 248] which are detailed as

follows.

6.3.2.1 Game Board for Modeler

A constitutive model in the generalized elasto-plasticity framework [168, 271] requires four

essential components of ”phenomenological relations” : (1) elasticity law (2) loading direc-

tion (3) plastic flow direction (4) hardening modulus. The process of obtaining a directed

graph (the final state of the game) from the game board, i.e., the direct multigraph of the

proposed framework is presented in Figure 6.2. The quantities are presented in the in-

cremental form at discrete time steps. A quantity a at the current time step tn is denoted

as an = a(tn). The next time step is tn+1 with the time increment ∆t = tn+1 − tn. Then

the increment of the quantity a within ∆t is denoted as ∆an+1 = an+1 − an. The essential

”definition” edges in the direct multigraph are written as
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Figure 6.2: Directed multigraph of an elasto-plasticity model.The yellow nodes of the

strain εn, stress σn and strain increment ∆εn+1 refer to the root nodes, the pink node

of the stress increment ∆σn+1 refers to the leaf node, and the cyan nodes refer to inter-

mediate nodes. The black arrows refer to ”definition” edges. The color arrows refer to

”phenomenological relations” edges. In the Meta-modeling game, the modeler AI agent

generates the optimal configuration of the model from the labeled directed multi-graph

for a given set of data. In the case of reverse engineering, the modeler AI agent should be

able to recover the original constitutive laws when given the corresponding types of data.

1 ∆σn+1 = Ce
n : ∆εe

n+1

2 ∆εe
n+1 = ∆εn+1 − ∆ε

p
n+1

3 ∆ε
p
n+1 = ∆λn+1m f low

n

4 ∆λn+1 =


nload

n : Ce
n : ∆εn+1

Hn + nload
n : Ce

n : m f low
n

if plastic loading

0 if elastic loading

,

(6.4)

where ∆λn+1 is the plastic multiplier and Hn is the generalized plastic modulus.
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The ”elastic loading” and ”plastic loading” states are determined via the projection of

the trial elastic stress increment ∆σe
n+1 = Ce

n : ∆εn+1 on the loading direction nload
n . If there

is no assumed yield surface, then
∆σe

n+1 : nload
n 6= 0→ plastic loading

∆σe
n+1 : nload

n = 0→ elastic loading
, (6.5)

or if there exists a yield surface f (σ, qpiv
n (ξ

piv
n )), then

f (σn + ∆σe
n+1, qpiv

n (ξ
piv
n )) > 0→ plastic loading

f (σn + ∆σe
n+1, qpiv

n (ξ
piv
n )) ≤ 0→ elastic loading

, (6.6)

where ξ
piv
n is a vector of strain-like plastic internal variables and qpiv

n is a vector of stress-

like plastic internal variables conjugate to ξ
piv
n . ξ

piv
n may include the following internal

state variables accumulated during the deformations from the initial time t0 to the current

time tn,

5



λn =
∫ tn

0
λ̇dt

ε̄
p
n =

∫ tn

0
||ε̇p||dt

ε̄
p
vn =

∫ tn

0
tr(ε̇p)dt

ε̄
p
sn =

∫ tn

0
||ε̇p − 1

3
tr(ε̇p)||dt

en = e0 +
∫ tn

0
ėdt = e0 +

∫ tn

0
(1 + e)ε̇vdt

, (6.7)

where ε̄p, ε̄
p
v and ε̄

p
s are accumulated total, volumetric and deviatoric plastic strains, respec-

tively. e is the void ratio for granular materials, defined as the ratio between volume of the

void and the solid constituent. We assume that the yield function is isotropic and there-

fore can be expressed in terms of stress invariants [24]. As a result, the phenomenological
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relations can be represented as functions of a stress invariants σivr
n , which may include

6



pn =
tr(σn)

3

qn =
√

3J2 =

√
3
2
||sn||

θn =
1
3

sin−1(−3
√

3
2

J3

J3/2
2

), −π

6
≤ θ ≤ π

6

(6.8)

where J2 = 1
2 trace(s2

n), J3 = 1
3 trace(s3

n), sn = σn − pn I and θn is the Lode’s angle, the

smallest angle between the line of pure shear and the projection of stress tensor in the

deviatoric plane [136]. The constitutive relation between the loading direction nload and

the state variables ξ
piv
n , σivr

n can be defined either by formulating a yield surface f such

that,

nload =
∂ f
∂σ
|| ∂ f

∂σ
||−1, (6.9)

or, in the case yield surface is absence, directly inferred from observations as those in the

generalized plasticity framework (cf. [134, 168, 128]),

nload = nload
v nv + nload

s ns. (6.10)

where 
nv =

∂p
∂σ

=
1
3

I

ns =
∂q
∂σ

=

√
3

2
√

J2
S.

(6.11)

Similarly, the constitutive relation between the plastic flow direction m f low and the state

variables ξ
piv
n , σivr

n can be defined either by formulating a plastic potential surface g such

that,

m f low =
∂g
∂σ
|| ∂g

∂σ
||−1. (6.12)

or directly inferred from observations as those in the generalized plasticity framework (cf.

[134, 168, 128])

m f low = m f low
v nv + m f low

s ns. (6.13)
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6.3.2.2 Game States for Modeler

The mathematical description of the current state of the game board is a list of binary

indicators s = [ie1, ie2, ie3, ..., ien] representing whether a labeled edge Eei in the labeled edge

set LE of the directed multigraph G is selected in the final generated directed graph G′. If

Eei is included in G′, the corresponding indicator iei = 1, otherwise iei = 0. The initial state

of the game is iei = 0, ∀Eei ∈ LE.

6.3.2.3 Game Actions for Modeler

At each state s, the modeler can select the next labeled edge Eei ∈ LE, by changing the

indicator iei from 0 to 1.

6.3.2.4 Game Rules for Modeler

The modeling choices for the four essential components in an elasto-plasticity model are

not fully compatible with each other. For example, a J2 yield surface only has the yield

stress as the stress-like plastic internal variable, while a strain hardening law for a Drucker

Prager yield surface has both frictional and cohesion hardening laws. These restrictions on

compatible edge choices are specified by a list of binaries LegalActions(s) = [ii1, ii2, ii3, ..., iin]

of legal choices for each state. Another set of game rules consist of universal principles on

the constitutive models. For example, thermodynamic consistency would require that rate

of mechanical dissipation remains non-negative for isothermal process [198, 24], i.e.

D = σ : ε̇− dψ

dt
≥ 0, (6.14)
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where σ : ε̇ represents the stress power per unit volume and dψ
dt represents the rate of

change of Helmholtz free energy, which may take the following form,

ψ(εe, ξ) = ψe(εe) + ψp(ξ). (6.15)

where ψe(εe) and ψp(ξ) are the elastic and plastic contributions of the Helmoltz free energy

and xi is a collection of history-dependent internal variables. In our implementation, we

assume that the deformation is infinitesimal. As a result, the additive decomposition of

the total strain rate into the elastic and plastic components is valid and Eq. (6.14) could

also be rewritten as [24],

D = (σ − ∂ψr

∂εe ) : ε̇ + σ : ε̇− ∂ψp

∂ξ
· ξ̇ ≥ 0. (6.16)

Readers interested to obtain further information on the constraints due to the thermody-

namic laws are referred to [231, 24, 198]. In the coorperative game, the thermodynamic

laws are converted into game rules then enforced implicitly by introduce a penalty t the

model score. If the final model in an episode violates this rule, the final model score is

set to be 0. This low score is then used as training material for the mastermind modeler

agent such that it reduces the policy probabilities of the choices that violate universal prin-

ciples as shown in Figure 7.6. As the deep reinforcement learning progresses, the modeler

agent will gradually learn to avoid generating model that violates the thermodynamic

rules through the low policy values. Since the training of the constitutive law can only be

completed if the score of the best candidate model is sufficiently high, this prevents the

meta-modeling algorithm from generating any model that violates the first principles.

Note that the thermodynamic laws are not the only game rules in the cooperative game.

Another physical law we enforced in this game is the frame indifference, first discussed in

[121]. In this work, the frame indifference is enforced by representing tensors in spectral
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forms, then using Lie-algbera to establishing the mapping from one orthogonal basis to

the other. The detailed operations have been documented in [247] and [248] and will not

repeat in this chapter for brevity.

6.3.2.5 Game Choices for Modeler

This section specifies the candidate edges in the directed multi-graph of elasto-plasticity

models (Fig. 6.2) for the modeler agent to choose during deep reinforcement learning. The

edges are categorized into four groups representing the four essential constitutive relations

in the model. The edges σivr
n → Ce

n and ξ
piv
n → Ce

n represent the elasticity law. The edges

σivr
n → nload

n and ξ
piv
n → nload

n represent the definition of the loading direction. The edges

σivr
n → m f low

n and ξ
piv
n → m f low

n represent the definition of the plastic flow direction. The

edges σivr
n → Hn and ξ

piv
n → Hn represent the hardening law. Each edge allows multiple

choices extracted from the phenomenological relations developed in the computational

plasticity literature. In this chapter, for simplicity of illustration of the meta-modeling

game framework, the edge choices are not exhaustive. The following lists only contain

common representative choices for geomaterials. But the designer of the meta-modeling

game is always free to add more edge choices to expand the action space.

The edges for elasticity law (σivr
n → Ce

n and ξ
piv
n → Ce

n) represent the definition and

evolution of the elastic stiffness tensor

Ce
n = KI ⊗ I + 2G(I4

sym −
I ⊗ I

3
), (6.17)

where K is the elastic bulk modulus and G is the elastic shear modulus.

Three common formulations of the elastic stiffness tensor for granular materials are

available for model choice:



CHAPTER 6. COOPERATIVE METAMODELING GAME FOR AUTOMATED LEARNING
OF ELASTOPLASTICITY MODELS FOR GEOMATERIALS 198

(E1) Linear elasticity 
K = K0

G = G0

, (6.18)

where K0 and G0 are constants.

(E2) Nonlinear elasticity with dependence on the mean pressure p [138]
K = K0(

p
pat

)a

G = G0(
p

pat
)a

, (6.19)

where pat is the atmospheric pressure (≈ -100 kPa) and a is a material constant.

(E3) Nonlinear elasticity with dependence on the mean pressure p and the void ratio e [52]
K =

2(1 + ν)

3(1− 2ν)
G

G = G0 pat
(2.97− e)2

1 + e
(

p
pat

)1/2
, (6.20)

where ν is the constant Poisson’s ratio.

The edges (σivr
n → nload

n and ξ
piv
n → nload

n ) represent the definition and evolution of

the loading direction. nload
n can be either derived from an assumed yield surface f ≤ 0 or

defined explicitly in the space of stress invariants σivr
n .

The following common formulations of loading direction for granular materials are

considered for model choices:

(L1) Yield surface of J2 plasticity f = q− σy and linear hardening law

σy = σy0 + H0ε̄p, (6.21)

where σy0, H0 are material parameters.
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(L2) Yield surface of J2 plasticity f = q− σy and σy is the solution of the power law equa-

tion

σy

σy0
= (

σy

σy0
+

3G
σy0

ε̄p)n, (6.22)

where σy0, n are material parameters, G is the elastic shear modulus.

(L3) Yield surface of J2 plasticity f = q− σy and Voce hardening law

σy = σy0 + H0ε̄p + H∞(1− exp(−bε̄p)), (6.23)

where σy0, H0, H∞, b are material parameters.

(L4) Yield surface of Drucker–Prager plasticity f = q + αp and α evolves according to

α = a0 + a1ε̄p exp(a2 p− a3ε̄p), (6.24)

where a0, a1, a2, a3 are material parameters [234].

(L5) Yield surface of Drucker–Prager plasticity f = q + αp and α evolves according to

α = a0 + 2a1

√
kε̄p

k + ε̄p , (6.25)

where a0, a1, k are material parameters [24].

(L6) Yield surface of three-invariant Matsuoka–Nakai model [28]

f = (k1 I3)
1/3 − (I1 I2)

1/3

k1 = c0 + κ1(
pat

I1
)m

κ1 = a1ε̄p exp(a2 I1) exp(−a3ε̄p)

, (6.26)

where c0, a1, a2, a3, m are material parameters.
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(L7) Yield surface of Nor-Sand [103, 4]

f = ζq + ηp

ζ =
(1 + ρ) + (1− ρ) cos 3(θ + π/6)

2ρ

η =


M[1 + log(pi/p)] if N = 0

(M/N)[1− (1− N)(p/pi)
N/(1−N)] if N > 0

ṗi = −
√

2
3

h(pi − p∗i )||ėp||, ėp = ε̇p − 1
3

tr(ε̇p)I

p∗i
p

=


exp(ᾱψi/M) if N̄ = N = 0

(1− ᾱψiN/M)(N−1)/N ] if 0 ≤ N̄ ≤ N 6= 0

ᾱ = −3.5
1− N̄
1− N

ψi = e− ec0 + λ̃(pi/pat)
a

, (6.27)

where ρ, N, N̄, M, h, ec0, λ̃, a are material parameters.

(L8) Yield surface in the shape of a small cone [52]

f = ||S− pα|| −
√

2/3pm

α̇ = λ̇(2/3)h(αb
θ − α)

αb
θ =
√

2/3[
1
ζ

M exp(−nbψ)−m]n

ζ =
(1 + ρ) + (1− ρ) cos 3(θ + π/6)

2ρ

n =

S
p − α
√

2/3m

ψ = e− ec0 + λ̃(p/pat)
a

, (6.28)

where ρ, m, M, nb, h, ec0, λ̃, a are material parameters.
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(L9) Loading direction defined as [168, 271]

nload
v =

d f√
1 + d2

f

nload
s =

1√
1 + d2

f

d f = (1 + α)(M f + q/p)

, (6.29)

where α, M f are material parameters.

(L10) Loading direction defined as [128]

nload
v =

d f√
1 + d2

f

nload
s =

1√
1 + d2

f

d f = (1 + α)(M f exp(m f (1− e)) + q/p)

, (6.30)

where α, M f , m f are material parameters.

(L11) Loading direction given by a neural network trained with data inversely computed

from experimental data (described later in the definition of plastic modulus edges).

The edges (σivr
n → m f low

n and ξ
piv
n → m f low

n ) represent the definition and evolution of

the plastic flow direction. m f low
n can be either derived from an assumed plastic potential

surface g = 0 or defined explicitly in the space of stress invariants σivr
n .

The following common formulations of the plastic flow direction for granular materials

are considered for model choices:

(P1) Plastic potential surface of J2 plasticity g = q− cg and cg is a parameter to ensure that

the stress point is on the potential surface when the plastic deformation occurs.

(P2) Plastic potential surface of Drucker–Prager plasticity g = q + βp− cg and β = α− β0,
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where α can be defined through Eq. (6.24) or (6.25), and β0 is an additional material

parameter.

(P3) Plastic potential surface of three-invariant Matsuoka–Nakai model [28]

g = (k2 I3)
1/3 − (I1 I2)

1/3

k2 = c0 + κ2(
pat

I1
)m

κ2 = ακ1

, (6.31)

where κ1 can be defined through Eq. 6.26 and β0 is an additional material parameter.

(P4) Plastic potential surface of Nor-Sand [103, 4]

g = ζ̄q + η̄p

ζ̄ =
(1 + ρ̄) + (1− ρ̄) cos 3(θ + π/6)

2ρ̄

η̄ =


M[1 + log( p̄i/p)] if N̄ = 0

(M/N̄)[1− (1− N̄)(p/ p̄i)
N̄/(1−N̄)] if N̄ > 0

, (6.32)

where ρ̄, N̄, M are material parameters and p̄i is a free parameter to ensure g = 0

when the material is undergoing plastic deformation.

(P5) Plastic flow direction defined as [52]

m f low = Bn− C(n2 − 1
3

I) +
1
3

DI

B = 1 +
3
2

1− c
cξ

cos 3(θ + π/6)

C = 3
√

3/2
1− c

cξ

D = Ad(α
d
θ − α) : n

αd
θ =
√

2/3[
1
ζ

M exp(ndψ)−m]n

, (6.33)

where ρ, m, M, nd, Ad, ec0, λ̃, a are material parameters.



CHAPTER 6. COOPERATIVE METAMODELING GAME FOR AUTOMATED LEARNING
OF ELASTOPLASTICITY MODELS FOR GEOMATERIALS 203

(P6) Plastic flow direction defined as [168, 271]

m f low
v =

dg√
1 + d2

g

m f low
s =

1√
1 + d2

g

dg = (1 + α)(Mg + q/p)

, (6.34)

where α, Mg are material parameters.

(P7) Plastic flow direction defined as [128]

m f low
v =

dg√
1 + d2

g

m f low
s =

1√
1 + d2

g

dg = (1 + α)(Mg exp mgψ + q/p)

ψ = e− ec0 + λ̃(p/pat)
a

, (6.35)

where α, Mg, mg, ec0, λ̃, a are material parameters.

(P8) Plastic flow direction given by a neural network trained with data inversely com-

puted from experimental data (described later in the definition of plastic modulus

edges).

The edges (σivr
n → Hn and ξ

piv
n → Hn) represent the definition of the generalized hard-

ening modulus. Hn can be either derived from an assumed yield surface f ≤ 0 or defined

explicitly.

The following common formulations of hardening modulus for granular materials are

considered for model choices:

(H1) Hardening modulus derived from classical yield surface f (σ, εp) and a chosen m f low.

H = −∂ f /∂εp : m f low

||∂ f /∂σ|| . (6.36)
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(H2) Hardening modulus defined as [168, 271]

H = H0(−p)H f (Hv + Hs)

H f = (1 +
q

pM f

α f

1 + α f
)4

Hv = 1 +
q

pMg

Hs = β0β1 exp(−β0ε̄
p
s )

, (6.37)

where α f , M f , H0, ec0, Mg, β0, beta1 are material parameters.

(H3) Hardening modulus defined as [128]

H = H0
√

p/patH f (1 +
q

pMb
)

Mb = Mg exp(−mbψ)

H0 = HL0 exp(m0(1− e))

H f = (1 +
q

pM f

α f

1 + α f
)4

, (6.38)

where α f , M f , HL0, m0, Mg, mb, ec0, λ̃, a are material parameters.

(H4) Hardening modulus given by a neural network trained with data inversely com-

puted from experimental data.

The stress increment at each time step is known from the experimental data ∆σdata
n+1 =

σdata
n+1−σdata

n . For a chosen elasticity law Ce
n(σ

ivr
n , ξ

piv
n ), the data of incremental plastic strain

at each time step is given by (using Eq. (6.4))

∆ε
p
n+1 = ∆εn+1 − (Ce

n)
−1 : ∆σdata

n+1 . (6.39)

Then the incremental plastic multiplier is ∆λn+1 = ||∆ε
p
n+1|| and the plastic flow direction

is obtained by m f low
n = ∆ε

p
n+1/∆λn+1. Assuming associative flow rule, then nload

n = m f low
n .

In this way, the plastic modulus can be uniquely inversely computed as

Hn =
nload

n : Ce
n : ∆εn+1

∆λn+1
− nload

n : Ce
n : m f low

n . (6.40)
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6.3.2.6 Game Choice Alternatives: training neural network edges

In addition to the mathematical edges described above, we also consider the possibility of

replacing any part of the elasto-plastic model with machine learning edges. In this frame-

work, the machine learning models are not used to directly map strain history to stress,

but are used for each individual edge in the directed graph to map the input vertices to

the output vertices. For instance, the mapping of variables in the generalized plasticity

framework can be obtained by training a recurrent neural network that represents the

path-dependent constitutive relation between the history of input vertices of σivr
n (p, q, θ)

and ξ
piv
n (ε̄p, ε̄

p
v , ε̄

p
s , e) and the output vertices of nload

n , m f low
n and Hn. The details of training

data preparation, network design, training and testing are specified in the previous work

on the meta-modeling framework for traction-separation models with data of microstruc-

tural features [248]. In this framework, all neural network edges are generated using the

same neural network architecture, i.e., two hidden layers of 64 GRU(Gated recurrent unit)

neurons in each layer, and the output layer as a dense layer with linear activation function.

All input and output data are pre-processed by standard scaling using mean values and

standard deviations. Each input feature considers its current value and 19 history values

prior to the current loading step. Each neural network is trained for 1000 epochs using

the Adam optimization algorithm, with a batch size of 256. Finally, it should be noticed

that one can further generalize the meta-modeling game by considering multiple neural

network architectures as possible edges in the meta-modeling game. This generalization

will be considered in the future but is out of the scope of the current study.
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6.3.2.7 Directed Labeled Multi-graph and Sub-graph Training via Supervised Machine

Learning

To create the directed labelled multi-graph that represents the action space of the modeling

agent, we first consider the directed graph that represents the hierarchical relationships

among all the vertices, i.e. G = (V, E) where

V = {εn, σn, ξ
piv
n , σivr

n , Ce
n, mflow

n , nload
n , Hn, ∆εn+1, ∆λn+1, ∆ε

p
n+1,

∆εe
n+1, ∆σn+1} (6.41)

E = E1 ∪E2 ∪E3 ∪E3 ∪E4 ∪E5 ∪E6 ∪Egame (6.42)

E1 = {Ce
n → ∆σn+1, ∆εe

n+1 → ∆σn+1} (6.43)

E2 = {∆ε
p
n+1 → ∆εe

n+1, ∆εn+1 → ∆εe
n+1} (6.44)

E3 = {mflow
n → ∆εe

n+1, ∆λn+1 → ∆εe
n+1} (6.45)

E4 = {∆εn+1 → ∆λn+1, Ce
n → ∆λn+1, mflow

n → ∆λn+1, nload
n → ∆λn+1,

Hn → ∆λn+1} (6.46)

E5 = {εn → ξ
piv
n } (6.47)

E6 = {σn → σivr
n } (6.48)

Egame = {ξpiv
n → Ce

n, σivr
n → Ce

n, ξ
piv
n → mflow

n , σivr
n → mflow

n , (6.49)

ξ
piv
n → nload

n , σivr
n → nload

n , ξ
piv
n → Hn, σivr

n → Hn}.

In this directed graph, the labels corresponding to the edge elements in the edge sets

{E1, E2, E3, E4, E5, E6 area already pre-determined as they are simply mathematical defi-

nitions or rules that are of sufficient certainty (cf. [247]). Therefore, they can be excluded

from the meta-modeling games. The rest of the edges are elements of the edge subset

Egame. The goal of the modeling agent is therefore to find the subset of the edge set Egame
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and identify the optimal ”edge labels” for each element in this subset such that the perfor-

mance of the constitutive laws measured by the objective function can be optimized. Note

that these edge labels can be mathematical expressions or machine-learning-generated op-

erators, each of them provides a mapping that links the first and second elements of the

ordered pair of vertices.

As a result, the directed labeled multi-graph that represents all the possible choices of

modeling choices considered in the meta-modeling game are generated the directed graph

Ggame = {Vgame, Egame}, a sub-graph of G, where Vgame = {ξpiv
n , σivr

n , Ce
n, mflow

n , nload
n , Hn}.

Meanwhile, the edge labels LE we considered in this game are discussed in Sections 6.3.2.5

and 6.3.2.6, i.e., LE = { E1, E2, E3, L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, P1, P2, P3,

P4, P5, P6, P7, P8, H1, H2, H3, H4 }.

After the experimental agent make the decision on the data, the modeler agent first

generate a new directed graph based on the Q values estimation for each label in LE,

then a local inverse problem is solved to obtain either the material parameters for each

selected edges or to complete the training of the neural network (if a neural net edge is

chosen). Note that the edges are not necessary trained individually. For each child vertex

in the directed graph, all the edges that connects the parent vertices to it must be trained

together.

Remarks on implementation An elasto-plasticity model, once generated from AI, needs to

be numerically integrated to compute the predicted stresses under different types of tests.

Since the loading directions, plastic flow directions and hardening modulus can have a

large number of options and may be exceedingly complex, we adopt a general-purpose

explicit integration algorithm for all AI generated models, instead of using different im-

plicit integration techniques necessary for different models. This algorithm is a combina-
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tion of (1) the explicit integration with sub-stepping and automatic error control [200, 201]

(2) explicit integration of (potentially non-smooth) hardening laws [234] (3) integration of

generalized plasticity models [58, 145] (4) linearized integration for loading constraints

[13]. This explicit scheme is versatile and stable, but not as accurate as fully implicit return

mapping algorithms, hence for the evaluation of model accuracy scores, small time steps

are required for the numerical integration.

6.4 Deep reinforcement learning for the two-player meta-modeling

game

With the two-player game completely defined in the previous section, a deep reinforce-

ment learning (DRL) algorithm is employed as a guidance of taking actions of both exper-

imentalist and modeler in the game to maximize the final model score (Figure 7.6). The

learning is completely free of human interventions after the game settings. This tactic is

considered one of the key ideas leading to the major breakthrough in AI playing the game

of Go (AlphaGo Zero) [196], Chess and shogi (Alpha Zero) [195] and many other games.

In [248], the key ingredients (Policy/Value network, confidence bound for Q-value, Monte

Carlo Tree Search) of the DRL technique are detailed and applied to a meta-modeling game

for modeler agent only, focusing on finding the optimal topology of physical relations from

fixed training/testing datasets. In this work, the game design is further extended that (1)

the modeling game also involves the ”component selection” from a set of candidate edge

choices having the same source and target nodes (derive a directed graph from a directed

multigraph) and (2) the choice of training dataset is carried out by an additional experi-

mentalist agent. Since DRL needs to figure out the optimal strategies for two agents, the

algorithm is extended to multi-agent multi-objective DRL [220, 70, 219]. The AI for experi-
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mentalist and modeler agents are separate, each has its own Policy/Value network and de-

cision tree search. But their intelligence are improved simultaneously during the self-plays

of the entire Data collection/Meta-modeling game, according to the individual rewards

they receive from the game environment and the communications between themselves

(Figure 7.6). The strategies of both agents can be cooperative or competitive of different

degrees, depending on the design of the game reward system (for example, the video game

of Pong in [219]). In this work, we consider only the learning of fully cooperative strategies,

as shown in the game reward system designed in Sections 6.3.1 and 6.3.2. In the reinforce-

ment learning algorithm to play the two-player meta-modeling game, each complete DRL

procedure involves numIters number of training iterations and one final iteration for gen-

erating the final converged digraph model. Each iteration involves numEpisodes number

of game episodes that construct the training example set trainExamples for the training

of the policy/value network fθ . For decision makings in each game episode, the action

probabilities are estimated from numMCTSSims times of MCTS simulations.

Remark. Non-cooperative meta-modeling game and Nash equilibrium. In the case of the

cooperative game where both agents share the same goal or score system, there is no need

to determine the Nash equilibrium as the joint actions of the experimentalist/modeler

group takes a collective of payoffs. However, in many realistic situations in modern-day

research, it is possible that the data and modeler agents may have different or even con-

flicting goals and hence finding the best strategies the two agents take is equivalent to

finding the Nash equilibrium. The meta-modeling model, in this case, is not only helpful

for generating models but also helps us understand the relationships among objectives be-

tween the data and modeler agents, the resultant actions taken by both players, and the

outcomes, assuming each player is acting in a rational manner.
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Figure 6.3: Multi-player interactive deep reinforcement learning for generating optimal

strategy to automate the modeling, calibration and validation of an elasto-plastic model.

In this framework, two deep neural networks are used to make decisions the mastermind

model and data agents, while the model agents may also employ different strategies, in-

cluding neural networks, mathematical expressions or other forms of mapping operators

to compete a constitutive law.

6.5 Numerical Experiments

In this numerical experiment, we examine the ability of the proposed meta-modeling

agents to (1) generate the knowledge and model represented by the directed graph from

given data, (2) decide the set of experiments that aids data-driven discovery and (3) termi-

nate the learning process when further experiments no longer benefit predictions.

6.5.1 Data generation from discrete element simulations

In this test, we consider an idealized situation in which the data is generated from discrete

element simulations for granular materials [49, 115, 249]. While the constitutive responses

from the discrete element simulations may contain fluctuation, we do not introduce any

contaminated noise on purpose to test how the meta-modeling procedure might be af-
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fected by noise. While this could be addressed using dropout layers as shown in [247],

a comprehensive study on learning with noisy data is out of the scope in this study but

will be considered in the future. The data for calibration and evaluation of prediction

accuracy of the deep-reinforcement-learned constitutive models are generated by numer-

ical simulations on a representative volume element (RVE) of densely-packed spherical

DEM particles. The open-source discrete element simulation software YADE for DEM is

used by the experimentalist agent to generate data, including the homogenized stress and

strain measures and the geometrical and microstructural attributes such as coordination

number, fabric tensor, porosity [202, 213]. The discrete element particles in the RVE have

radii between 1 ± 0.3 mm with a uniform distribution. The Cundall’s elastic-frictional

contact model ([49]) is used for the inter-particle constitutive law. The material parameters

are: interparticle elastic modulus Eeq = 0.5 GPa, ratio between shear and normal stiffness

ks/kn = 0.3, frictional angle ϕ = 30◦, density ρ = 2600 kg/m3, Cundall damping coefficient

αdamp = 0.6.

The test data constitute of triaxial tests on DEM samples with different initial confining

pressure and void ratio σ̇33 = σ̇12 = σ̇23 = σ̇13 = 0, b = σ22−σ33
σ11−σ33

.

T1: ε̇11 < 0, b = 0, p0 = −300kPa, e0 = 0.539.

T2: ε̇11 < 0, b = 0, p0 = −400kPa, e0 = 0.536.

T3: ε̇11 < 0, b = 0, p0 = −500kPa, e0 = 0.534.

T4: ε̇11 > 0, b = 0, p0 = −300kPa, e0 = 0.539.

T5: ε̇11 > 0, b = 0, p0 = −400kPa, e0 = 0.536.

T6: ε̇11 > 0, b = 0, p0 = −500kPa, e0 = 0.534.
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T7: ε̇11 < 0, b = 0.5, p0 = −300kPa, e0 = 0.539.

T8: ε̇11 < 0, b = 0.5, p0 = −400kPa, e0 = 0.536.

T9: ε̇11 < 0, b = 0.5, p0 = −500kPa, e0 = 0.534.

T10: ε̇11 > 0, b = 0.5, p0 = −300kPa, e0 = 0.539.

T11: ε̇11 > 0, b = 0.5, p0 = −400kPa, e0 = 0.536.

T12: ε̇11 > 0, b = 0.5, p0 = −500kPa, e0 = 0.534.

T13: ε̇11 < 0, b = 0.1, p0 = −300kPa, e0 = 0.539.

T14: ε̇11 < 0, b = 0.1, p0 = −400kPa, e0 = 0.536.

T15: ε̇11 < 0, b = 0.1, p0 = −500kPa, e0 = 0.534.

T16: ε̇11 > 0, b = 0.1, p0 = −300kPa, e0 = 0.539.

T17: ε̇11 > 0, b = 0.1, p0 = −400kPa, e0 = 0.536.

T18: ε̇11 > 0, b = 0.1, p0 = −500kPa, e0 = 0.534.

T19: ε̇11 < 0, b = 0.25, p0 = −300kPa, e0 = 0.539.

T20: ε̇11 < 0, b = 0.25, p0 = −400kPa, e0 = 0.536.

T21: ε̇11 < 0, b = 0.25, p0 = −500kPa, e0 = 0.534.

T22: ε̇11 > 0, b = 0.25, p0 = −300kPa, e0 = 0.539.

T23: ε̇11 > 0, b = 0.25, p0 = −400kPa, e0 = 0.536.

T24: ε̇11 > 0, b = 0.25, p0 = −500kPa, e0 = 0.534.
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T25: ε̇11 < 0, b = 0.75, p0 = −300kPa, e0 = 0.539.

T26: ε̇11 < 0, b = 0.75, p0 = −400kPa, e0 = 0.536.

T27: ε̇11 < 0, b = 0.75, p0 = −500kPa, e0 = 0.534.

T28: ε̇11 > 0, b = 0.75, p0 = −300kPa, e0 = 0.539.

T29: ε̇11 > 0, b = 0.75, p0 = −400kPa, e0 = 0.536.

T30: ε̇11 > 0, b = 0.75, p0 = −500kPa, e0 = 0.534.

The candidate tests for the calibration data include T0
c = {T1, T2, T3, ..., T11, T12} and

the validation tests are T0
v = {T13, T14, T15, ..., T19, T30}. As explained in Section 6.3.1,

the tests not selected in the final calibration set by the experimentalist agent will be moved

to the final validation set to evaluate the blind prediction performance. The parameters for

the DRL procedure are numIters = 10, numEpisodes = 30, numMCTSSims = 300.

6.5.2 Statistics of game scores via DRL iterations

The statistics of the gameplay results from 5 separate runs of the DRL procedure are pre-

sented in Figure 6.4. We observe efficient improvements in the generated elasto-plastic

models over the DRL training iterations with the discrete element simulation data.

Figure 6.5 presents the example model predictions and calibration tests during the DRL

improvement of the experimentalist and modeler agents. The final converged calibration

test set chosen by the AI experimentalist after the DRL procedure consists of the triaxial

extension and compression tests with b = 0 and b = 0.5 under initial pressures of -300

kPa and -500 kPa. Accordingly, the final converged elasto-plastic model generated by the

AI modeler after the DRL procedure is composed of the non-linear elasticity of Eq. (6.19),
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(a) Violin plots of the density distribution of model

scores in each DRL iteration

(b) Mean value and± standard deviation of model

score in each DRL iteration

Figure 6.4: Statistics of the model scores in deep reinforcement learning iterations from 5

separate runs of the DRL procedure for Numerical Experiment 2. (a) Violin Plot of model

scores played in each DRL iteration. The shaded area represents the density distribution

of scores. The white point represents the median. The thick black bar represents the in-

terquartile range between 25% quantile and 75% quantile. The maximum and minimum

scores played in each iteration are marked by horizontal lines. (b) Mean model score in

each iteration and the error bars mark ± standard deviation.

the loading direction defined as Eq. (6.30), the plastic flow direction defined as Eq. (6.35),

and the hardening modulus defined as Eq. (6.37). The resultant model is a generalized

plasticity model (without explicitly defined yield surface and plastic potential) combined

with the critical state plasticity theory (dependence on the p, q, θ stress invariants and the

void ratio e). Figure 6.6 presents five representative examples of blind predictions of this

selected model and the selected calibration data. This optimal model for the given action

space is generated from data obtained from 9 experiments in the following order: [T1, T3,

T4, T5, T7, T9, T10, T11, T12].
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Figure 6.5: Knowledge of elasto-plastic models learned by deep reinforcement learning in

Numerical Experiment 2 using data from drained triaxial tests. Four representative games

played during the DRL iterations and their prediction accuracy against synthetic data are

presented. The color edges illustrate different labeled edges selected in the constitutive

models. The labels are represented by equation numbers and these equations are detailed

in Game Choices in Section 6.3.2.

One interesting aspect revealed in this numerical experiment is the potential of using

the meta-modeling game as a tool to evaluate and analyze of relative policy values of the

ingredients of constitutive laws in a prediction task. For instance, this numerical exper-

iment reveals that the optimal configuration of the constitutive model for predicting the

behavior of monotonic loading triaxial compression test should not contain any neural

network edge (Eq. (6.39), (6.40) in Section 6.3.2) This could be attributed to the facts that

the training data of the loading directions, plastic flow directions and hardening moduli
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from the DEM experimental data contain high-frequency fluctuations and that our testing

data, which are used to evaluate the forward prediction performance, contain only mono-

tonic stress paths. Since the high-frequency fluctuation makes the neural network easily

to exhibit overfitting responses, and the relatively simple stress paths make it less advan-

tageous to use a high-dimensional universal approximator like a neural network in any

component of the constitutive models, the edges that map input from the output vertices

through mathematical expressions are revealed to have higher policy values as the game

progresses and ultimately become the selected models.

Note that this result is in sharp contrast with the meta-modeling game results of the

traction-separation law in which the neural network edges become dominant and yield a

consistently good forward predictions [247, 248]. Comparing the choices the agents made

in the two games reveal that the autonomous agents are capable of adjusting their deci-

sions based on the availability of the data and the type of the forward prediction tasks. In

other words, the agents are able to make judgments such that it employs edges that contain

low-dimensional mathematical expression when the regularization (avoiding the curse of

high dimensionality) is more critical than high-dimensionality afforded by the large num-

bers of neural network nodes (in this case), but also able to select the high-dimensional

neural network options when the advantages of the options outweigh the drawbacks (in

the traction-separation law game in [248]). Note that this optimal configuration sought by

the meta-modeling game is sensitive to the available actions. For instance, the improve-

ments of the neural network could be achieved by introducing techniques to filter out

the noisy data and employing advanced neural networks with noise-resistant architecture

[205]. These changes can impose adjustments in the policy values and therefore affect the

optimal configuration. The incorporation of de-noising mechanisms and the investigation
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of the influence of data quality on the meta-modeling game framework will be conducted

in the future study.

This automated strategy change by the AI agents is significant as it demonstrates that

the agent system is able to adapt to the environment (availability of calibration data and

the types of testing data) to make rational choices like a human modeler should when

given different prediction tasks of different complexities.

Figure 6.6: Five examples of blind predictions from the optimal digraph configuration

(The 4th digraph in Figure 6.5) against data from the tests.

6.5.3 Post-game performance analysis

Another important implication of the meta-modeling game is its ability to quantitatively

analyze the performance of families of models currently (or historically, if possible to be in-

ferred from reverse engineering) available in the literature for an intended prediction task.

Table 6.1 shows the post-game analysis of the performance of the 112 models automatically

generated from the two-player game. The resultant models are grouped into five different

classes based on the types of the edges used in the game. The interesting aspect of the
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Model

Class

Number

of Mod-

els

Mean

Score

Standard

devia-

tion

Generalized

Plasticity

’GP’

Critical

State

’CS’

Classical pres-

sure dependent

elasto-plasticity

’DP’

Others

’O’

1 22 0.603 0.054 X X

2 25 0.565 0.051 X

3 13 0.295 0.028 X X

4 19 0.450 0.086 X

5 33 0.163 0.063 X

Table 6.1: Five classes of the constitutive models generated during the deep reinforcement

learning.

data in Table 6.1 is that it provides users a quantitative measure that configurations based

on generalized plasticity and critical state outperform all the other 90 configurations. This

result is consistent with the convention understanding from soil mechanics in which the

classical critical state plasticity theory and the resultant plastic dilatancy/contraction pre-

dictions is regarded as the key ingredient for predictive constitutive laws. Examinations

on models in Class 1 also reveals that three-invariant generalized plasticity with critical

state perform the best in the blind predictions, especially when the material states of the

granular materials in the calibration tests (e.g. confining pressure, initial void ratio, stress

path) are significantly different than the ones in blind predictions.

However, comparisons of the results in Classes 1, 2,3 and 4 shown in Figure 6.7 re-

veal a somewhat surprising conclusion in which the generalized plasticity seems to be

consistently the more important ingredient than the critical state theory for yielding pre-

dictive models. Although it is important to stress that this conclusion must be interpreted

with respect to the types and amount of data available and the intended prediction task,
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this result does provide further evidence to support the speculations that the general-

ized plasticity, if calibrated properly, does likely to improve the accuracy of blind pre-

dictions of the responses of granular materials in the monotonic triaxial compression tests

[270, 168, 127, 190].

In conclusion, this numerical experiment shows that the meta-modeling game can pro-

vide three important types of knowledge, the knowledge on the hierarchy of information

flow, the estimation on the amount of data required to reach the state-of-the-art perfor-

mance for a given action space and specified objective, and the relative values, benefits,

importance of each model, theoretical, data-driven components revealed in the post-game

analysis.

Remark. Note that applying the meta-modeling game to predicting responses of granu-

lar materials under different water drainage conditions may likely yield a very different

conclusion where machine learning edges could be more widely used in the optimal con-

figuration. This is because of the lack of a constitutive model that can quantitatively cap-

ture the constitutive responses of granular materials in drained and undrained conditions

[75, 138, 271, 173, 206]. The creation of models for more generic purposes and the estima-

tion of the trusted range of application are both important issues, which will be considered

in future studies but are out of the scope of this chapter.

6.5.4 AI-generated material models in finite element simulations

To demonstrate the applicability of the AI-generated models from the plays of the data

collection/meta-modeling game presented in Numerical Experiment, we conduct finite

element simulations of a plane strain compression test on a rectangular specimen in which

the AI-generated model is used to provide the incremental constitutive update. The nu-



CHAPTER 6. COOPERATIVE METAMODELING GAME FOR AUTOMATED LEARNING
OF ELASTOPLASTICITY MODELS FOR GEOMATERIALS 220

Figure 6.7: Distribution of the scores of the models generated during the deep reinforce-

ment learning. The models are grouped into five families (see Table 6.1). The curves

present the Gaussian kernel density estimation of the model score distributions (The es-

timated function fh(x) = 1
nh ∑n

i=1 K( x−xi
h ) for score data (x1, x2, ..., xn), K(x) is the standard

normal distribution function, h is the bandwidth parameter determined by Scott’s rule

h = 3.5σ̂
n1/3 , where σ̂ is the standard deviation).

merical specimen is assumed to be in quasi-static condition and the Galerkin form of the

balance of mass is solved incrementally with an implicit solver. The tangent of the resid-

ual is obtained via a perturbation method. The geometry, mesh and the boundary condi-

tions of the simulations are given in Figure 6.8. The specimen is initially consolidated to

isotropic pressure of p0 =-400kPa, and have a uniform initial void ratio of 0.536. The spec-

imen is compressed from the top surface, while the constant pressure p0 are maintained

on the lateral surfaces. Slight imperfection is introduced at the middle of the specimen

to trigger heterogeneous deformation and shear bands. Three simulations are performed
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with the material properties given by the three example models generated during the DRL

in Numerical Experiment 2 (1st, 3rd and 4th digraphs in Figure 6.5).

The finite element implementation of the AI generated digraph-based model is simple

and convenient. All modeling choices (Section 6.2) and the general purpose integration

scheme (Algorithm 1) are already implemented in a single material model class. The FEM

program is free to switch to other models simply by loading the digraphs and the cor-

responding calibrated parameters from the gameplay into this material class. The local

distribution of the deviatoric strain εs and the volumetric strain εv in the specimen from

the three models are compared in Figure 6.9 and Figure 6.10, respectively. The global dif-

ferential stress - axial strain and volumetric strain - axial strain curves are compared in

Figure 6.11. The results demonstrate that all the local constitutive models, regardless of

the quality, can all be implemented in the finite element solver. As mentioned previous,

this meta-modeling game can be easily incorporated in a new finite element solver archi-

tecture in which material library commonly used in the current paradigm is replaced by

one single labeled directed multigraph and the conventional material identification pro-

cess is replaced by the meta-modeling game such that both the optimal combination of

model components and material parameters are simultaneously selected. Furthermore,

the results also indicate that the qualities of the constitutive laws are continuously im-

proved in each iteration of the meta-modeling game. In particular, we see that the correct

type of shear band for dense granular assembles (dilatant shear band) is reproduced in the

numerical specimens after 5th iterations (cf. [10, 206]), and the shear band mode converges

in the 8th iteration.
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Figure 6.8: Description of the geometry, mesh, boundary, and loading conditions of the

plane strain compression problem.

6.5.5 Efficiency compared to the brute force approach

Consider the case in which reinforcement learning is not used. Instead, one simply gener-

ates all the possible directed graph from the labeled directed graph. In this case, the data

agent must generate all possible sequences of calibration tests from the 12 candidates in the

calibration test set (T1, T2, T3, ..., T11, T12), so there are 212 − 1 = 4095 possible (without

considering the orders of tests) subsets of calibration test combinations. Note that the order

of the tests provided to the modeler agent actually influences the Q value estimation of

the modeler agent and hence this number is a lower bound of the total number of possible

test sequences. Meanwhile, the modeler agent must select a model (directed graph) from

the following possibilities (all specified in Section 6.3.2.5). In this small meta-modeling

game, there are 3 choices for the elasticity law, 11 choices for loading direction definition,

8 choices of plastic flow direction, 4 choices of hardening law. The total number of model
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(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4

Figure 6.9: Distribution of local deviatoric strain εs within the specimen at the end of the

plane strain compression loadings. The finite element solutions using three models gen-

erated during the deep reinforcement learning of the meta-modeling game are compared

(Model 1 is generated in the 1st DRL iteration in Figure 6.5, Model 2 in the 5th iteration,

Model 3 in the 8th iteration, Model 4 in the 10th iteration).

combinations is therefore 3*11*8*4 = 1056. Each subset of tests chosen by the data agent

is used to calibrate a model chosen by the modeler agent, so the brutal force evaluations

in total would be 4095*1056 = 4,324,320. In the DRL approach, there are 10 training itera-

tions, each iteration has 30 gameplay episodes, and each gameplay episode has 300 MCTS

(Monte Carlo Tree Search). So in the DRL there are in total 10*30*300 = 90,000 evaluations.

The percentage of DRL evaluations versus brute force evaluations is 90,000/4,324,320 =

2.08% to obtain the optimum model score of 0.652. Whether the DRL-generated model is

the ultimate optimal model among all the possibilities is unknown in this game (unless

all the configurations have been tried out). However, it is possible to conduct benchmark

experiments for a smaller game that has limited among of configurations.
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(a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4

Figure 6.10: Distribution of local volumetric strain εv within the specimen at the end of the

plane strain compression loadings. The finite element solutions using three models gen-

erated during the deep reinforcement learning of the meta-modeling game are compared

(Model 1 is generated in the 1st DRL iteration in Figure 6.5, Model 2 in the 5th iteration,

Model 3 in the 8th iteration, Model 4 in the 10th iteration).

6.6 Conclusions

We introduce a multi-agent meta-modeling game to generate data, knowledge, and models

that make predictions on constitutive responses of elasto-plastic materials. We introduce

a new concept from graph theory where a modeler agent is tasked with evaluating all the

modeling options recast as a directed multigraph and find the optimal path that links the

source of the directed graph (e.g. strain history) to the target (e.g. stress) measured by

an objective function. Meanwhile, the data agent, which is tasked with generating data

from real or virtual experiments (e.g. molecular dynamics, discrete element simulations),

interacts with the modeling agent sequentially and uses reinforcement learning to design
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(a) Global diffrential stress q (b) Global volumetric strain εv

Figure 6.11: Evolution of the global differential stress (q = |σyy − p0|, p0 = −400kPa, and

σyy is the stress on the top surface) and the global volumetric strain εv of the specimen

with respect to the axial strain εyy computed using three models generated during the

deep reinforcement learning of the meta-modeling game (Model 1 is generated in the 1st

DRL iteration in Figure 6.5, Model 2 in the 5th iteration, Model 3 in the 8th iteration, Model

4 in the 10th iteration). Each simulation terminates when the finite element solutions start

to diverge.

new experiments to optimize the prediction capacity. Consequently, this treatment enables

us to emulate an idealized scientific collaboration as selections of the optimal choices in a

decision tree search done automatically via deep reinforcement learning.
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Chapter 7

Non-cooperative metamodeling game

for automated validation and

falsification of constitutive models

7.1 Introduction

As the constitutive models used to replicate material responses become increasingly so-

phisticated, the demand for accurately calibrating and validating those constitutive laws

also increases. Engineering applications, particularly those involve high-risk and high-

regret decision-making, require models that are not only accurate but also reliable such that

the risk can be understood. Understanding the risk of a new constitutive law, however, is

not an easy task. As many constitutive models are calibrated against limited amount and

type of experimental data, identifying the reliable application range of these constitutive

laws beyond the loading paths used in the calibration could be challenging. For example,

the stress predictions on a loading path very different from the calibrating loading path

could become questionable if over-fitting occurs. This chapter presents a novel designed
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non-cooperative metamodeling framework for experimentalist agents, aiming at helping

third-party users to calibrate, validate, and falsify constitutive models in a very efficient

manner. The idea is to first model the design procedures of experiments into decision

trees. Then we introduce the recent emerging adversarial reinforcement learning tech-

niques into the development of experimental strategies in collecting data for calibration

and demonstration of the worst prediction scenarios of the models. Our non-cooperative

game accelerates the convergence of the experimentalist agents’ strategies to stable and re-

liable policies, similar to the impressive performance of the adversarial learning in image

recognition, robotics and neural networks [83, 174, 263].

7.2 Recasting the design procedures of experiments as decision

trees

The decision making of both AI experimentalists (protagonist and adversary) are modeled

by ”arborescences” in graph theory with labeled vertices and edges. An arborescence is

a rooted polytree in which, for a single root vertex u and any other vertex v, there exists

one unique directed path from u to v. A polytree (or directed tree) is a directed graph

whose underlying graph is a singly connected acyclic graph. A brief review of the essential

terminologies are given in [250], and their detailed definitions can be found in, for instance,

[85, 253, 12]. Mathematically, the arborescence for decision making (referred to as ”decision

tree” hereafter) can be expressed as an 8-tuple G = (LV, LE, V, E, s, t, nV , nE) where V and

E are the sets of vertices and edges, LV and LE are the sets of labels for the vertices and

edges, s : E→ V and t : E→ V are the mappings that map each edge to its source vertex

and its target vertex, nV : V → LV and nE : E → LE are the mappings that give the

vertices and edges their corresponding labels (names) in LV and LE.
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The decision trees are constructed based on a hierarchical series of test conditions (type

of test, pressure level, strain level, etc.) that an experimentalist needs to decide in order

to design an experiment on a material. Assuming that an experiment can be completely

and uniquely defined by an ordered list of selected test conditions tc = [tc1, tc2, tc3, ..., tcn],

where NTC is the total number of test conditions. Each tci is selected from a finite set

of choices TCi = {tc1
i , tc2

i , tc3
i , ..., tcmi

i }, where mi is the number of choices for the ith test

condition. For conditions with continuous design variables, TCi includes preset discrete

values. For example, the target strain for a loading can only be chosen from discrete values

of 1%, 2%, 3%, etc. Finally, an ordered list of sets TC = [TC1, TC2, TC3, ..., TCn] includes

all design choices with a hierarchical relationship such that, if i < j, tci ∈ TCi must be

selected before tcj ∈ TCj is selected.

Example for hierarchical test conditions. Consider a simple design of mechanical experiments

for geomaterials, for which all choices are listed in

TC = [’Sample’, ’Type’, ’Target’]. (7.1)

The first decision is to pick the initial geomaterial sample to test. Assuming that a sample

is fully characterized by its initial pressure p0, a simple set of discrete sample choices is

given as

TC1 = ’Sample’ = {’300kPa’, ’400kPa’}. (7.2)

The second test condition is the type of the experiment. The experiment can be either

drained triaxial compression test (’DTC’) or drained triaxial extension test (’DTE’). Then

TC2 = ’Type’ = {’DTC’, ’DTE’}. (7.3)
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The third test condition to decide is the target strain magnitude for the loading. For exam-

ple,

TC3 = ’Target’ = {’1%’, ’3%’}. (7.4)

After all three decisions are sequentially made, the experiment is completely determined

by an ordered list, e.g., tc = [’300kPa’, ’DTE’, ’3%’]. It indicates that the AI experimentalist

will perform a monotonic drained triaxial extension test on a sample with p0 = 300kPa

until the axial strain reaches 3%.

After the construction of TC for experimentalists, a decision tree is built top-down

from a root node representing the ’Null’ state that no test condition is decided. The root

node is split into m1 subnodes according to the first level of decisions TC1. Each subnode is

further split into m2 subnodes according to the second level of decisions TC2. The splitting

process on the subnodes is carried out recursively for all the NTC levels of decisions in TC.

Finally, the down-most leaf nodes represent all possible combinations of test conditions.

The maximum number of possible configurations of experiments is Nmax
test = ∏NTC

i=1 mi, when

all decisions across TCi are independent. The number of possible experiments is reduced

(Ntest < Nmax
test ) when restrictions are specified for the selections of test conditions. E.g.,

the selection of tci ∈ TCi will prohibit the selections of certain choices tcj in subsequent

test conditions TCj, j > i. The experimentalists can choose multiple experiments by taking

multiple paths in the decision tree from the root node to the leaf nodes. The total number of

possible combination of paths, if the maximum allowed number of simultaneously chosen

paths is Nmax
path, is ∑

Nmax
path

k=1 Ck
Ntest

, where Ck
Ntest

= Ntest !
k!(Ntest−k)! is the combination number.

Example for the experimental decision tree. Consider the simple design of geomaterial exper-

iments specified by Equations (7.1), (7.2), (7.3), (7.4). The decision tree G resulting from the
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hierarchical splitting process is shown in Fig. 7.1(a). The vertex sets and edge sets of the

graph are

V ={’Null’, ’300kPa’, ’400kPa’, ’300kPa DTC’, ’300kPa DTE’, ’400kPa DTC’, ’400kPa DTE’,

’300kPa DTC 1%’, ’300kPa DTC 3%’, ’300kPa DTE 1%’, ’300kPa DTE 3%’,

’400kPa DTC 1%’, ’400kPa DTC 3%’, ’400kPa DTE 1%’, ’400kPa DTE 3%’},

E ={’Null’→ ’300kPa’, ’Null’→ ’400kPa’, ’300kPa’→ ’300kPa DTC’,

’300kPa’→ ’300kPa DTE’, ’400kPa’→ ’400kPa DTC’, ’400kPa’→ ’400kPa DTE’,

’300kPa DTC’→ ’300kPa DTC 1%’, ’300kPa DTC’→ ’300kPa DTC 3%’,

’300kPa DTE’→ ’300kPa DTE 1%’, ’300kPa DTE’→ ’300kPa DTE 3%’,

’400kPa DTC’→ ’400kPa DTC 1%’, ’400kPa DTC’→ ’400kPa DTC 3%’,

’400kPa DTE’→ ’400kPa DTE 1%’, ’400kPa DTE’→ ’400kPa DTE 3%’},

LV =V,

LE ={’300kPa’, ’400kPa’, ’DTC’, ’DTE’, ’1%’, ’3%’}.
(7.5)

In this example, Ntest = Nmax
test = 2 ∗ 2 ∗ 2 = 8. If an experimentalist limits himself to

only collect data from one or two experiments, i.e., Nmax
path = 2, the total number of possible

combinations is C1
8 + C2

8 = 36. Fig. 7.1(b) presents two example paths with edge labels

illustrating the hierarchical decisions on the test conditions in order to arrive at the final

experimental designs ’300kPa DTE 1%’ and ’400kPa DTC 3%’.
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(a) Decision tree with labels of vertices and edges (b) Example of paths in the decision tree, the selected

tests are ’300kPa DTE 1%’ and ’400kPa DTC 3%’

Figure 7.1: Decision tree for a simple experimental design for geomaterials (Eq. (7.1), (7.2),

(7.3), (7.4)).

7.3 Zero-sum game for model calibration/validation with adver-

sarial attack

This section presents a game design for the data acquisition involving the common decision-

making activities of experimentalists in testing the mechanical properties of geomaterials.

The goal of this game is for the protagonist agent to find the optimal set of experimental

data for training/calibration of a material model. Meanwhile, with the zero-sum reward

system, the adversary agent aims to find the extreme set of experiments for which forward

predictions from the material model are the worst.
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7.3.1 Decision tree for AI-guided experimentation

Firstly, we define the decision tree considered in this paper for the AI-guided experimenta-

tion on geomaterials, following the theory presented in Section 7.2. The hierarchical series

of test conditions includes six elements, TC = [TC1, TC2, TC3, TC4, TC5, TC6], such

that the experimentalists have the freedom to choose initially isotropic granular samples

of different pressure p0 and initial void ratio e0, to perform different drained true triaxial

tests, and to design different loading-unloading-reloading paths. The set of choices for

each test conditions are shown in Table 7.1, with the labels representing their intended

values.

TC Test Conditions Choices

TC1 = ’Sample p0’ {’300kPa’, ’400kPa’, ’500kPa’}

TC2 = ’Sample e0’ {’0.60’, ’0.55’}

TC3 = ’Type’ {’DTC’, ’DTE’, ’TTC’}

TC4 = ’Load Target’ {’3%’, ’5%’}

TC5 = ’Unload Target’ {’NaN’, ’0%’, ’3%’}

TC6 = ’Reload Target’ {’NaN’, ’3%’, ’5%’}

Table 7.1: Choices of test conditions for AI-guided experimentation

The decision labels for the test type condition TC3 are defined as follows,

1. ’DTC’: drained conventional triaxial compression test (ε̇11 < 0, σ̇22 = σ̇33 = σ̇12 =

σ̇23 = σ̇13 = 0),

2. ’DTE’: drained conventional triaxial extension test (ε̇11 > 0, σ̇22 = σ̇33 = σ̇12 = σ̇23 =

σ̇13 = 0),

3. ’TTC’: drained true triaxial test with b = 0.5 (ε̇11 > 0, b = σ22−σ33
σ11−σ33

= const, σ̇33 =
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σ̇12 = σ̇23 = σ̇13 = 0),

with the loading conditions represented by constraints on the components of the stress

rate and strain rate tensors

ε̇ =


ε̇11 ε̇12 ε̇13

ε̇22 ε̇23

sym ε̇33

 , σ̇ =


σ̇11 σ̇12 σ̇13

σ̇22 σ̇23

sym σ̇33

 . (7.6)

Note that, since ’DTC’ and ’DTE’ are special cases of true triaxial tests, the choices {’DTC’,

’DTE’, ’TTC’} for TC3 is equivalent to choose the value of b = σ22−σ33
σ11−σ33

from {’0.0’, ’1.0’, ’0.5’},

respectively [185].

The decision labels ’NaN’ in TC5 and TC6 are used to indicate that the unloading

or reloading is not activated (stop the experiment). This design enables the freedom of

generating monotonic loading paths (e.g., ’5% NaN NaN’), loading-unloading paths (e.g.,

’5% 0% NaN’) and loading-unloading-reloading paths (e.g., ’5% 0% 3%’). There are re-

strictions in choosing the strain targets. The experimentalist picks the loading target in

TC4 first and the unloading target in TC5 must be, if not ’NaN’, smaller than the loading

strain. Then the reloading target in TC6 must be, if not ’NaN’, larger than the unloading

strain.

The decision tree following the splitting process in Section 7.2 is shown in Fig. 7.2. The

subtree concerning the restricted decision-making in TC4, TC5 and TC6 is also detailed

in the figure. The total number of experimental designs (which equals to the number of

leaf nodes in the tree) is Ntest = 180. The total number of experimental data combinations

increases significantly when the maximum allowed simultaneous paths Nmax
path increases.

The combination number equals to C1
180 = 180 when Nmax

path = 1, equals to C1
180 + C2

180 =

16290 when Nmax
path = 2, equals to C1

180 + C2
180 + C3

180 = 972150 when Nmax
path = 3, etc.
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Figure 7.2: Decision tree for AI-guided experimentation. Due to the complexity of the

graph, the vertex labels are omitted, and only a few edge labels are shown. See Fig. 7.1 for

exhaustive vertex and edge labels in a simple decision tree example.

7.3.2 Design of the game for the experimentalist agents

The agent-environment interactive system (game) for the experimentalist agents consists

of the game environment, game states, game actions, game rules, and game rewards [21,

248] (Fig. 7.3). These key ingredients are detailed as follows.

Game Environment consists of the geomaterial samples, the constitutive model for per-

formance evaluation, and the decision tree in Fig. 7.2. The samples in this game are repre-

sentative volume elements (RVEs) of virtual granular assemblies modeled by the discrete

element method (DEM). The preparation of such DEM RVEs are detailed in the numerical

examples. The constitutive model can be given by the modeler agent in a meta-modeling

game [248, 250]. In this paper, we focus on the interactive learning of data acquisition



CHAPTER 7. NON-COOPERATIVE METAMODELING GAME FOR AUTOMATED
VALIDATION AND FALSIFICATION OF CONSTITUTIVE MODELS 235

Figure 7.3: Key ingredients (environment, agents, states, actions, rules, and rewards) of the

two-player non-cooperative agent-environment interactive system (game) for the experi-

mentalist agents.

strategies for a particular constitutive model of interest. Three-agent protagonist-modeler-

adversary reinforcement learning games is out of the scope of the current study. Hence the

modeler agent’s policy is held constant during the games. The protagonist and adversary

agents determine the experiments on the RVEs in order to collect data for model param-

eter identification and testing the forward prediction accuracy of the constitutive model,

respectively, via taking paths in their own experimental decision trees.

Game State For the convenience of deep reinforcement learning using policy/value neu-

ral networks, we use a 2D array to concisely represent the current paths that the protago-

nist or adversary agent has selected in the experimental decision tree. The mapping from

the set of the 2D arrays to the set of path combinations in the decision tree is injective. The

array has a row size of Nmax
path and a column size of NTC + 1. Each row represents one path

in the decision tree from the root node to a leaf node, i.e., a complete design of one exper-
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iment. The number of allowed experiments is restricted by the row size Nmax
path, which is

defined by the user. Each array entry in the first NTC columns represents the selected deci-

sion label of each test condition in TC. The entry a (integer) in the jth row and ith column

indicates that the ath decision label in the set TCi is selected for the jth experiment. The

last column indicates whether the agent decides to take a new path in the decision tree

(perform an another experiment), with 1 indicating continuation and 2 indicating stop.

Initially, all entries in the array are 0, indicating no decisions has been made by the agents.

The 2D state array needs to be flattened to a 1D array of size Nstate = Nmax
path ∗ (NTC + 1)

and then input into the policy/value neural networks for policy evaluations.

Game Action The AI agents work on the game state array by changing the initial zero

entries into integers representing the decision labels, in the left-to-right then top-to-bottom

order. Suppose that the first zero element of the current state array s is in the jth row and

ith column. If i ≤ NTC, the agent will select an integer 1 ≤ a ≤ mi (number of choices)

to choose a decision label in TCi. If i = NTC + 1, the agent will select 1 for continuation

or select 2 for stop. The size of the action space is Naction = maxi∈[1,NTC] mi. For the test

conditions specified in Table 7.1 and the decision tree in Fig. 7.2, the action size is 3.

Game Rule The AI agents are restricted to follow existing edges in the constructed deci-

sion tree, which has already incorporated decision limitations such as the choices of load-

ing/unloading/reloading strain targets. The game rules are reflected by a list of Naction

binaries LegalActions(s) = [ii1, ii2, ..., iiNaction ] at the current state s. If the ath decision is

allowed, the ath entry is 1. Otherwise, the entry is 0. Figure 7.4 provides an example of

the mathematical representations of the game states, actions and rules of the decision tree

game.

Game Reward The reward from the game environment to the experimentalist agents
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Figure 7.4: Example of the current st and next st+1 game states, action by the agent at to

”advance” in the decision tree, and the legal actions at the current state, with Nmax
path = 2.

should consider the performance of a given constitutive model on calibration data and

testing data. After the decision of experiments by the protagonist, these experiments are

performed on a given material to collect data. Then the constitutive model is calibrated

with these data, and the accuracy is evaluated by a model score SCOREprotagonist. Af-

ter the decision of experiments by the adversary, the calibrated constitutive model gives

forward predictions on these testing data. The accuracy is evaluated by a model score

SCOREadversary. The total game score could be the average of both calibration and pre-

diction accuracies SCORE = 0.5 ∗ SCOREprotagonist + 0.5 ∗ SCOREadversary. +SCORE is re-

turned to the protagonist as its game reward, while -SCORE is returned to the adversary.

This zero-sum reward system is the key design to ensure that the protagonist generates the

optimal calibration data, while the adversary tries to find out the testing data on which the

predictions from the constitutive model are the worst.
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7.3.3 Evaluation of model scores and game rewards

The accuracies of model calibrations and forward predictions are quantified by calculating

the discrepancy between the vector of data points [Ydata
i ]Ndata

i=1 and the vector of predicted

values [Ymodel
i ]Ndata

i=1 under the same experimental conditions. For both data points and

predictions, Yi = Sj(Y
j
i ), where Y j

i is the data that falls into the jth category of output

features (quantities of interest, such as deviatoric stress q and void ratio e). Sj is the scaling

operator (standardization, min-max scaling, ...) for the jth output feature.

The model scores are based on the modified Nash-Sutcliffe efficiency index [112]

Ej
NS = 1− ∑Ndata

i=1 |Y
data
i −Ymodel

i |j

∑Ndata
i=1 |Y

data
i −mean(Ydata

)|j
, Ej

NS ∈ (−∞, 1.0]. (7.7)

When j = 2, it recovers the conventional Nash-Sutcliffe efficiency index. Here we adopt

j = 1, and

SCOREprotagonist or adversary = −1.0 + 2.0 ∗max(E1
NS, 0.0), SCORE ∈ [−1.0, 1.0]. (7.8)

The predictions [Ymodel
i ]Ndata

i=1 come from a given constitutive model that is calibrated

with data generated by the protagonist experimentalist. In this work, both gradient-based

deterministic and Bayesian calibration method are used to find the optimal parameter val-

ues from the calibration data. The calibration procedures are accomplished by the Dakota

software for optimization and uncertainty quantification [2].

For deterministic calibration of model parameters, the nonlinear least-squares solver

”NL2SOL” in Dakota is used to compute the model parameters that minimize the scaled

mean squared error objective function

scaled MSE =
1

Ndata

Ndata

∑
i=1

(Ymodel
i − Ydata

i )2 . (7.9)
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The initial guess, upper and lower bounds of each parameter are given by domain experts’

knowledge and preliminary estimations. Dakota can also calculate 95% confidence inter-

vals around the optimal value of the estimated parameters (mean± 1.96∗ standard deviation).

These are not joint confidence intervals, but only on a per-parameter basis.

The uncertainty quantification of the model parameters are done by Bayesian calibra-

tion method. It is based on the Bayes’ theorem of conditional probability, stating that the

posterior joint probability density function (pdf) of the model parameters is given by

fΘ|D(θ|d) =
fΘ(θ)L(θ; d)

fD(d)
(7.10)

where Θ is the space of model parameters and θ is the vector of unknown model param-

eters. D is the space of experimental data and d is the vector of data with Ndata measure-

ments. fΘ(θ) is the prior belief of the pdf of the parameters before the incorporation of

data. It can be given by expert judgment or preliminary parameter studies. For exam-

ple, the confidence interval given by ”NL2SOL” could propose a prior bounded uniform

distribution with upper and lower bounds of mean ± 5 ∗ standard deviation. L(θ; d) is

the likelihood function that describes the probability of witnessing the data d based on

predictions with parameters θ from the model,

L(θ; d) =
Nm

∏
i=1

1
σd
√

2π
exp

[
− (di − qi(θ))

2

2σ2
d

]
(7.11)

where q is the model predicted quantity of interest. σ2
d is the variance of the assumed zero-

mean Gaussian distribution of the measurement error of the data. Finally, fD(d) is the total

probability

fD(d) =
∫

Θ
fΘ(θ)L(θ; d)dθ, (7.12)

which is a normalizing constant.
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Using the ”DRAM” (delayed rejection and adaptive Metropolis) in the ”QUESO” tool-

box of Dakota, the posterior joint pdfs are approximated numerically via Markov Chain

Monte Carlo (MCMC) sampling in probabilistic spaces. MCMC generate samples by evolv-

ing the parameter vector θ through a Markov process until the Markov chain reaches its

stationary distribution. The starting point of the chain could be the optimal parameter

vector given by the deterministic calibration. MCMC sampling could be very expensive

for complicated constitutive models. In this case, simple surrogate models (emulators)

are used to reduce the computation cost, e.g., polynomial chaos expansion, or stochastic

collocation expansion. The optimal parameters after the Bayesian calibration procedure

consists of the maximum a posteriori probability (MAP) point. Figure 7.5 presents an ex-

ample of Bayesian calibration on the Drucker-Prager model with parameters specified by

Eq. (7.13). The procedure yields joint posterior distributions of the parameters and confi-

dence intervals of the predictions.

(a) Gaussian kernel density func-

tion of the distribution of a0

(b) Accepted MCMC samples

showing the joint posterior

distribution of a0 and β0

(c) MAP model estimation with

95% confidence intervals (MAP

predictions ± 1.96∗standard devia-

tion on error)

Figure 7.5: Example of Bayesian calibration on the Drucker-Prager model (cf. Eq.(7.13)).
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Remarks on implementation of constitutive models. The elasto-plasticity models investigated

in this work are implemented in the generalized elasto-plasticity framework [168, 271],

which requires four essential components of ”phenomenological relations” : (1) elastic-

ity law (2) loading direction (3) plastic flow direction (4) hardening modulus. They are

numerically integrated using a general-purpose explicit integration algorithm, instead of

using different implicit integration techniques necessary for different models. The algo-

rithm is a combination of (1) the explicit integration with sub-stepping and automatic er-

ror control [200, 201] (2) explicit integration of (potentially non-smooth) hardening laws

[234] (3) integration of generalized plasticity models [58, 145]. The loading constraints of

geomechanics laboratory experiments are applied via a linearized integration technique

Sdσ + Edε = dY , combined with incremental constitutive equations, as proposed in [13].

dσ and dε are Voigt forms of incremental stress and strain, respectively. S and E are matri-

ces of constraints on incremental stress and strain, respectively. dY is a vector of constraint

values. The algorithm and implementations are detailed in [250].

7.4 Deep reinforcement learning algorithm for the zero-sum ex-

perimental game

With the two-player non-cooperative game completely defined in the previous section, a

deep reinforcement learning (DRL) algorithm is employed as a guidance of taking actions

of both protagonist experimentalist and adversary in the game to maximize the final game

reward (Figure 7.6). The learning is completely free of human interventions after the game

settings. This tactic is considered one of the key ideas leading to the major breakthrough in

AI playing the game of Go (AlphaGo Zero) [196], Chess and shogi (Alpha Zero) [195] and

many other games. In [248], the key ingredients (Policy/Value network, confidence bound
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for Q-value, Monte Carlo Tree Search) of the DRL technique are detailed and applied to a

meta-modeling game for modeler agent only, focusing on finding the optimal topology of

physical relations from fixed training/testing datasets. Since DRL needs to figure out the

optimal strategies for two agents, the algorithm is extended to multi-agent multi-objective

DRL [220, 70, 219]. The AI for protagonist and adversary agents are separate, each has its

own Policy/Value network and decision tree search. But their intelligence are improved

simultaneously during the self-plays of the entire Meta-modeling game, according to the

individual rewards they receive from the game environment and the communications be-

tween themselves (Figure 7.6) [174]. Each complete DRL procedure involves numIters

number of training iterations and one final iteration for generating the final converged

digraph model. Each iteration involves numEpisodes number of game episodes that con-

struct the training example set trainExamples for the training of the policy/value network

fθ . For decision makings in each game episode, the action probabilities are estimated from

numMCTSSims times of MCTS simulations.

7.5 Numerical Experiments

The data for calibration and evaluation of prediction accuracy of the deep-reinforcement-

learned constitutive models are generated by numerical simulations on a representative

volume element (RVE) of densely-packed spherical DEM particles. The open-source dis-

crete element simulation software YADE for DEM is used by the experimentalist agent

to generate data, including the homogenized stress and strain measures and the geomet-

rical and microstructural attributes such as coordination number, fabric tensor, porosity

[202, 213]. The discrete element particles in the RVE have radii between 1± 0.3 mm with

a uniform distribution. The Cundall’s elastic-frictional contact model ([49]) is used for the
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Figure 7.6: Two-player zero-sum adversarial reinforcement learning for generating op-

timal strategy to automate the calibration, validation and falsification of a constitutive

model.

inter-particle constitutive law. The material parameters are: interparticle elastic modulus

Eeq = 0.5 GPa, ratio between shear and normal stiffness ks/kn = 0.3, frictional angle ϕ =

30◦, density ρ = 2600 kg/m3, Cundall damping coefficient αdamp = 0.4. The generated RVE

samples for the experimentalists to choose are presented in Table 7.2.

The constitutive model is a Drucker–Prager plasticity model [234]. It has a yield surface

in the form f = q + αp, and a potential surface in the form g = q + βp− cg. α and β evolve

according to 
α = a0 + a1ε̄p exp(a2 p− a3ε̄p)

β = α− β0

, (7.13)

where a0, a1, a2, a3, β0 are material parameters to calibrate. ε̄p is the accumulated plastic
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Sample No. ’Sample p0’ ’Sample e0’ p0 e0

1 ’300kPa’ ’0.60’ -300 kPa 0.5955

2 ’300kPa’ ’0.55’ -300 kPa 0.5554

3 ’400kPa’ ’0.60’ -400 kPa 0.5936

4 ’400kPa’ ’0.55’ -400 kPa 0.5538

5 ’500kPa’ ’0.60’ -500 kPa 0.5917

6 ’500kPa’ ’0.55’ -500 kPa 0.5521

Table 7.2: Initial DEM RVE Samples

strain.

The meta-modeling procedure with adversarial learning contains numIters = 10 train-

ing iterations of ”exploration and exploitation” of game strategies, by setting the temper-

ature parameter τ to 1. Then an iteration of ”competitive gameplay” (τ = 0.01) is con-

ducted to showcase the performance of the final trained AI agent. Each iteration consists of

numEpisodes = 100 self-play episodes of the game. Hence one execution of the entire DRL

procedure contains numIters ∗ numEpisodes = 10 ∗ 100 = 1000 game episodes for training

the policy/value neural network. Each game starts with a randomly initialized neural net-

work for the policy/value predictions, and each play step require numMCTSSims = 100

MCTS simulations. Then the play steps and corresponding final game rewards are ap-

pended to the set of training examples for the training of the policy/value network. The

success of the non-cooperative game is demonstrated by the statistical performance of

the DRL in Figure 7.7. The distribution of games scores played in each training itera-

tion clearly show an improvement of the protagonist agent in finding the optimal cali-

bration data, while simultaneously the adversary agent converge to perform tests that the

Drucker–Prager model behaves the worst.
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(a) Protagonist (b) Adversary

Figure 7.7: Violin plots of the density distributions of game scores in each DRL iteration in

Numerical Experiment. The shaded area represents the density distribution of scores. The

white point represents the median. The thick black bar represents the inter-quartile range

between 25% quantile and 75% quantile. The maximum and minimum scores played in

each iteration are marked by horizontal lines.

Figure 7.8 and 7.9 illustrate the improvement of knowledge of which experiments to

perform by the protagonist and the adversary during the training iterations. Initially, the

AI agents just play with trial-and-error following strategies guided by random initial pol-

icy/value neural networks and MCTS. This lack of knowledge can be seen from the widely

spread probability distribution of chosen experiments (leaf nodes in the decision trees).

The evolution of pdfs in the subsequent iterations shows that the agents play with increas-

ing knowledge of game strategies reinforced by their zero-sum game rewards. The pdfs of

the protagonist tend to concentrate around monotonic drained triaxial compression tests.

The examples of improved calibration accuracy of the Drucker–Prager model during the

learning procedure, with calibration data provided by the protagonist, are shown in Figure
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7.10. The pdfs of the adversary, however, tend to concentrate around cyclic drained triaxial

extension tests. The examples of blind predictions from the Drucker–Prager model, with

testing data provided by the adversary, are shown in Figure 7.11.

Figure 7.8: Distributions of the experiments determined by the protagonist during the

DRL training iterations. The X axis corresponds to the leaf nodes of the decision tree for

experimentalists.
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Figure 7.9: Distributions of the experiments determined by the adversary during the DRL

training iterations. The X axis corresponds to the leaf nodes of the decision tree for experi-

mentalists.

7.6 Conclusions

We introduce a zero-sum game where two AI experimentalists simultaneously generate

experimental data to calibrate and explore weakness of a known constitutive law until the

strengths and weaknesses of the constitutive laws on the application range can be identi-

fied through competition. In particular, we introduce a pair of AI agents in an adversarial

reinforcement learning framework where the protagonist agent who seeks to find the opti-
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 10

(d) Iteration 0 (e) Iteration 5 (f) Iteration 10

Figure 7.10: Examples of response curves of the games played by the protagonist during

the DRL training iterations. Experimental data are plotted in red dashed curves, model

predictions are plotted in blue solid curves.

mal way to generate data for model calibration is competing with an adversary who seeks

to undermine the protagonist by finding the most devastating test scenarios that expose

the weakness of the protagonist. By idealizing the intended range of applications and

the experimental programs available as a polytree, we train both agents through deep re-

inforcement learning such that they can generate the optimal types of experiments that

benefit their goals to win the competition. This competition is repeated multiple times,

until the agents identify the types of predictions the models are fully capable of doing

and the catastrophic failures can be sufficiently prevented. Through competition among
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(a) Iteration 0 (b) Iteration 5 (c) Iteration 10

(d) Iteration 0 (e) Iteration 5 (f) Iteration 10

Figure 7.11: Examples of response curves of the games played by the adversary during

the DRL training iterations. Experimental data are plotted in red dashed curves, model

predictions are plotted in blue solid curves.

the AI agents, we essentially emulate an idealized scientific collaboration and competition

among research teams such that we can better understand the valid application range of

the learned material laws and prevent misinterpretations by spotting the weaknesses.
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Chapter 8

Conclusion

8.1 Main contributions

In this dissertation, firstly, a finite strain multiscale hydro-mechanical model is established

via an extended Hill-Mandel condition for two-phase porous media. By assuming that the

effective stress principle holds at unit cell scale, we established a micro-to-macro transi-

tion that links the micromechanical responses at grain scale to the macroscopic effective

stress responses, while modeling the fluid phase only at the macroscopic continuum level.

We propose a dual-scale semi-implicit scheme, which treats macroscopic responses im-

plicitly and microscopic responses explicitly. The dual-scale model is shown to have good

convergence rate, and is stable and robust. By inferring effective stress measure and poro-

plasticity parameters, such as porosity, Biot’s coefficient and Biot’s modulus from micro-

scale simulations, the multiscale model is able to predict effective poro-elasto-plastic re-

sponses without introducing additional phenomenological laws. The performance of the

proposed framework is demonstrated via a collection of representative numerical exam-

ples. Fabric tensors of the representative elementary volumes are computed and analyzed

via the anisotropic critical state theory when strain localization occurs.
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For fissured porous media, we developed a semi-data-driven multiscale approach that

obtains both the traction-separation law and the aperture-porosity-permeability relation

from micro-mechanical simulations performed on representative elementary volumes in

the finite deformation range. To speed up the multiscale simulations, the incremental con-

stitutive updates of the mechanical responses are obtained from discrete element simula-

tions at the representative elementary volume whereas the hydraulic responses are gener-

ated from a neural network trained with data from lattice Boltzmann simulations. These

responses are then linked to a macroscopic dual-permeability model. This approach al-

lows one to bypass the need of deriving multi-physical phenomenological laws for com-

plex loading paths. More importantly, it enables the capturing of the evolving anisotropy

of the permeabilities of the macro- and micro-pores. A set of numerical experiments are

used to demonstrate the robustness of the proposed model.

For multiscale geomechanics problems across more than two scales, we introduced a

recursive multiscale framework that captures the hydro-mechanical responses of multi-

permeability porous media with embedded strong discontinuities across different length

scales. Using the directed graph that represents the hierarchy of the numerical models as

the starting point, we identify the knowledge gap and the weakest link of a multiscale mul-

tiphysics mutli-permeability model and replace this portion of the computational model

with a data-driven counterpart. By creating, training and validating recurrent neural net-

work that has the capacity to memorize and interpret history-dependent events, we estab-

lished a new recursive data-driven approach where information from multiple sub-scales

can be used sequentially to generate macroscopic prediction in a cost-efficient manner. The

triple-scale coupling simulations are validated at each sub-scale level where data set for

training and validation are mutually exclusive to each other. This hybrid data-driven mod-
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eling approach may play a critical role for analyzing problems where human-interpretable

knowledge is sufficient to bring closure for forward predictions and for linking simulations

across more than two scales in a cost-efficient manner.

Chapter 5 presents a meta-modeling approach in which we attempt to generate traction-

separation laws not through explicitly writing a particular model but to provide the com-

puter with modeling options such that it can explore on its own through self-practicing.

Unlike previous deep-learning models that soley leverage supervised learning techniques

to train neural networks that makes black-box predictions, this new approach focuses on

reinforcement learning technique to discover hidden relationships among data and there-

fore make modeling decisions to emulate the process of writing constitutive models by

human. To the best knowledge of the authors, this is the first work on using reinforcement

learning and directed graph to form modeling ideas for writing path-dependent constitu-

tive laws. Given the rules (frame indifference, thermodynamic laws, balance principles),

we introduce an agenda-based approach where the DRL technique is used to find the op-

timal way to generate a forward prediction. As demonstrated in our numerical experi-

ments, this approach can be regarded as a generalization of the previous models where

neural network predictions may still embed in part of the predictions but are not necessar-

ily completely replacing all components in the conventional models. This flexibility is the

key for us to exploit the computer to make repeated trial-and-errors and improve from ex-

periments over time to generate the best outcomes, instead of spending significant human

time to explore through trial-and-errors.

In Chapter 6, we introduce a new multi-agent meta-modeling game in which the ex-

perimental task, i.e. the generation of data, and the modeling task, the interpretation of

data, are handled by two artificial intelligence agents. Mincing the collaboration of a pair
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of experimentalist and modeler collaborating to derive, implement, calibrate and validate

a model to explain a path-dependent process, these two agents interact with each other

sequentially and exchange information until either the model and data they reach the ob-

jectives or when further action does not generate a further reward. The action space can be

expanded by adding plausible actions invented by previous human modelers or by gen-

erated new actions from deep neural networks or other machine learning methods. This

invention therefore enables us to idealize the process of writing constitutive models as a

continuous decision-making process in an action space of very high dimensions such that

a pre-defined objective function can be maximized. To the best knowledge of the authors,

this is the first time the ideas of using deep reinforcement learning applied on generating

the knowledge graph and constitutive laws for history-dependent responses of materials.

The metamodeling games are not limited to cooperative games only, they can be non-

cooperative, as we introduced in Chapter 7 that a pair of AI agents compete against each

other in an adversarial reinforcement learning framework. The agents simultaneously gen-

erate experimental data to calibrate and explore weakness of a known constitutive law

until the strengths and weaknesses of the constitutive law on the application range can

be identified through competition. Eventually, the Nash equilibrium of the game can be

found automatically by the reinforcement learning algorithm, which can helps us under-

stand the relationships among objectives between the experimentalist agents, the resultant

actions taken by both players, and the outcomes, assuming each player is acting in a ratio-

nal manner.
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8.2 Perspectives

The idea of inventing the meta-modeling game for multiscale modeling of geomaterials

could be significant in the sense that it frees modelers from focusing on curve-fitting a

physical process. Instead, as future improvements on the models can be made by expand-

ing the action space or simply leveraging the power of computer to improve the models

over time, this allows us unprecedented luxury to place our focuses on finding best cause

of actions that lead to the most predictive model.

The introductions of the graph, directed graph and labeled directed multigraph in the

meta-modeling game enables us to recast the scientific process as a combinatorial opti-

mization problem. Coupled with a reinforcement learning algorithm, the search for the

optimal sequence of decision leads to a meta-modeling game closely resemble a more

human-like iterative cyclical scientific process through which information is continuously

gathered, hypotheses are continuously tested and the plausible understanding is contin-

ually revised. The major elements of scientific methods used by human, including char-

acterization (observation and measurement stored in vertices, definition stored in edges),

hypotheses (selection of a particular form of edges and edge sets), predictions (the informa-

tion flow from root to leave of the directed graph obtained from the meta-modeling game)

and experiments are all incorporated and automated. This new approach produces a fore-

cast engine that can make predictions, but more importantly has the ability to generate

human-interpretable knowledge on the relationships amount different measurable physi-

cal quantities. This feature is significantly unique among other neural network approaches

which often produce black-box models with no easy way to interpret the rationale of the

predictions. It should be pointed out that models generated from the meta-modeling game
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do not discriminate the types of the edges used. They can be any operator that links the

input to output, including but not limited to regression, support vector machine, neural

network, mathematical expression or a bootstrapped version of them. These edges are only

being formed by the AI when they are estimated to have higher policy value according to

a specific objective function.

In sum, this meta-modeling approach provides the following unique benefits against

the conventional hand-crafting approach and black-box neural network models.

1. Since the machine learning procedure is automated, models intended for different

purposes or designed to fulfill different demands (speed, accuracy, robustness) can

be automatically generated and improved over time through self-plays in the model-

creation game.

2. Since the validation procedure is introduced as the reward mechanism for the agent

to find the optimal models available, the resultant models are always validated at the

end of the games.

3. By recasting constitutive models as directed graphs, previous models established by

domain experts can be easily embedded in the proposed framework to expand action

spaces efficiently and shorten the training time.

4. The meta-modeling approach is generic and reusable, which means that it can handle

different situations with different data, objective functions and rules set by human

without going through additional derivation, implementation, material parameter

identification and validation. Hence it does not require any debugging once the the

game is implemented correctly.
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There are also limitations of the current approaches. For instance, the demands for

data could be higher than conventional modeling approach, particularly when more so-

phisticated and rigorous validation metric is used to assign model score and game reward.

We also assume that the data obtained from experiments are perfect and without any sig-

nificant noise. Furthermore, the meta-modeling game is also operated in a setting where

the vertex set and the corresponding label are fixed. Future work will consider how to

introduce quantifiable assurance of the meta-modeling game, incorporate sensitivity anal-

ysis in the validation and predictions, and quantify different types of uncertainties. For

instance, one trains Bayesian neural network to generate edges that deliver not only deter-

ministic predictions but also perform variational inference. By quantifying the sensitivity

of the predictions, one may explore the weakness of the existing action space for both the

modeler and experimentalist agents and use this knowledge to generate new actions.
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[101] R. Ibañez, E. Abisset-Chavanne, J. V. Aguado, D. Gonzalez, E. Cueto, and F. Chinesta.

A manifold learning approach to data-driven computational elasticity and inelastic-

ity. Archives of Computational Methods in Engineering, 25(1):47–57, 2018.

[102] J. R. Jain and S. Ghosh. Damage evolution in composites with a homogenization-



BIBLIOGRAPHY 270

based continuum damage mechanics model. International Journal of Damage Mechan-

ics, 18(6):533–568, 2009.

[103] M. Jefferies. Nor-sand: a simle critical state model for sand. Géotechnique, 43(1):91–
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[202] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Koz-

icki, C. Modenese, L. Scholtès, L. Sibille, et al. Yade documentation. The Yade

Project.(http://yade-dem. org/doc/), 2010.

[203] X. Song and R. I. Borja. Mathematical framework for unsaturated flow in the fi-

nite deformation range. International Journal for Numerical Methods in Engineering,

97(9):658–682, 2014.



BIBLIOGRAPHY 283

[204] P. Steinmann. A finite element formulation for strong discontinuities in fluid-

saturated porous media. Mechanics of Cohesive-frictional Materials, 4(2):133–152, 1999.

[205] Q. Sun, Y. Tao, and Q. Du. Stochastic training of residual networks: a differential

equation viewpoint. arXiv preprint arXiv:1812.00174, 2018.

[206] W. Sun. A unified method to predict diffuse and localized instabilities in sands.

Geomechanics and Geoengineering, 8(2):65–75, 2013.

[207] W. Sun. A stabilized finite element formulation for monolithic thermo-hydro-

mechanical simulations at finite strain. International Journal for Numerical Methods

in Engineering, 2015.

[208] W. Sun. A stabilized finite element formulation for monolithic thermo-hydro-

mechanical simulations at finite strain. International Journal for Numerical Methods

in Engineering, 103(11):798–839, 2015.

[209] W. Sun, J. E. Andrade, and J. W. Rudnicki. Multiscale method for characterization

of porous microstructures and their impact on macroscopic effective permeability.

International Journal for Numerical Methods in Engineering, 88(12):1260–1279, 2011.

[210] W. Sun, J. E. Andrade, J. W. Rudnicki, and P. Eichhubl. Connecting microstruc-

tural attributes and permeability from 3d tomographic images of in situ shear-

enhanced compaction bands using multiscale computations. Geophysical Research

Letters, 38(10), 2011.

[211] W. Sun, Z. Cai, and J. Choo. Mixed arlequin method for multiscale poromechanics

problems. International Journal for Numerical Methods in Engineering, 2016.



BIBLIOGRAPHY 284

[212] W. Sun, Q. Chen, and J. T. Ostien. Modeling the hydro-mechanical responses of

strip and circular punch loadings on water-saturated collapsible geomaterials. Acta

Geotechnica, 9(5):903–934, 2014.

[213] W. Sun, M. Kuhn, and J. Rudnicki. A micromechanical analysis on permeability evo-

lutions of a dilatant shear band. In 48th US Rock Mechanics/Geomechanics Symposium.

American Rock Mechanics Association, 2014.

[214] W. Sun, M. R. Kuhn, and J. W. Rudnicki. A multiscale dem-lbm analysis on perme-

ability evolutions inside a dilatant shear band. Acta Geotechnica, 8(5):465–480, 2013.

[215] W. Sun, J. T. Ostien, and A. G. Salinger. A stabilized assumed deformation gradi-

ent finite element formulation for strongly coupled poromechanical simulations at

finite strain. International Journal for Numerical and Analytical Methods in Geomechanics,

37(16):2755–2788, 2013.

[216] W. Sun and T.-f. Wong. Prediction of permeability and formation factor of sandstone

with hybrid lattice boltzmann/finite element simulation on microtomographic im-

ages. International Journal of Rock Mechanics and Mining Sciences, 106:269–277, 2018.

[217] R. S. Sutton. Introduction: The challenge of reinforcement learning. In Reinforcement

Learning, pages 1–3. Springer, 1992.

[218] A. E. Tallman, L. P. Swiler, Y. Wang, and D. L. McDowell. Reconciled top-down and

bottom-up hierarchical multiscale calibration of bcc fe crystal plasticity. International

Journal for Multiscale Computational Engineering, 15(6), 2017.

[219] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vi-



BIBLIOGRAPHY 285

cente. Multiagent cooperation and competition with deep reinforcement learning.

PloS one, 12(4):e0172395, 2017.

[220] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.

In Proceedings of the tenth international conference on machine learning, pages 330–337,

1993.

[221] M. Tawhai, J. Bischoff, D. Einstein, A. Erdemir, T. Guess, and J. Reinbolt. Multiscale

modeling in computational biomechanics. IEEE Engineering in medicine and biology

magazine, 28(3), 2009.

[222] K. Terzaghi. Theory of consolidation. Wiley Online Library, 1943.

[223] K. Terzaghi, K. Terzaghi, C. Engineer, A. Czechoslowakia, K. Terzaghi, I. Civil,
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